CAS demo app

Adds a new `cas` directory to the ports/linux project. This contains
an end-to-end demo of OEMCrypto CAS functionality, using the Linux
tee_simulator as a base.

Test: from ports/linux/cas dir: `CDM_DIR=~/work/cdm-dupe ./scripts/build.sh && CDM_DIR=~/work/cdm-dupe ./scripts/run.sh`

Merged from https://widevine-internal-review.googlesource.com/178250

Change-Id: I781b403100ad2e069d99650d9ddae8e7acbc309a
This commit is contained in:
Matt Feddersen
2023-03-16 22:52:59 +00:00
committed by Robert Shih
parent 7d989e3448
commit 0dbc42f10e
3 changed files with 125 additions and 26 deletions

View File

@@ -82,30 +82,6 @@ class FuzzedData {
size_t source_size_; size_t source_size_;
}; };
// Encrypt a block of data using CTR mode.
void EncryptCTR(const vector<uint8_t>& in_buffer, const uint8_t* key,
const uint8_t* starting_iv, vector<uint8_t>* out_buffer) {
ASSERT_NE(nullptr, key);
ASSERT_NE(nullptr, starting_iv);
ASSERT_NE(nullptr, out_buffer);
AES_KEY aes_key;
AES_set_encrypt_key(key, AES_BLOCK_SIZE * 8, &aes_key);
out_buffer->resize(in_buffer.size());
uint8_t iv[AES_BLOCK_SIZE]; // Current iv.
memcpy(iv, &starting_iv[0], AES_BLOCK_SIZE);
size_t l = 0; // byte index into encrypted subsample.
while (l < in_buffer.size()) {
uint8_t aes_output[AES_BLOCK_SIZE];
AES_encrypt(iv, aes_output, &aes_key);
for (size_t n = 0; n < AES_BLOCK_SIZE && l < in_buffer.size(); n++, l++) {
(*out_buffer)[l] = aes_output[n] ^ in_buffer[l];
}
ctr128_inc64(1, iv);
}
}
// Uses OEMCrypto to decrypt some random data in 'cenc' mode. This function // Uses OEMCrypto to decrypt some random data in 'cenc' mode. This function
// assumes that the correct key is already selected in the session. It requires // assumes that the correct key is already selected in the session. It requires
// the plaintext of that key so that it can encrypt the test data. It resizes // the plaintext of that key so that it can encrypt the test data. It resizes
@@ -138,6 +114,31 @@ OEMCryptoResult DecryptCTR(const vector<uint8_t>& key_handle,
} // namespace } // namespace
// Encrypt a block of data using CTR mode.
void EncryptCTR(const vector<uint8_t>& in_buffer, const uint8_t* key,
const uint8_t* starting_iv, vector<uint8_t>* out_buffer) {
ASSERT_NE(nullptr, key);
ASSERT_NE(nullptr, starting_iv);
ASSERT_NE(nullptr, out_buffer);
AES_KEY aes_key;
AES_set_encrypt_key(key, AES_BLOCK_SIZE * 8, &aes_key);
out_buffer->resize(in_buffer.size());
uint8_t iv[AES_BLOCK_SIZE]; // Current iv.
memcpy(iv, &starting_iv[0], AES_BLOCK_SIZE);
size_t l = 0; // byte index into encrypted subsample.
while (l < in_buffer.size()) {
uint8_t aes_output[AES_BLOCK_SIZE];
AES_encrypt(iv, aes_output, &aes_key);
for (size_t n = 0; n < AES_BLOCK_SIZE && l < in_buffer.size(); n++, l++) {
(*out_buffer)[l] = aes_output[n] ^ in_buffer[l];
}
ctr128_inc64(1, iv);
}
}
int GetRandBytes(unsigned char* buf, size_t num) { int GetRandBytes(unsigned char* buf, size_t num) {
// returns 1 on success, -1 if not supported, or 0 if other failure. // returns 1 on success, -1 if not supported, or 0 if other failure.
return RAND_bytes(buf, static_cast<int>(num)); return RAND_bytes(buf, static_cast<int>(num));
@@ -1231,6 +1232,12 @@ void EntitledMessage::MakeOneKey(size_t entitlement_key_index) {
sizeof(key_data->content_key_data_iv))); sizeof(key_data->content_key_data_iv)));
offsets->content_key_data_iv = FindSubstring( offsets->content_key_data_iv = FindSubstring(
key_data->content_key_data_iv, sizeof(key_data->content_key_data_iv)); key_data->content_key_data_iv, sizeof(key_data->content_key_data_iv));
EXPECT_EQ(1, GetRandBytes(key_data->content_iv,
sizeof(key_data->content_iv)));
key_data->content_iv_length = sizeof(key_data->content_iv);
offsets->content_iv = FindSubstring(
key_data->content_iv, key_data->content_iv_length);
} }
OEMCrypto_EntitledContentKeyObject* EntitledMessage::entitled_key_array() { OEMCrypto_EntitledContentKeyObject* EntitledMessage::entitled_key_array() {
@@ -1373,14 +1380,14 @@ void EntitledMessage::LoadCasKeys(bool load_even, bool load_odd,
even_key.content_key_id = entitled_key_array_[0].content_key_id; even_key.content_key_id = entitled_key_array_[0].content_key_id;
even_key.content_key_data_iv = entitled_key_array_[0].content_key_data_iv; even_key.content_key_data_iv = entitled_key_array_[0].content_key_data_iv;
even_key.content_key_data = entitled_key_array_[0].content_key_data; even_key.content_key_data = entitled_key_array_[0].content_key_data;
even_key.content_iv.length = 0; even_key.content_iv = entitled_key_array_[0].content_iv;
} }
if (has_odd) { if (has_odd) {
odd_key.entitlement_key_id = entitled_key_array_[1].entitlement_key_id; odd_key.entitlement_key_id = entitled_key_array_[1].entitlement_key_id;
odd_key.content_key_id = entitled_key_array_[1].content_key_id; odd_key.content_key_id = entitled_key_array_[1].content_key_id;
odd_key.content_key_data_iv = entitled_key_array_[1].content_key_data_iv; odd_key.content_key_data_iv = entitled_key_array_[1].content_key_data_iv;
odd_key.content_key_data = entitled_key_array_[1].content_key_data; odd_key.content_key_data = entitled_key_array_[1].content_key_data;
odd_key.content_iv.length = 0; even_key.content_iv = entitled_key_array_[1].content_iv;
} }
OEMCryptoResult sts = OEMCrypto_LoadCasECMKeys( OEMCryptoResult sts = OEMCrypto_LoadCasECMKeys(

View File

@@ -110,6 +110,8 @@ struct EntitledContentKeyData {
uint8_t content_key_data_iv[KEY_IV_SIZE]; uint8_t content_key_data_iv[KEY_IV_SIZE];
uint8_t content_key_data[KEY_SIZE]; uint8_t content_key_data[KEY_SIZE];
uint8_t encrypted_content_key_data[KEY_SIZE]; uint8_t encrypted_content_key_data[KEY_SIZE];
uint8_t content_iv[KEY_IV_SIZE];
size_t content_iv_length;
size_t key_index; // Index into the license's key array. Only for testing. size_t key_index; // Index into the license's key array. Only for testing.
}; };
@@ -121,6 +123,10 @@ void GenerateSimpleSampleDescription(const std::vector<uint8_t>& in,
OEMCrypto_SampleDescription* sample, OEMCrypto_SampleDescription* sample,
OEMCrypto_SubSampleDescription* subsample); OEMCrypto_SubSampleDescription* subsample);
// Encrypt a block of data using CTR mode.
void EncryptCTR(const vector<uint8_t>& in_buffer, const uint8_t* key,
const uint8_t* starting_iv, vector<uint8_t>* out_buffer);
// Increment counter for AES-CTR. The CENC spec specifies we increment only // Increment counter for AES-CTR. The CENC spec specifies we increment only
// the low 64 bits of the IV counter, and leave the high 64 bits alone. This // the low 64 bits of the IV counter, and leave the high 64 bits alone. This
// is different from the OpenSSL implementation, so we implement the CTR loop // is different from the OpenSSL implementation, so we implement the CTR loop

View File

@@ -1718,4 +1718,90 @@ TEST_F(OEMCryptoLoadsCertificate,
/// @{ /// @{
/// @} /// @}
#ifdef CAS_TEST
# include "tuner_hal.h"
class OEMCryptoCasDemoTest : public OEMCryptoEntitlementLicenseTest {};
TEST_P(OEMCryptoCasDemoTest, BasicFlow) {
// License contains entitlement keys, function reused from
// OEMCryptoEntitlementLicenseTest
LoadEntitlementLicense();
uint32_t key_session_id = 0;
ASSERT_EQ(OEMCrypto_SUCCESS, OEMCrypto_CreateEntitledKeySession(
session_.session_id(), &key_session_id));
EntitledMessage entitled_message(&license_messages_);
// Randomly generate entitled content keys
entitled_message.FillKeyArray();
if (session_.session_id() == key_session_id) {
GTEST_SKIP()
<< "Skipping test because entitled and entitlement sessions are both "
<< key_session_id << ".";
}
entitled_message.SetEntitledKeySession(key_session_id);
// Encrypt and load 0th key (even key) into OEMCrypto
ASSERT_NO_FATAL_FAILURE(entitled_message.LoadCasKeys(
/*load_even=*/true, /*load_odd=*/false, OEMCrypto_SUCCESS));
//
// Perform DecryptCTR() but for CAS
//
vector<uint8_t> unencrypted_data(256, 0);
vector<uint8_t> encrypted_data(256, 0);
vector<uint8_t> output_buffer(256, 0);
unencrypted_data.resize(encrypted_data.size());
output_buffer.resize(encrypted_data.size());
OEMCrypto_SampleDescription sample_description;
OEMCrypto_SubSampleDescription subsample_description;
GenerateSimpleSampleDescription(encrypted_data, output_buffer,
&sample_description, &subsample_description);
// Use 0th entitled content key and IV to encrypt test data
EncryptCTR(unencrypted_data,
entitled_message.entitled_key_data()->content_key_data,
entitled_message.entitled_key_data()->content_iv, &encrypted_data);
// Assume 0,0 pattern for CTR example
OEMCrypto_CENCEncryptPatternDesc pattern = {0, 0};
// Demo only -- copy IV into sample description so we can use
// WTPI_DecryptSample() in the Tuner decrypt impl. A real implementation would
// use the IV from the entitled content key, but the demo relies on the
// existing decrypt which uses SampleDescription IV.
memcpy(sample_description.iv,
entitled_message.entitled_key_data()->content_iv, 16);
// Get key token to send to Tuner for decrypt
std::vector<uint8_t> key_token;
size_t key_token_length = key_token.size();
OEMCryptoResult res = OEMCrypto_GetOEMKeyToken(
key_session_id, key_token.data(), &key_token_length);
if (res == OEMCrypto_ERROR_SHORT_BUFFER) {
key_token.resize(key_token_length);
res = OEMCrypto_GetOEMKeyToken(key_session_id, key_token.data(),
&key_token_length);
}
ASSERT_EQ(OEMCrypto_SUCCESS, res);
// Decrypt the data
ASSERT_EQ(TUNER_HAL_SUCCESS,
TunerHal_Decrypt(key_token.data(), key_token_length,
TunerHal_KeyParityType_EvenKey,
&sample_description, // an array of samples.
1, // the number of samples.
&pattern));
ASSERT_EQ(unencrypted_data, output_buffer);
}
INSTANTIATE_TEST_SUITE_P(TestAll, OEMCryptoCasDemoTest,
Range<uint32_t>(kCoreMessagesAPI, kCurrentAPI + 1));
#endif
} // namespace wvoec } // namespace wvoec