OEMCrypto v11 Refrence Code and Unit Tests

This CL is a merge from the widevine repo of
http://go/wvgerrit/16553 Prebuilt Level 3 OEMCrypto for Android
http://go/wvgerrit/16238 Require OEMCrypto v11 for Android N Unit Tests
http://go/wvgerrit/16484 Shared License Tests (OEMCrypto v11)
http://go/wvgerrit/16448 Pattern Decrypt Unit Tests and Reference Implementation
http://go/wvgerrit/16489 Enforce UNUSED Variables
http://go/wvgerrit/16479 Pattern Decrypt for Level 3 OEMCrypto
http://go/wvgerrit/16280 Correctly handle bad RSA key
http://go/wvgerrit/16315 Security Patch Level - haystack version
http://go/wvgerrit/16282 Correctly handle null pointer in GetKeyData
http://go/wvgerrit/16294 Initialize data for generation number

It contains the Level 3 implementation, as well.
mips/libwvlevel3.a  Level3 Library Jan 22 2016 14:30:27
arm/libwvlevel3.a  Level3 Library Jan 22 2016 15:03:55
x86/libwvlevel3.a  Level3 Library Jan 22 2016 13:52:29

b/26692954 [DRM] OEMCrypto v11 needed for Nexus devices

Change-Id: Ibb1384959620f63a1be1e82ce2952ec9f48f0d3e
This commit is contained in:
Fred Gylys-Colwell
2016-01-22 15:30:42 -08:00
parent 2c39fce2c8
commit e6aa70410b
13 changed files with 779 additions and 489 deletions

View File

@@ -7,6 +7,7 @@
#include <arpa/inet.h>
#include <assert.h>
#include <string.h>
#include <algorithm>
#include <iostream>
#include <vector>
@@ -605,7 +606,8 @@ OEMCryptoResult SessionContext::LoadKeys(
key_array[i].key_control_iv + wvcdm::KEY_IV_SIZE);
if (!InstallKey(key_id, enc_key_data, key_data_iv, key_control,
key_control_iv, pstv)) {
key_control_iv, pstv,
key_array[i].cipher_mode == OEMCrypto_CipherMode_CTR)) {
status = false;
break;
}
@@ -622,11 +624,17 @@ OEMCryptoResult SessionContext::LoadKeys(
enc_mac_key_iv, enc_mac_key_iv + wvcdm::KEY_IV_SIZE);
if (!UpdateMacKeys(enc_mac_keys_str, enc_mac_key_iv_str)) {
LOGE("Failed to update mac keys.\n");
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
}
if (usage_entry_) {
if (pst_length > 0) {
if (!usage_entry_) {
LOGE("Usage table entry not found.\n");
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
if (!usage_entry_->VerifyOrSetMacKeys(mac_key_server_, mac_key_client_)) {
LOGE("Usage table entry does not match.\n");
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
}
@@ -638,7 +646,8 @@ bool SessionContext::InstallKey(const KeyId& key_id,
const std::vector<uint8_t>& key_data_iv,
const std::vector<uint8_t>& key_control,
const std::vector<uint8_t>& key_control_iv,
const std::vector<uint8_t>& pst) {
const std::vector<uint8_t>& pst,
bool ctr_mode) {
// Decrypt encrypted key_data using derived encryption key and offered iv
std::vector<uint8_t> content_key;
std::vector<uint8_t> key_control_str;
@@ -678,18 +687,18 @@ bool SessionContext::InstallKey(const KeyId& key_id,
return false;
}
if ((key_control_block.control_bits() &
kControlRequireAntiRollbackHardware) &&
kControlRequireAntiRollbackHardware) &&
!ce_->is_anti_rollback_hw_present()) {
LOGE("Anti-rollback hardware is required but hardware not present.");
return false;
}
uint8_t minimum_patch_level
= (key_control_block.control_bits() & kControlSecurityPatchLevelMask) >>
uint8_t minimum_patch_level =
(key_control_block.control_bits() & kControlSecurityPatchLevelMask) >>
kControlSecurityPatchLevelShift;
if (minimum_patch_level > OEMCrypto_Security_Patch_Level()) {
LOGE("[InstallKey(): security patch level: %d. Minimum:%d]",
OEMCrypto_Security_Patch_Level(), minimum_patch_level);
return false;
return false;
}
if (!CheckNonceOrEntry(key_control_block, pst)) {
@@ -697,14 +706,13 @@ bool SessionContext::InstallKey(const KeyId& key_id,
return false;
}
Key key(content_key, key_control_block);
Key key(content_key, key_control_block, ctr_mode);
session_keys_.Insert(key_id, key);
return true;
}
OEMCryptoResult SessionContext::RefreshKey(
const KeyId& key_id,
const std::vector<uint8_t>& key_control,
const KeyId& key_id, const std::vector<uint8_t>& key_control,
const std::vector<uint8_t>& key_control_iv) {
if (key_id.empty()) {
// Key control is not encrypted if key id is NULL
@@ -1119,8 +1127,12 @@ bool SessionContext::QueryKeyControlBlock(const KeyId& key_id, uint32_t* data) {
if (LogCategoryEnabled(kLoggingTraceDecryption)){
LOGI(( "Select Key: key_id = " +
wvcdm::b2a_hex(key_id) ).c_str());
LOGI(( "Select Key: key = " +
wvcdm::b2a_hex(content_key->value()) ).c_str());
if (content_key) {
LOGI(( "Select Key: key = " +
wvcdm::b2a_hex(content_key->value()) ).c_str());
} else {
LOGI("Select Key: key = null.");
}
}
if (NULL == content_key) {
LOGE("[QueryKeyControlBlock(): No key matches key id]");
@@ -1187,8 +1199,7 @@ CryptoEngine::~CryptoEngine() {
if (usage_table_) delete usage_table_;
}
void CryptoEngine::Terminate() {
}
void CryptoEngine::Terminate() {}
KeyboxError CryptoEngine::ValidateKeybox() { return keybox().Validate(); }
@@ -1271,16 +1282,16 @@ bool CryptoEngine::LoadPkcs8RsaKey(const uint8_t* buffer, size_t length) {
return false;
}
switch (RSA_check_key(rsa_key_)) {
case 1: // valid.
return true;
case 0: // not valid.
LOGE("[LoadPkcs8RsaKey(): rsa key not valid]");
dump_openssl_error();
return false;
default: // -1 == check failed.
LOGE("[LoadPkcs8RsaKey(): error checking rsa key]");
dump_openssl_error();
return false;
case 1: // valid.
return true;
case 0: // not valid.
LOGE("[LoadPkcs8RsaKey(): rsa key not valid]");
dump_openssl_error();
return false;
default: // -1 == check failed.
LOGE("[LoadPkcs8RsaKey(): error checking rsa key]");
dump_openssl_error();
return false;
}
}
@@ -1298,18 +1309,19 @@ bool SessionContext::DecryptMessage(const std::vector<uint8_t>& key,
memcpy(iv_buffer, &iv[0], 16);
AES_KEY aes_key;
AES_set_decrypt_key(&key[0], 128, &aes_key);
AES_cbc_encrypt(&message[0], &(decrypted->front()), message.size(),
&aes_key, iv_buffer, AES_DECRYPT);
AES_cbc_encrypt(&message[0], &(decrypted->front()), message.size(), &aes_key,
iv_buffer, AES_DECRYPT);
return true;
}
OEMCryptoResult SessionContext::DecryptCTR(
const uint8_t* iv, size_t block_offset, const uint8_t* cipher_data,
OEMCryptoResult SessionContext::DecryptCENC(
const uint8_t* iv, size_t block_offset,
const OEMCrypto_CENCEncryptPatternDesc* pattern, const uint8_t* cipher_data,
size_t cipher_data_length, bool is_encrypted, uint8_t* clear_data,
OEMCryptoBufferType buffer_type) {
// If the data is clear, we do not need a current key selected.
if (!is_encrypted) {
if (buffer_type != OEMCrypto_BufferType_Direct){
if (buffer_type != OEMCrypto_BufferType_Direct) {
memcpy(reinterpret_cast<uint8_t*>(clear_data), cipher_data,
cipher_data_length);
return OEMCrypto_SUCCESS;
@@ -1375,13 +1387,105 @@ OEMCryptoResult SessionContext::DecryptCTR(
return OEMCrypto_SUCCESS;
}
if (!current_content_key()->ctr_mode()) {
if (block_offset > 0) return OEMCrypto_ERROR_INVALID_CONTEXT;
return DecryptCBC(key_u8, iv, pattern, cipher_data, cipher_data_length,
clear_data);
}
if (pattern->skip > 0) {
return PatternDecryptCTR(key_u8, iv, block_offset, pattern, cipher_data,
cipher_data_length, clear_data);
}
return DecryptCTR(key_u8, iv, block_offset, cipher_data, cipher_data_length,
clear_data);
}
OEMCryptoResult SessionContext::DecryptCBC(
const uint8_t* key, const uint8_t* initial_iv,
const OEMCrypto_CENCEncryptPatternDesc* pattern, const uint8_t* cipher_data,
size_t cipher_data_length, uint8_t* clear_data) {
AES_KEY aes_key;
AES_set_decrypt_key(&key[0], AES_BLOCK_SIZE * 8, &aes_key);
uint8_t iv[AES_BLOCK_SIZE];
memcpy(iv, &initial_iv[0], AES_BLOCK_SIZE);
size_t l = 0;
size_t pattern_offset = pattern->offset;
while (l < cipher_data_length) {
size_t size =
std::min(cipher_data_length - l, static_cast<size_t>(AES_BLOCK_SIZE));
size_t pattern_length = pattern->encrypt + pattern->skip;
bool skip_block = (pattern_offset >= pattern->encrypt)
&& (pattern_length>0);
if (pattern_length > 0) {
pattern_offset = (pattern_offset + 1) % pattern_length;
}
if (skip_block || (size < AES_BLOCK_SIZE)) {
memcpy(&clear_data[l], &cipher_data[l], size);
} else {
uint8_t aes_output[AES_BLOCK_SIZE];
AES_decrypt(&cipher_data[l], aes_output, &aes_key);
for (size_t n = 0; n < AES_BLOCK_SIZE; n++) {
clear_data[l + n] = aes_output[n] ^ iv[n];
}
memcpy(iv, &cipher_data[l], AES_BLOCK_SIZE);
}
l += size;
}
return OEMCrypto_SUCCESS;
}
OEMCryptoResult SessionContext::PatternDecryptCTR(
const uint8_t* key, const uint8_t* initial_iv, size_t block_offset,
const OEMCrypto_CENCEncryptPatternDesc* pattern, const uint8_t* cipher_data,
size_t cipher_data_length, uint8_t* clear_data) {
AES_KEY aes_key;
AES_set_encrypt_key(&key[0], AES_BLOCK_SIZE * 8, &aes_key);
uint8_t iv[AES_BLOCK_SIZE];
memcpy(iv, &initial_iv[0], AES_BLOCK_SIZE);
size_t l = 0;
size_t pattern_offset = pattern->offset;
while (l < cipher_data_length) {
size_t size =
std::min(cipher_data_length - l, AES_BLOCK_SIZE - block_offset);
size_t pattern_length = pattern->encrypt + pattern->skip;
bool skip_block = (pattern_offset >= pattern->encrypt)
&& (pattern_length>0);
if (pattern_length > 0) {
pattern_offset = (pattern_offset + 1) % pattern_length;
}
if (skip_block) {
memcpy(&clear_data[l], &cipher_data[l], size);
} else {
uint8_t aes_output[AES_BLOCK_SIZE];
AES_encrypt(iv, aes_output, &aes_key);
for (size_t n = 0; n < size; n++) {
clear_data[l + n] = aes_output[n + block_offset] ^ cipher_data[l + n];
}
ctr128_inc64(iv);
}
l += size;
block_offset = 0;
}
return OEMCrypto_SUCCESS;
}
// This is a special case of PatternDecryptCTR with no skip pattern. It uses
// more optimized versions of openssl's implementation of AES CTR mode.
OEMCryptoResult SessionContext::DecryptCTR(const uint8_t* key_u8,
const uint8_t* iv,
size_t block_offset,
const uint8_t* cipher_data,
size_t cipher_data_length,
uint8_t* clear_data) {
// Local copy (will be modified).
// Allocated as 64-bit ints to enforce 64-bit alignment for later access as a
// 64-bit value.
uint64_t aes_iv[2];
assert(sizeof(aes_iv) == AES_BLOCK_SIZE);
// The double-cast is needed to comply with strict aliasing rules.
uint8_t *aes_iv_u8 =
uint8_t* aes_iv_u8 =
reinterpret_cast<uint8_t*>(reinterpret_cast<void*>(aes_iv));
memcpy(aes_iv_u8, &iv[0], AES_BLOCK_SIZE);
@@ -1391,7 +1495,6 @@ OEMCryptoResult SessionContext::DecryptCTR(
// why we implement the CTR loop ourselves.
size_t l = 0;
if (block_offset > 0 && l < cipher_data_length) {
// Encrypt the IV.
uint8_t ecount_buf[AES_BLOCK_SIZE];
@@ -1402,7 +1505,7 @@ OEMCryptoResult SessionContext::DecryptCTR(
}
AES_encrypt(aes_iv_u8, ecount_buf, &aes_key);
for (int n = block_offset; n < AES_BLOCK_SIZE && l < cipher_data_length;
++n, ++l) {
++n, ++l) {
clear_data[l] = cipher_data[l] ^ ecount_buf[n];
}
ctr128_inc64(aes_iv_u8);
@@ -1443,8 +1546,8 @@ OEMCryptoResult SessionContext::DecryptCTR(
remaining = cipher_data_length - l;
int final;
if (!EVP_DecryptFinal_ex(&ctx, &clear_data[cipher_data_length - remaining],
&final)) {
if (!EVP_DecryptFinal_ex(
&ctx, &clear_data[cipher_data_length - remaining], & final)) {
LOGE("[DecryptCTR(): EVP_FINAL_ERROR]");
return OEMCrypto_ERROR_DECRYPT_FAILED;
}