OEMCrypto Profiler

This CL is a merge from the widevine repo of:
http://go/wvgerrit/16491 Circular Buffer
http://go/wvgerrit/16512 Circular Buffer Tests
http://go/wvgerrit/16493 Entry Writer
http://go/wvgerrit/16495 Profiled Scope
http://go/wvgerrit/16500 Stats Collection
http://go/wvgerrit/16543 Disallow Stats Copy or Assign
http://go/wvgerrit/16514 Moving OEM Function Enum
http://go/wvgerrit/16501 Defining Session Interface
http://go/wvgerrit/16502 Session Definitions
http://go/wvgerrit/16573 Remove code to num bytes table
http://go/wvgerrit/16556 Connecting Profiler to Profiled Scope
http://go/wvgerrit/16557 Android Reading Profiler History
http://go/wvgerrit/16574 Adding Get Stats Method
http://go/wvgerrit/16606 Seperating Session Parsing
http://go/wvgerrit/16607 Adding get stats method to DRMPlugin
http://go/wvgerrit/16608 Fixing Linux Build Failure
http://go/wvgerrit/16612 Stop Clearing History
http://go/wvgerrit/16613 Accessing profiler information using session id
http://go/wvgerrit/16614 Making All Session Subsets of Global Session

BUG: 25123303
BUG: 26027857
Change-Id: Ie2422e644aa631871852ea0e461695aeb7060f88
This commit is contained in:
Aaron Vaage
2016-01-27 10:14:46 -08:00
parent 1d805385ce
commit a249c67504
23 changed files with 1608 additions and 2 deletions

View File

@@ -0,0 +1,92 @@
// Copyright 2016 Google Inc. All Rights Reserved.
#include "circular_buffer.h"
#include "log.h"
namespace wvcdm {
namespace oemprofiler {
CircularBuffer::CircularBuffer(size_t memory_budget) :
buffer_(memory_budget) {
buffer_.resize(memory_budget, 0x00);
fill_ = head_ = tail_ = 0;
}
size_t CircularBuffer::GetFreeSpace() const {
return buffer_.size() - fill_;
}
size_t CircularBuffer::GetUsedSpace() const {
return fill_;
}
bool CircularBuffer::AddU8(uint8_t value) {
return AddU8s(&value, 1);
}
bool CircularBuffer::AddU8s(const uint8_t* values, size_t values_length) {
if (GetFreeSpace() < values_length) {
return false;
}
for (size_t i = 0; i < values_length; i++) {
buffer_[head_] = values[i];
head_ = (head_ + 1) % buffer_.size();
}
fill_ += values_length;
return true;
}
bool CircularBuffer::PeekU8s(
size_t offset,
uint8_t* out,
size_t read_length) const {
if (out == NULL) {
LOGE("Cannot read to null output");
return false;
}
if (offset >= GetUsedSpace()) {
LOGE("Cannot read past end of data - %zu >= %zu",
offset, GetUsedSpace());
return false;
}
if (read_length > GetUsedSpace() - offset) {
LOGE("Cannot read when there is not enough data - %zu >= %zu",
GetUsedSpace() - offset, sizeof(uint8_t));
return false;
}
for (size_t i = 0; i < read_length; i++) {
const size_t safe_index = (tail_ + offset + i) % buffer_.size();
out[i] = buffer_[safe_index];
}
return true;
}
bool CircularBuffer::PeekU8(size_t offset, uint8_t* out) const {
return PeekU8s(offset, out, 1);
}
bool CircularBuffer::Remove(size_t count) {
if (count > GetUsedSpace()) {
// can't remove more than there is
return false;
}
fill_ -= count;
tail_ = (tail_ + count) % buffer_.size();
return true;
}
} // namespace oemprofiler
} // namespace wvcdm

View File

@@ -0,0 +1,109 @@
// Copyright 2016 Google Inc. All Rights Reserved.
#include "entry_writer.h"
#include "log.h"
namespace wvcdm {
namespace oemprofiler {
static const uint64_t MAX_VALUES_FOR_BYTES[8] = {
0x000000000000001F,
0x0000000000001FFF,
0x00000000001FFFFF,
0x000000001FFFFFFF,
0x0000001FFFFFFFFF,
0x00001FFFFFFFFFFF,
0x001FFFFFFFFFFFFF,
0x1FFFFFFFFFFFFFFF
};
static const uint64_t CODE_FOR_BYTES[8] = {
0x0000000000000000,
0x0000000000002000,
0x0000000000400000,
0x0000000060000000,
0x0000008000000000,
0x0000A00000000000,
0x00C0000000000000,
0xE000000000000000
};
EntryWriter::EntryWriter() : write_head_(0){ }
const uint8_t* EntryWriter::GetData() const { return bytes_; }
size_t EntryWriter::GetSize() const { return write_head_; }
int EntryWriter::WriteU8(uint8_t value) { return Write(value); }
int EntryWriter::WriteU16(uint16_t value) { return Write(value); }
int EntryWriter::WriteU32(uint32_t value) { return Write(value); }
int EntryWriter::WriteU64(uint64_t value) { return Write(value); }
int EntryWriter::WriteVLV(uint64_t value) {
for (size_t i = 0; i < sizeof(uint64_t); i++) {
if (value <= MAX_VALUES_FOR_BYTES[i]) {
return Write(value | CODE_FOR_BYTES[i], i + 1);
}
}
LOGE("writeVariableLengthValue - value too large for variable length value");
return -1;
}
int EntryWriter::Write(uint64_t v, size_t num_bytes) {
if (num_bytes > sizeof(uint64_t)) {
LOGE("read - cannot read %zu bytes when 8 bytes are the max", num_bytes);
return -1;
}
if (GetFreeSpace() < num_bytes) {
LOGE("write - cannot write %zu when there are only %zu bytes remaining",
num_bytes, GetFreeSpace());
return -1;
}
for (int i = num_bytes; i > 0; i--) {
bytes_[write_head_] = GetByte(v, i - 1);
write_head_++;
}
return static_cast<int>(num_bytes);
}
void EntryWriter::Clear() {
write_head_ = 0;
}
size_t EntryWriter::GetFreeSpace() const {
return kBufferSize - write_head_;
}
template <typename T>
int EntryWriter::Write(T v) {
// start the values at index 1 so that the number of bytes
// line up with the shift value
static const size_t shifts[8] = { 0, 8, 16, 24, 32, 40, 48, 56 };
if (GetFreeSpace() < sizeof(T)) {
LOGE("write - cannot write %zu when there are only %zu bytes remaining",
sizeof(T), GetFreeSpace());
return -1; // there is not enough room
}
for (int i = sizeof(T) - 1; i >= 0; i--) {
bytes_[write_head_] = (uint8_t)((v >> shifts[i]) & 0xFF);
write_head_++;
}
return (int)sizeof(T);
}
uint8_t EntryWriter::GetByte(uint64_t value, size_t byte_index) {
return static_cast<uint8_t>(0xFF & (value >> (byte_index * 8)));
}
} // oem profiler
} // wvcdm

View File

@@ -0,0 +1,66 @@
// Copyright 2016 Google Inc. All Rights Reserved
#include "profiled_scope.h"
#include <sys/time.h>
#include "profiler_session.h"
namespace wvcdm {
namespace oemprofiler {
ProfiledScope::ProfiledScope(OEM_FUNCTION fid) :
meta_data_(),
sid_(kGlobalSID),
fid_(fid),
start_time_(GetNowUS()) {
}
// Only allow a user provided sid to be a positive integer
// to prevent a user provided sid from conflicting with the
// global sid
ProfiledScope::ProfiledScope(uint32_t sid, OEM_FUNCTION fid) :
meta_data_(),
sid_(static_cast<int64_t>(sid)),
fid_(fid),
start_time_(GetNowUS()) {
}
ProfiledScope::~ProfiledScope() {
const uint64_t end_time = GetNowUS();
if (sid_ != kGlobalSID) {
Submit(sid_, end_time);
}
// Always save a copy to the global session so that all other sessions
// are subsets of the global session
Submit(kGlobalSID, end_time);
}
void ProfiledScope::Submit(int64_t sid, uint64_t end_time) const {
ProfilerSession* const session = ProfilerSession::Find(sid);
if (session != NULL) {
session->Submit(
fid_,
start_time_,
end_time,
meta_data_.GetData(),
meta_data_.GetSize());
}
}
uint64_t ProfiledScope::GetNowUS() const {
struct timeval tv;
gettimeofday(&tv, NULL);
const uint64_t kSecondsToUSeconds = 1000000;
return static_cast<uint64_t>(tv.tv_sec) * kSecondsToUSeconds +
static_cast<uint64_t>(tv.tv_usec);
}
} // namespace oemprofiler
} // namespace wvcdm

View File

@@ -0,0 +1,229 @@
// Copyright 2016 Google Inc. All Rights Reserved.
#include "profiler_session.h"
#include <log.h>
namespace wvcdm {
namespace oemprofiler {
namespace {
const size_t kProfilingMemoryBudget = 1024; // 1 KB
}
std::map<int64_t, ProfilerSession*> ProfilerSession::sessions_;
ProfilerSession::ProfilerSession() :
buffer_(kProfilingMemoryBudget),
time_at_head_(0),
time_at_tail_(0) {
Clear();
}
void ProfilerSession::Submit(
OEM_FUNCTION fid,
uint64_t start_time,
uint64_t end_time,
const uint8_t* meta_data,
size_t meta_data_length) {
EntryWriter header;
header.WriteU8(fid);
header.WriteVLV(start_time - time_at_tail_);
header.WriteVLV(end_time - start_time);
const size_t total_packet_size = header.GetSize() + meta_data_length;
// The max size for a VLV is 8 bytes and the max size for a entry
// writer is 32 bytes. Normally the meta data will be packed using
// an entry writer so the max packet size will be 64 bytes. Since the
// packet size is encoded with a single byte, the packet must first
// be checked to ensure it is not too large for the cast.
if (total_packet_size <= 255 && RequestSpace(total_packet_size + 1)) {
buffer_.AddU8(static_cast<uint8_t>(total_packet_size));
buffer_.AddU8s(header.GetData(), header.GetSize());
buffer_.AddU8s(meta_data, meta_data_length);
time_at_tail_ = end_time;
}
stats_[fid].Update(end_time - start_time);
}
void ProfilerSession::Clear(){
buffer_.Remove(buffer_.GetUsedSpace());
// the buffer is cleared so we reseting these values is clean and safe
time_at_tail_ = time_at_head_ = 0;
for (size_t i = 0; i < OEM_FUNCTION_COUNT; i++) {
stats_[i].Reset();
}
}
void ProfilerSession::ReadHistory(std::vector<uint8_t>& output) const {
// write the tail time
for (size_t i = 1; i <= sizeof(time_at_head_); i++) {
output.push_back(GetByte(time_at_head_, sizeof(time_at_head_) - i));
}
// write the whole circular buffer into the output buffer
const size_t num_bytes = buffer_.GetUsedSpace();
for (size_t i = 0; i < num_bytes; i++) {
uint8_t b;
if (buffer_.PeekU8(i, &b)) {
output.push_back(b);
}
}
}
void ProfilerSession::ReadAllStats(std::vector<uint8_t>& output) const {
uint64_t values_to_write[7];
EntryWriter writer;
const size_t num_values_to_write =
sizeof(values_to_write) / sizeof(values_to_write[0]);
// make sure there is enough room
output.reserve(
output.size() + OEM_FUNCTION_COUNT * sizeof(values_to_write));
for(size_t fid = 0; fid < OEM_FUNCTION_COUNT; fid++) {
const Stat& stat = stats_[fid];
values_to_write[0] = stat.GetSampleSize();
values_to_write[1] = stat.GetMin();
values_to_write[2] = stat.GetMax();
values_to_write[3] = static_cast<uint64_t>(stat.GetMean());
values_to_write[4] = static_cast<uint64_t>(stat.GetMean() * 100) % 100;
values_to_write[5] = static_cast<uint64_t>(stat.GetVariance());
values_to_write[6] = static_cast<uint64_t>(stat.GetVariance() * 100) % 100;
for (size_t i = 0; i < num_values_to_write; i++) {
writer.Clear();
writer.WriteU64(values_to_write[i]);
for (size_t w_index = 0; w_index < writer.GetSize(); w_index++) {
output.push_back(writer.GetData()[w_index]);
}
}
}
}
const Stat& ProfilerSession::ReadStat(OEM_FUNCTION fid) const {
return stats_[fid];
}
bool ProfilerSession::RequestSpace(uint8_t num_bytes) {
// check if it is possible to make enough room
const size_t buffer_size = buffer_.GetFreeSpace() +
buffer_.GetUsedSpace();
if (num_bytes > buffer_size) {
LOGE("Requesting more space than possible (requested = %u, max = %zu)",
num_bytes, buffer_size);
return false;
}
// drop entries until we have enough space
while (num_bytes > buffer_.GetFreeSpace() && DropLastEntry());
return num_bytes <= buffer_.GetFreeSpace();
}
bool ProfilerSession::ReadNextEntryRealEndTime(uint64_t* output) {
if (output == NULL) {
LOGE("Cannout output to null pointer");
return false;
}
size_t initial_time_start_index = 2;
uint64_t initial_time;
const int initial_time_length =
ReadVLV(initial_time_start_index, &initial_time);
if (initial_time_length == -1) {
LOGE("Failed to read the start time for head entry");
return false;
}
uint64_t delta_time;
const int delta_time_length = ReadVLV(
initial_time_start_index + initial_time_length, &delta_time);
if (delta_time_length == -1) {
LOGE("Failed to read the delta time for head entry");
return false;
}
*output = time_at_head_ + initial_time + delta_time;
return true;
}
bool ProfilerSession::DropLastEntry() {
uint8_t entry_size;
uint64_t end_time;
if(buffer_.PeekU8(0, &entry_size) && ReadNextEntryRealEndTime(&end_time)) {
// + 1 because the entry size byte needs to be removed too
if (buffer_.Remove(entry_size + 1)) {
time_at_head_ = end_time;
return true;
}
}
return false;
}
int ProfilerSession::ReadVLV(size_t offset, uint64_t* output) const {
uint8_t first_byte;
if (buffer_.PeekU8(offset, &first_byte)) {
const size_t num_bytes = (first_byte >> 5) + 1;
uint64_t value = first_byte & 0x1F;
for (size_t i = 1; i < num_bytes; i++) {
uint8_t next_byte;
if (buffer_.PeekU8(offset + i, &next_byte)) {
value = value << 8 | next_byte;
} else {
return -1;
}
}
*output = value;
return num_bytes;
}
return -1;
}
uint8_t ProfilerSession::GetByte(uint64_t value, size_t byte_index) {
return (uint8_t)(0xFF & (value >> (byte_index * 8)));
}
void ProfilerSession::Open(int64_t sid) {
if (sessions_.count(sid) == 0) {
sessions_.insert(
std::pair<int64_t, ProfilerSession*>(sid, new ProfilerSession()));
}
}
void ProfilerSession::Close(int64_t sid) {
if(sessions_.count(sid) > 0) {
ProfilerSession* session = sessions_.at(sid);
sessions_.erase(sid);
delete session;
}
}
ProfilerSession* ProfilerSession::Find(int64_t sid) {
return sessions_.count(sid) > 0 ? sessions_.at(sid) : NULL;
}
} // namespace wvcdm
} // namespace oemprofiler

View File

@@ -0,0 +1,50 @@
// Copyright 2016 Google Inc. All Rights Reserved.
#include "stats.h"
#include <algorithm>
#include <limits>
namespace wvcdm {
namespace oemprofiler {
Stat::Stat() {
Reset();
}
void Stat::Update(uint64_t sample) {
min_ = std::min(min_, sample);
max_ = std::max(max_, sample);
mean_ = ((mean_ * count_) + sample) / (count_ + 1.0);
count_ += 1;
// Welford's method for standard deviation / variance
const double old_sdev_m = sdev_m_;
const double old_sdev_s = sdev_s_;
sdev_m_ = old_sdev_m + (sample - old_sdev_m) / count_;
sdev_s_ = old_sdev_s + (sample - sdev_m_) * (sample - old_sdev_m);
}
void Stat::Reset() {
min_ = std::numeric_limits<uint64_t>::max();
max_ = count_ = 0;
mean_ = sdev_m_ = sdev_s_ = 0.0;
}
uint64_t Stat::GetMin() const { return min_; }
uint64_t Stat::GetMax() const { return max_; }
uint64_t Stat::GetSampleSize() const { return count_; }
double Stat::GetMean() const { return mean_; }
double Stat::GetVariance() const {
return count_ > 1 ? sdev_s_ / (count_ - 1) : 0;
}
} // namespace oemprofiler
} // namespace wvcdm