Migration from jb-mr2 to master for Widevine CDM

Android development of the widevine CDM has been done
on the jb-mr2 branch of the cdm code base.  This CL
contains a merge of that jb-mr2 work to CDM master, and
also reflects the evolution of the common Modular DRM
code base since jb-mr2 branched.

Change-Id: I1d7e1a12d092c00044a4298261146cb97808d4ef
This commit is contained in:
Jeff Tinker
2013-07-29 17:29:07 -07:00
parent edb987db07
commit 0190f99fb3
68 changed files with 4754 additions and 3601 deletions

View File

@@ -5,9 +5,10 @@
#include "crypto_session.h"
#include <arpa/inet.h> // TODO(fredgc): Add ntoh to wv_cdm_utilities.h
#include <iostream>
#include "crypto_engine.h"
#include "crypto_key.h"
#include "log.h"
// TODO(gmorgan,jtinker): decide if OEMCryptoCENC is needed here.
#include "OEMCryptoCENC.h"
@@ -21,95 +22,226 @@ std::string EncodeUint32(unsigned int u) {
std::string s;
s.append(1, (u >> 24) & 0xFF);
s.append(1, (u >> 16) & 0xFF);
s.append(1, (u >> 8) & 0xFF);
s.append(1, (u >> 0) & 0xFF);
s.append(1, (u >> 8) & 0xFF);
s.append(1, (u >> 0) & 0xFF);
return s;
}
}
namespace wvcdm {
// wrapper classes for OEMCrypto interface
// CryptoEngine -- top-level interface
// CryptoSession -- session-specific interface
// CryptoKey -- key interface
Lock CryptoSession::crypto_lock_;
bool CryptoSession::initialized_ = false;
int CryptoSession::session_count_ = 0;
// CryptoSession methods
CryptoSession::CryptoSession() :
valid_(false),
open_(false),
is_destination_buffer_type_valid_(false) {}
CryptoSession::CryptoSession(const std::string& sname) :
valid_(true),
open_(false),
cdm_session_id_(sname),
is_destination_buffer_type_valid_(false) {}
CryptoSession::CryptoSession()
: open_(false), is_destination_buffer_type_valid_(false) {
Init();
}
CryptoSession::~CryptoSession() {
if (open_) {
Close();
}
LOGV("CryptoSession::dtor: SLock");
CryptoEngine* crypto_engine = CryptoEngine::GetInstance();
crypto_engine->sessions_.erase(cdm_session_id_);
if (0 == crypto_engine->sessions_.size()) {
crypto_engine->DeleteInstance();
Terminate();
}
void CryptoSession::Init() {
LOGV("CryptoSession::Init");
AutoLock auto_lock(crypto_lock_);
session_count_ += 1;
if (initialized_) return;
OEMCryptoResult sts = OEMCrypto_Initialize();
if (OEMCrypto_SUCCESS != sts) {
LOGE("OEMCrypto_Initialize failed: %d", sts);
return;
}
initialized_ = true;
}
void CryptoSession::Terminate() {
LOGV("CryptoSession::Terminate");
AutoLock auto_lock(crypto_lock_);
session_count_ -= 1;
if (session_count_ > 0 || !initialized_) return;
OEMCryptoResult sts = OEMCrypto_Terminate();
if (OEMCrypto_SUCCESS != sts) {
LOGE("OEMCrypto_Terminate failed: %d", sts);
}
initialized_ = false;
}
bool CryptoSession::ValidateKeybox() {
LOGV("CryptoSession::ValidateKeybox: Lock");
AutoLock auto_lock(crypto_lock_);
if (!initialized_) {
return false;
}
OEMCryptoResult result = OEMCrypto_IsKeyboxValid();
return (OEMCrypto_SUCCESS == result);
}
bool CryptoSession::GetToken(std::string* token) {
if (!token) {
LOGE("CryptoSession::GetToken : No token passed to method.");
return false;
}
uint8_t buf[KEYBOX_KEY_DATA_SIZE];
size_t bufSize = sizeof(buf);
LOGV("CryptoSession::GetToken: Lock");
AutoLock auto_lock(crypto_lock_);
if (!initialized_) {
return false;
}
OEMCryptoResult sts = OEMCrypto_GetKeyData(buf, &bufSize);
if (OEMCrypto_SUCCESS != sts) {
return false;
}
token->assign((const char*)buf, (size_t)bufSize);
return true;
}
CryptoSession::SecurityLevel CryptoSession::GetSecurityLevel() {
LOGV("CryptoSession::GetSecurityLevel: Lock");
AutoLock auto_lock(crypto_lock_);
if (!initialized_) {
return kSecurityLevelUninitialized;
}
std::string security_level = OEMCrypto_SecurityLevel();
if ((security_level.size() != 2) || (security_level.at(0) != 'L')) {
return kSecurityLevelUnknown;
}
CryptoKeyMap::iterator i(keys_.begin());
for (; i != keys_.end(); ++i)
delete i->second;
keys_.clear();
switch (security_level.at(1)) {
case '1':
return kSecurityLevelL1;
case '2':
return kSecurityLevelL2;
case '3':
return kSecurityLevelL3;
default:
return kSecurityLevelUnknown;
}
return kSecurityLevelUnknown;
}
bool CryptoSession::GetDeviceUniqueId(std::string* device_id) {
if (!device_id) {
LOGE("CryptoSession::GetDeviceUniqueId : No buffer passed to method.");
return false;
}
std::vector<uint8_t> id;
size_t id_length = 32;
id.resize(id_length);
LOGV("CryptoSession::GetDeviceUniqueId: Lock");
AutoLock auto_lock(crypto_lock_);
if (!initialized_) {
return false;
}
OEMCryptoResult sts = OEMCrypto_GetDeviceID(&id[0], &id_length);
if (OEMCrypto_SUCCESS != sts) {
return false;
}
*device_id = reinterpret_cast<const char*>(&id[0]);
return true;
}
bool CryptoSession::GetSystemId(uint32_t* system_id) {
if (!system_id) {
LOGE("CryptoSession::GetSystemId : No buffer passed to method.");
return false;
}
uint8_t buf[KEYBOX_KEY_DATA_SIZE];
size_t buf_size = sizeof(buf);
LOGV("CryptoSession::GetSystemId: Lock");
AutoLock auto_lock(crypto_lock_);
if (!initialized_) {
return false;
}
OEMCryptoResult sts = OEMCrypto_GetKeyData(buf, &buf_size);
if (OEMCrypto_SUCCESS != sts) {
return false;
}
// Decode 32-bit int encoded as network-byte-order byte array starting at
// index 4.
uint32_t* id = reinterpret_cast<uint32_t*>(&buf[4]);
*system_id = ntohl(*id);
return true;
}
bool CryptoSession::GetProvisioningId(std::string* provisioning_id) {
if (!provisioning_id) {
LOGE("CryptoSession::GetProvisioningId : No buffer passed to method.");
return false;
}
uint8_t buf[KEYBOX_KEY_DATA_SIZE];
size_t buf_size = sizeof(buf);
LOGV("CryptoSession::GetProvisioningId: Lock");
AutoLock auto_lock(crypto_lock_);
if (!initialized_) {
return false;
}
OEMCryptoResult sts = OEMCrypto_GetKeyData(buf, &buf_size);
if (OEMCrypto_SUCCESS != sts) {
return false;
}
provisioning_id->assign(reinterpret_cast<char*>(&buf[8]), 16);
return true;
}
bool CryptoSession::Open() {
LOGV("CryptoSession::Open: Lock");
CryptoEngine* crypto_engine = CryptoEngine::GetInstance();
AutoLock auto_lock(crypto_engine->crypto_lock_);
AutoLock auto_lock(crypto_lock_);
if (!initialized_) return false;
if (open_) return true;
OEMCrypto_SESSION sid;
OEMCryptoResult sts;
if (open_)
return false;
sts = OEMCrypto_OpenSession(&sid);
if (OEMCrypto_SUCCESS != sts) {
open_ = false;
} else {
if (OEMCrypto_SUCCESS == OEMCrypto_OpenSession(&sid)) {
oec_session_id_ = static_cast<CryptoSessionId>(sid);
LOGV("OpenSession: id= %ld", (uint32_t) oec_session_id_);
LOGV("OpenSession: id= %ld", (uint32_t)oec_session_id_);
open_ = true;
}
return open_;
}
void CryptoSession::Close() {
LOGV("CryptoSession::Close: Lock");
CryptoEngine* crypto_engine = CryptoEngine::GetInstance();
AutoLock auto_lock(crypto_engine->crypto_lock_);
LOGV("CloseSession: id=%ld open=%s", (uint32_t) oec_session_id_, open_? "true" : "false") ;
if (open_) {
OEMCryptoResult sts = OEMCrypto_CloseSession(oec_session_id_);
if (OEMCrypto_SUCCESS == sts) {
open_ = false;
}
LOGV("CloseSession: id=%ld open=%s", (uint32_t)oec_session_id_,
open_ ? "true" : "false");
AutoLock auto_lock(crypto_lock_);
if (!open_) return;
if (OEMCrypto_SUCCESS == OEMCrypto_CloseSession(oec_session_id_)) {
open_ = false;
}
}
void CryptoSession::GenerateRequestId(std::string& req_id_str) {
LOGV("CryptoSession::GenerateRequestId: Lock");
CryptoEngine* crypto_engine = CryptoEngine::GetInstance();
AutoLock auto_lock(crypto_engine->crypto_lock_);
AutoLock auto_lock(crypto_lock_);
// TODO(gmorgan): Get unique ID from OEMCrypto
req_id_str.assign("987654321");
}
bool CryptoSession::PrepareRequest(const std::string& message,
std::string* signature,
bool is_provisioning) {
bool is_provisioning,
std::string* signature) {
LOGV("CryptoSession::PrepareRequest: Lock");
CryptoEngine* crypto_engine = CryptoEngine::GetInstance();
AutoLock auto_lock(crypto_engine->crypto_lock_);
AutoLock auto_lock(crypto_lock_);
if (!signature) {
LOGE("CryptoSession::PrepareRequest : No output destination provided.");
@@ -117,15 +249,11 @@ bool CryptoSession::PrepareRequest(const std::string& message,
}
if (!Properties::use_certificates_as_identification() || is_provisioning) {
if (!GenerateDerivedKeys(message))
return false;
if (!GenerateDerivedKeys(message)) return false;
if (!GenerateSignature(message, signature, false))
return false;
}
else {
if (!GenerateSignature(message, signature, true))
return false;
if (!GenerateSignature(message, false, signature)) return false;
} else {
if (!GenerateSignature(message, true, signature)) return false;
}
return true;
@@ -134,15 +262,15 @@ bool CryptoSession::PrepareRequest(const std::string& message,
bool CryptoSession::PrepareRenewalRequest(const std::string& message,
std::string* signature) {
LOGV("CryptoSession::PrepareRenewalRequest: Lock");
CryptoEngine* crypto_engine = CryptoEngine::GetInstance();
AutoLock auto_lock(crypto_engine->crypto_lock_);
AutoLock auto_lock(crypto_lock_);
if (!signature) {
LOGE("CryptoSession::PrepareRenewalRequest : No output destination provided.");
LOGE("CryptoSession::PrepareRenewalRequest : No output destination "
"provided.");
return false;
}
if (!GenerateSignature(message, signature, false)) {
if (!GenerateSignature(message, false, signature)) {
return false;
}
@@ -162,13 +290,14 @@ void CryptoSession::GenerateMacContext(const std::string& input_context,
deriv_context->assign(kSigningKeyLabel);
deriv_context->append(1, '\0');
deriv_context->append(input_context);
deriv_context->append(EncodeUint32(kSigningKeySizeBits*2));
deriv_context->append(EncodeUint32(kSigningKeySizeBits * 2));
}
void CryptoSession::GenerateEncryptContext(const std::string& input_context,
std::string* deriv_context) {
if (!deriv_context) {
LOGE("CryptoSession::GenerateEncryptContext : No output destination provided.");
LOGE("CryptoSession::GenerateEncryptContext : No output destination "
"provided.");
return;
}
@@ -193,12 +322,10 @@ size_t CryptoSession::GetOffset(std::string message, std::string field) {
bool CryptoSession::LoadKeys(const std::string& message,
const std::string& signature,
const std::string& mac_key_iv,
const std::string& mac_key,
int num_keys,
const std::string& mac_key, int num_keys,
const CryptoKey* key_array) {
LOGV("CryptoSession::LoadKeys: Lock");
CryptoEngine* crypto_engine = CryptoEngine::GetInstance();
AutoLock auto_lock(crypto_engine->crypto_lock_);
AutoLock auto_lock(crypto_lock_);
const uint8_t* msg = reinterpret_cast<const uint8_t*>(message.data());
const uint8_t* enc_mac_key = NULL;
@@ -208,7 +335,7 @@ bool CryptoSession::LoadKeys(const std::string& message,
enc_mac_key_iv = msg + GetOffset(message, mac_key_iv);
}
std::vector<OEMCrypto_KeyObject> load_key_array(num_keys);
for (int i=0; i<num_keys; ++i) {
for (int i = 0; i < num_keys; ++i) {
const CryptoKey* ki = &key_array[i];
OEMCrypto_KeyObject* ko = &load_key_array[i];
ko->key_id = msg + GetOffset(message, ki->key_id());
@@ -219,30 +346,28 @@ bool CryptoSession::LoadKeys(const std::string& message,
if (ki->HasKeyControl()) {
ko->key_control_iv = msg + GetOffset(message, ki->key_control_iv());
ko->key_control = msg + GetOffset(message, ki->key_control());
}
else {
LOGE("For key %d: XXX key has no control block. size=%d", i, ki->key_control().size());
} else {
LOGE("For key %d: XXX key has no control block. size=%d", i,
ki->key_control().size());
ko->key_control_iv = NULL;
ko->key_control = NULL;
}
}
LOGV("LoadKeys: id=%ld", (uint32_t) oec_session_id_);
return (OEMCrypto_SUCCESS == OEMCrypto_LoadKeys(
oec_session_id_, msg, message.size(),
reinterpret_cast<const uint8_t*>(signature.data()),
signature.size(), enc_mac_key_iv, enc_mac_key,
num_keys, &load_key_array[0]));
LOGV("LoadKeys: id=%ld", (uint32_t)oec_session_id_);
return (OEMCrypto_SUCCESS ==
OEMCrypto_LoadKeys(oec_session_id_, msg, message.size(),
reinterpret_cast<const uint8_t*>(signature.data()),
signature.size(), enc_mac_key_iv, enc_mac_key,
num_keys, &load_key_array[0]));
}
bool CryptoSession::LoadCertificatePrivateKey(std::string& wrapped_key) {
LOGV("CryptoSession::LoadKeys: Lock");
CryptoEngine* crypto_engine = CryptoEngine::GetInstance();
AutoLock auto_lock(crypto_engine->crypto_lock_);
AutoLock auto_lock(crypto_lock_);
LOGV("LoadDeviceRSAKey: id=%ld", (uint32_t) oec_session_id_);
LOGV("LoadDeviceRSAKey: id=%ld", (uint32_t)oec_session_id_);
OEMCryptoResult sts = OEMCrypto_LoadDeviceRSAKey(
oec_session_id_,
reinterpret_cast<const uint8_t*>(wrapped_key.data()),
oec_session_id_, reinterpret_cast<const uint8_t*>(wrapped_key.data()),
wrapped_key.size());
if (OEMCrypto_SUCCESS != sts) {
@@ -254,16 +379,14 @@ bool CryptoSession::LoadCertificatePrivateKey(std::string& wrapped_key) {
}
bool CryptoSession::RefreshKeys(const std::string& message,
const std::string& signature,
int num_keys,
const std::string& signature, int num_keys,
const CryptoKey* key_array) {
LOGV("CryptoSession::RefreshKeys: Lock");
CryptoEngine* crypto_engine = CryptoEngine::GetInstance();
AutoLock auto_lock(crypto_engine->crypto_lock_);
AutoLock auto_lock(crypto_lock_);
const uint8_t* msg = reinterpret_cast<const uint8_t*>(message.data());
std::vector<OEMCrypto_KeyRefreshObject> load_key_array(num_keys);
for (int i=0; i<num_keys; ++i) {
for (int i = 0; i < num_keys; ++i) {
const CryptoKey* ki = &key_array[i];
OEMCrypto_KeyRefreshObject* ko = &load_key_array[i];
if (ki->key_id().empty()) {
@@ -278,30 +401,28 @@ bool CryptoSession::RefreshKeys(const std::string& message,
ko->key_control_iv = msg + GetOffset(message, ki->key_control_iv());
}
ko->key_control = msg + GetOffset(message, ki->key_control());
}
else {
} else {
ko->key_control_iv = NULL;
ko->key_control = NULL;
}
}
LOGV("RefreshKeys: id=%ld", static_cast<uint32_t>(oec_session_id_));
return (OEMCrypto_SUCCESS == OEMCrypto_RefreshKeys(
oec_session_id_, msg, message.size(),
reinterpret_cast<const uint8_t*>(signature.data()),
signature.size(),
num_keys, &load_key_array[0]));
return (
OEMCrypto_SUCCESS ==
OEMCrypto_RefreshKeys(oec_session_id_, msg, message.size(),
reinterpret_cast<const uint8_t*>(signature.data()),
signature.size(), num_keys, &load_key_array[0]));
}
bool CryptoSession::SelectKey(const std::string& key_id) {
LOGV("CryptoSession::SelectKey: Lock");
CryptoEngine* crypto_engine = CryptoEngine::GetInstance();
AutoLock auto_lock(crypto_engine->crypto_lock_);
AutoLock auto_lock(crypto_lock_);
const uint8_t* key_id_string =
reinterpret_cast<const uint8_t*>(key_id.data());
LOGV("SelectKey: id=%ld", static_cast<uint32_t>(oec_session_id_));
OEMCryptoResult sts = OEMCrypto_SelectKey(oec_session_id_, key_id_string,
key_id.size());
OEMCryptoResult sts =
OEMCrypto_SelectKey(oec_session_id_, key_id_string, key_id.size());
if (OEMCrypto_SUCCESS != sts) {
return false;
}
@@ -314,7 +435,7 @@ bool CryptoSession::GenerateDerivedKeys(const std::string& message) {
GenerateMacContext(message, &mac_deriv_message);
GenerateEncryptContext(message, &enc_deriv_message);
LOGV("GenerateDerivedKeys: id=%ld", (uint32_t) oec_session_id_);
LOGV("GenerateDerivedKeys: id=%ld", (uint32_t)oec_session_id_);
OEMCryptoResult sts = OEMCrypto_GenerateDerivedKeys(
oec_session_id_,
reinterpret_cast<const uint8_t*>(mac_deriv_message.data()),
@@ -337,10 +458,9 @@ bool CryptoSession::GenerateDerivedKeys(const std::string& message,
GenerateMacContext(message, &mac_deriv_message);
GenerateEncryptContext(message, &enc_deriv_message);
LOGV("GenerateDerivedKeys: id=%ld", (uint32_t) oec_session_id_);
LOGV("GenerateDerivedKeys: id=%ld", (uint32_t)oec_session_id_);
OEMCryptoResult sts = OEMCrypto_DeriveKeysFromSessionKey(
oec_session_id_,
reinterpret_cast<const uint8_t*>(session_key.data()),
oec_session_id_, reinterpret_cast<const uint8_t*>(session_key.data()),
session_key.size(),
reinterpret_cast<const uint8_t*>(mac_deriv_message.data()),
mac_deriv_message.size(),
@@ -355,51 +475,43 @@ bool CryptoSession::GenerateDerivedKeys(const std::string& message,
return true;
}
bool CryptoSession::GenerateSignature(const std::string& message,
std::string* signature,
bool use_rsa) {
LOGV("GenerateSignature: id=%ld", (uint32_t) oec_session_id_);
if (!signature)
return false;
bool CryptoSession::GenerateSignature(const std::string& message, bool use_rsa,
std::string* signature) {
LOGV("GenerateSignature: id=%ld", (uint32_t)oec_session_id_);
if (!signature) return false;
size_t length = 0;
OEMCryptoResult sts;
OEMCryptoResult sts = OEMCrypto_SUCCESS;
if (use_rsa) {
sts = OEMCrypto_GenerateRSASignature(
oec_session_id_,
reinterpret_cast<const uint8_t*>(message.data()),
message.size(),
NULL,
&length);
}
else {
oec_session_id_, reinterpret_cast<const uint8_t*>(message.data()),
message.size(), NULL, &length);
if (OEMCrypto_ERROR_SHORT_BUFFER != sts) {
LOGD("GenerateSignature: OEMCrypto_GenerateRSASignature err=%d", sts);
return false;
}
} else {
length = kSignatureSize;
// TODO(gmorgan,kqyang): Use OEMCrypto_GenerateSignature to determine
// length after marvell fixes their implementation.
/*
sts = OEMCrypto_GenerateSignature(
oec_session_id_,
reinterpret_cast<const uint8_t*>(message.data()),
message.size(),
NULL,
&length);
}
if (OEMCrypto_ERROR_SHORT_BUFFER != sts) {
LOGD("GenerateSignature: OEMCrypto_GenerateSignature err=%d", sts);
return false;
oec_session_id_, reinterpret_cast<const uint8_t*>(message.data()),
message.size(), NULL, &length);
*/
}
signature->resize(length);
if (use_rsa) {
sts = OEMCrypto_GenerateRSASignature(
oec_session_id_,
reinterpret_cast<const uint8_t*>(message.data()),
oec_session_id_, reinterpret_cast<const uint8_t*>(message.data()),
message.size(),
reinterpret_cast<uint8_t*>(const_cast<char*>(signature->data())),
&length);
}
else {
} else {
sts = OEMCrypto_GenerateSignature(
oec_session_id_,
reinterpret_cast<const uint8_t*>(message.data()),
oec_session_id_, reinterpret_cast<const uint8_t*>(message.data()),
message.size(),
reinterpret_cast<uint8_t*>(const_cast<char*>(signature->data())),
&length);
@@ -410,29 +522,24 @@ bool CryptoSession::GenerateSignature(const std::string& message,
return false;
}
// TODO(fredgc): remove in K, when L1 library reports correct length.
// TODO(fredgc): b/8878371
// remove in K, when L1 library reports correct length.
signature->resize(length);
return true;
}
CdmResponseType CryptoSession::Decrypt(bool is_encrypted,
bool is_secure,
const uint8_t* encrypt_buffer,
size_t encrypt_length,
const std::vector<uint8_t>& iv,
size_t block_offset,
void* decrypt_buffer,
size_t decrypt_buffer_offset,
bool is_video) {
CdmResponseType CryptoSession::Decrypt(
bool is_encrypted, bool is_secure, const uint8_t* encrypt_buffer,
size_t encrypt_length, const std::vector<uint8_t>& iv, size_t block_offset,
void* decrypt_buffer, size_t decrypt_buffer_offset, bool is_video) {
if (!is_destination_buffer_type_valid_) {
if (!SetDestinationBufferType())
return UNKNOWN_ERROR;
if (!SetDestinationBufferType()) return UNKNOWN_ERROR;
}
OEMCrypto_DestBufferDesc buffer_descriptor;
buffer_descriptor.type =
is_secure ? destination_buffer_type_: OEMCrypto_BufferType_Clear;
is_secure ? destination_buffer_type_ : OEMCrypto_BufferType_Clear;
switch (buffer_descriptor.type) {
case OEMCrypto_BufferType_Clear:
@@ -452,13 +559,8 @@ CdmResponseType CryptoSession::Decrypt(bool is_encrypted,
}
OEMCryptoResult sts = OEMCrypto_DecryptCTR(
oec_session_id_,
encrypt_buffer,
encrypt_length,
is_encrypted,
&iv[0],
block_offset,
&buffer_descriptor,
oec_session_id_, encrypt_buffer, encrypt_length, is_encrypted, &iv[0],
block_offset, &buffer_descriptor,
OEMCrypto_FirstSubsample | OEMCrypto_LastSubsample);
if (OEMCrypto_SUCCESS != sts) {
@@ -474,29 +576,23 @@ bool CryptoSession::GenerateNonce(uint32_t* nonce) {
}
LOGV("CryptoSession::GenerateNonce: Lock");
CryptoEngine* crypto_engine = CryptoEngine::GetInstance();
AutoLock auto_lock(crypto_engine->crypto_lock_);
return(OEMCrypto_SUCCESS == OEMCrypto_GenerateNonce(oec_session_id_, nonce));
AutoLock auto_lock(crypto_lock_);
return (OEMCrypto_SUCCESS == OEMCrypto_GenerateNonce(oec_session_id_, nonce));
}
bool CryptoSession::SetDestinationBufferType() {
CryptoEngine* crypto_engine = CryptoEngine::GetInstance();
if (Properties::oem_crypto_use_secure_buffers()) {
if (crypto_engine->GetSecurityLevel() == CryptoEngine::kSecurityLevelL1) {
if (GetSecurityLevel() == CryptoSession::kSecurityLevelL1) {
destination_buffer_type_ = OEMCrypto_BufferType_Secure;
}
else {
} else {
destination_buffer_type_ = OEMCrypto_BufferType_Clear;
}
}
else if (Properties::oem_crypto_use_fifo()) {
} else if (Properties::oem_crypto_use_fifo()) {
destination_buffer_type_ = OEMCrypto_BufferType_Direct;
}
else if (Properties::oem_crypto_use_userspace_buffers()) {
} else if (Properties::oem_crypto_use_userspace_buffers()) {
destination_buffer_type_ = OEMCrypto_BufferType_Clear;
}
else {
} else {
return false;
}
@@ -508,14 +604,10 @@ bool CryptoSession::RewrapDeviceRSAKey(const std::string& message,
const std::string& signature,
const std::string& nonce,
const std::string& enc_rsa_key,
size_t enc_rsa_key_length,
const std::string& rsa_key_iv,
std::string* wrapped_rsa_key) {
LOGV("CryptoSession::RewrapDeviceRSAKey: Lock+++");
CryptoEngine* crypto_engine = CryptoEngine::GetInstance();
AutoLock auto_lock(crypto_engine->crypto_lock_);
LOGV("crypto session id=%ld", static_cast<uint32_t>(oec_session_id_));
LOGD("CryptoSession::RewrapDeviceRSAKey, session id=%ld",
static_cast<uint32_t>(oec_session_id_));
const uint8_t* signed_msg = reinterpret_cast<const uint8_t*>(message.data());
const uint8_t* msg_rsa_key = NULL;
@@ -524,21 +616,17 @@ bool CryptoSession::RewrapDeviceRSAKey(const std::string& message,
if (enc_rsa_key.size() >= MAC_KEY_SIZE && rsa_key_iv.size() >= KEY_IV_SIZE) {
msg_rsa_key = signed_msg + GetOffset(message, enc_rsa_key);
msg_rsa_key_iv = signed_msg + GetOffset(message, rsa_key_iv);
msg_nonce = reinterpret_cast<const uint32_t*>(
signed_msg + GetOffset(message, nonce));
msg_nonce = reinterpret_cast<const uint32_t*>(signed_msg +
GetOffset(message, nonce));
}
// Gets wrapped_rsa_key_length by passing NULL as uint8_t* wrapped_rsa_key
// and 0 as wrapped_rsa_key_length.
size_t wrapped_rsa_key_length = 0;
OEMCryptoResult status = OEMCrypto_RewrapDeviceRSAKey(
oec_session_id_,
signed_msg, message.size(),
oec_session_id_, signed_msg, message.size(),
reinterpret_cast<const uint8_t*>(signature.data()), signature.size(),
msg_nonce,
msg_rsa_key, enc_rsa_key_length,
msg_rsa_key_iv,
NULL,
msg_nonce, msg_rsa_key, enc_rsa_key.size(), msg_rsa_key_iv, NULL,
&wrapped_rsa_key_length);
if (status != OEMCrypto_ERROR_SHORT_BUFFER) {
LOGE("OEMCrypto_RewrapDeviceRSAKey fails to get wrapped_rsa_key_length");
@@ -547,20 +635,16 @@ bool CryptoSession::RewrapDeviceRSAKey(const std::string& message,
wrapped_rsa_key->resize(wrapped_rsa_key_length);
status = OEMCrypto_RewrapDeviceRSAKey(
oec_session_id_,
signed_msg,
message.size(),
reinterpret_cast<const uint8_t*>(signature.data()),
signature.size(),
msg_nonce,
msg_rsa_key,
enc_rsa_key_length,
msg_rsa_key_iv,
reinterpret_cast<uint8_t*>(const_cast<char*>(wrapped_rsa_key->data())),
oec_session_id_, signed_msg, message.size(),
reinterpret_cast<const uint8_t*>(signature.data()), signature.size(),
msg_nonce, msg_rsa_key, enc_rsa_key.size(), msg_rsa_key_iv,
reinterpret_cast<uint8_t*>(&(*wrapped_rsa_key)[0]),
&wrapped_rsa_key_length);
// TODO(fredgc): remove in K, when L1 library reports correct length.
// TODO(fredgc): b/8878371
// remove in K, when L1 library reports correct length.
wrapped_rsa_key->resize(wrapped_rsa_key_length);
if (OEMCrypto_SUCCESS != status) {
LOGE("OEMCrypto_RewrapDeviceRSAKey fails with %d", status);
return false;
@@ -569,4 +653,15 @@ bool CryptoSession::RewrapDeviceRSAKey(const std::string& message,
return true;
}
bool CryptoSession::GetRandom(uint8_t* random_data, size_t data_length) {
OEMCryptoResult sts = OEMCrypto_GetRandom(random_data, data_length);
if (sts != OEMCrypto_SUCCESS) {
LOGE("OEMCrypto_GetRandom fails with %d", sts);
return false;
}
return true;
}
}; // namespace wvcdm