Require 20 keys per session and 10 sessions

Merge from widevine repo of http://go/wvgerrit/20981

OMECrypto v12 requires at least 20 keys per session and at least 10
sessions.  This CL updates the unit tests to verify this, and updates
level 3 and mock code to conform.

This CL also updates the level 3 oemcrypto to support 16 sessions and
320 keys total.

b/30140448 Minimum 20 keys per OEMCrypto_Session

Change-Id: Idd38d8f2cdfd6acde6fa7622b5912372bee9e488
This commit is contained in:
Fred Gylys-Colwell
2016-11-28 21:36:03 -08:00
parent 97c2c74556
commit f0cee3ad20
3 changed files with 80 additions and 51 deletions

View File

@@ -75,7 +75,9 @@ Session::Session()
mac_key_server_(wvcdm::MAC_KEY_SIZE), mac_key_server_(wvcdm::MAC_KEY_SIZE),
mac_key_client_(wvcdm::MAC_KEY_SIZE), mac_key_client_(wvcdm::MAC_KEY_SIZE),
enc_key_(wvcdm::KEY_SIZE), enc_key_(wvcdm::KEY_SIZE),
public_rsa_(0) {} public_rsa_(0),
num_keys_(4) {} // Most tests only use 4 keys.
// Other tests will explicitly call set_num_keys.
Session::~Session() { Session::~Session() {
if (!forced_session_id_ && open_) close(); if (!forced_session_id_ && open_) close();
@@ -200,7 +202,7 @@ void Session::LoadTestKeys(const std::string& pst, bool new_mac_keys) {
session_id(), message_ptr(), sizeof(MessageData), session_id(), message_ptr(), sizeof(MessageData),
&signature_[0], signature_.size(), &signature_[0], signature_.size(),
encrypted_license_.mac_key_iv, encrypted_license_.mac_keys, encrypted_license_.mac_key_iv, encrypted_license_.mac_keys,
kNumKeys, key_array_, pst_ptr, pst.length())); num_keys_, key_array_, pst_ptr, pst.length()));
// Update new generated keys. // Update new generated keys.
memcpy(&mac_key_server_[0], license_.mac_keys, wvcdm::MAC_KEY_SIZE); memcpy(&mac_key_server_[0], license_.mac_keys, wvcdm::MAC_KEY_SIZE);
memcpy(&mac_key_client_[0], license_.mac_keys + wvcdm::MAC_KEY_SIZE, memcpy(&mac_key_client_[0], license_.mac_keys + wvcdm::MAC_KEY_SIZE,
@@ -210,13 +212,13 @@ void Session::LoadTestKeys(const std::string& pst, bool new_mac_keys) {
OEMCrypto_SUCCESS, OEMCrypto_SUCCESS,
OEMCrypto_LoadKeys(session_id(), message_ptr(), sizeof(MessageData), OEMCrypto_LoadKeys(session_id(), message_ptr(), sizeof(MessageData),
&signature_[0], signature_.size(), NULL, NULL, &signature_[0], signature_.size(), NULL, NULL,
kNumKeys, key_array_, pst_ptr, pst.length())); num_keys_, key_array_, pst_ptr, pst.length()));
} }
VerifyTestKeys(); VerifyTestKeys();
} }
void Session::VerifyTestKeys() { void Session::VerifyTestKeys() {
for (unsigned int i = 0; i < kNumKeys; i++) { for (unsigned int i = 0; i < num_keys_; i++) {
KeyControlBlock block; KeyControlBlock block;
size_t size = sizeof(block); size_t size = sizeof(block);
OEMCryptoResult sts = OEMCrypto_QueryKeyControl( OEMCryptoResult sts = OEMCrypto_QueryKeyControl(
@@ -268,15 +270,14 @@ void Session::SetKeyId(int index, const string& key_id) {
memcpy(key.key_id, key_id.data(), key.key_id_length); memcpy(key.key_id, key_id.data(), key.key_id_length);
} }
void Session::FillSimpleMessage( void Session::FillSimpleMessage(uint32_t duration, uint32_t control,
uint32_t duration, uint32_t control, uint32_t nonce, uint32_t nonce, const std::string& pst) {
const std::string& pst) {
EXPECT_EQ(OEMCrypto_SUCCESS, EXPECT_EQ(OEMCrypto_SUCCESS,
OEMCrypto_GetRandom(license_.mac_key_iv, OEMCrypto_GetRandom(license_.mac_key_iv,
sizeof(license_.mac_key_iv))); sizeof(license_.mac_key_iv)));
EXPECT_EQ(OEMCrypto_SUCCESS, EXPECT_EQ(OEMCrypto_SUCCESS,
OEMCrypto_GetRandom(license_.mac_keys, sizeof(license_.mac_keys))); OEMCrypto_GetRandom(license_.mac_keys, sizeof(license_.mac_keys)));
for (unsigned int i = 0; i < kNumKeys; i++) { for (unsigned int i = 0; i < num_keys_; i++) {
memset(license_.keys[i].key_id, 0, kTestKeyIdMaxLength); memset(license_.keys[i].key_id, 0, kTestKeyIdMaxLength);
license_.keys[i].key_id_length = kDefaultKeyIdLength; license_.keys[i].key_id_length = kDefaultKeyIdLength;
memset(license_.keys[i].key_id, i, license_.keys[i].key_id_length); memset(license_.keys[i].key_id, i, license_.keys[i].key_id_length);
@@ -331,7 +332,7 @@ void Session::EncryptAndSign() {
AES_cbc_encrypt(&license_.mac_keys[0], &encrypted_license_.mac_keys[0], AES_cbc_encrypt(&license_.mac_keys[0], &encrypted_license_.mac_keys[0],
2 * wvcdm::MAC_KEY_SIZE, &aes_key, iv_buffer, AES_ENCRYPT); 2 * wvcdm::MAC_KEY_SIZE, &aes_key, iv_buffer, AES_ENCRYPT);
for (unsigned int i = 0; i < kNumKeys; i++) { for (unsigned int i = 0; i < num_keys_; i++) {
memcpy(iv_buffer, &license_.keys[i].control_iv[0], wvcdm::KEY_IV_SIZE); memcpy(iv_buffer, &license_.keys[i].control_iv[0], wvcdm::KEY_IV_SIZE);
AES_set_encrypt_key(&license_.keys[i].key_data[0], 128, &aes_key); AES_set_encrypt_key(&license_.keys[i].key_data[0], 128, &aes_key);
AES_cbc_encrypt( AES_cbc_encrypt(
@@ -397,7 +398,7 @@ void Session::ClientSignMessage(const vector<uint8_t>& data,
void Session::FillKeyArray(const MessageData& data, void Session::FillKeyArray(const MessageData& data,
OEMCrypto_KeyObject* key_array) { OEMCrypto_KeyObject* key_array) {
for (unsigned int i = 0; i < kNumKeys; i++) { for (unsigned int i = 0; i < num_keys_; i++) {
key_array[i].key_id = data.keys[i].key_id; key_array[i].key_id = data.keys[i].key_id;
key_array[i].key_id_length = data.keys[i].key_id_length; key_array[i].key_id_length = data.keys[i].key_id_length;
key_array[i].key_data_iv = data.keys[i].key_iv; key_array[i].key_data_iv = data.keys[i].key_iv;
@@ -451,12 +452,13 @@ void Session::EncryptCTR(
} }
void Session::TestDecryptCTR(bool select_key_first, void Session::TestDecryptCTR(bool select_key_first,
OEMCryptoResult expected_result) { OEMCryptoResult expected_result,
int key_index) {
OEMCryptoResult sts; OEMCryptoResult sts;
if (select_key_first) { if (select_key_first) {
// Select the key (from FillSimpleMessage) // Select the key (from FillSimpleMessage)
sts = OEMCrypto_SelectKey(session_id(), license_.keys[0].key_id, sts = OEMCrypto_SelectKey(session_id(), license_.keys[key_index].key_id,
license_.keys[0].key_id_length); license_.keys[key_index].key_id_length);
ASSERT_EQ(OEMCrypto_SUCCESS, sts); ASSERT_EQ(OEMCrypto_SUCCESS, sts);
} }
@@ -468,7 +470,7 @@ void Session::TestDecryptCTR(bool select_key_first,
EXPECT_EQ(OEMCrypto_SUCCESS, EXPECT_EQ(OEMCrypto_SUCCESS,
OEMCrypto_GetRandom(&encryptionIv[0], wvcdm::KEY_IV_SIZE)); OEMCrypto_GetRandom(&encryptionIv[0], wvcdm::KEY_IV_SIZE));
vector<uint8_t> encryptedData(unencryptedData.size()); vector<uint8_t> encryptedData(unencryptedData.size());
EncryptCTR(unencryptedData, license_.keys[0].key_data, &encryptionIv[0], EncryptCTR(unencryptedData, license_.keys[key_index].key_data, &encryptionIv[0],
&encryptedData); &encryptedData);
// Describe the output // Describe the output

View File

@@ -36,7 +36,7 @@ void PrintTo(const PatternTestVariant& param, ostream* os);
namespace wvoec { namespace wvoec {
const size_t kNumKeys = 4; const size_t kMaxNumKeys = 20;
namespace { namespace {
#if defined(TEST_SPEED_MULTIPLIER) // Can slow test time limits when #if defined(TEST_SPEED_MULTIPLIER) // Can slow test time limits when
@@ -83,7 +83,7 @@ typedef struct {
// This structure will be signed to simulate a message from the server. // This structure will be signed to simulate a message from the server.
struct MessageData { struct MessageData {
MessageKeyData keys[kNumKeys]; MessageKeyData keys[kMaxNumKeys];
uint8_t mac_key_iv[wvcdm::KEY_IV_SIZE]; uint8_t mac_key_iv[wvcdm::KEY_IV_SIZE];
uint8_t mac_keys[2 * wvcdm::MAC_KEY_SIZE]; uint8_t mac_keys[2 * wvcdm::MAC_KEY_SIZE];
uint8_t pst[kTestKeyIdMaxLength]; uint8_t pst[kTestKeyIdMaxLength];
@@ -154,7 +154,8 @@ class Session {
const vector<uint8_t>& in_buffer, const uint8_t *key, const vector<uint8_t>& in_buffer, const uint8_t *key,
const uint8_t* starting_iv, vector<uint8_t>* out_buffer); const uint8_t* starting_iv, vector<uint8_t>* out_buffer);
void TestDecryptCTR(bool select_key_first = true, void TestDecryptCTR(bool select_key_first = true,
OEMCryptoResult expected_result = OEMCrypto_SUCCESS); OEMCryptoResult expected_result = OEMCrypto_SUCCESS,
int key_index = 0);
void MakeRSACertificate( void MakeRSACertificate(
struct RSAPrivateKeyMessage* encrypted, std::vector<uint8_t>* signature, struct RSAPrivateKeyMessage* encrypted, std::vector<uint8_t>* signature,
uint32_t allowed_schemes, const vector<uint8_t>& rsa_key); uint32_t allowed_schemes, const vector<uint8_t>& rsa_key);
@@ -186,6 +187,9 @@ class Session {
OEMCrypto_KeyObject* key_array() { return key_array_; } OEMCrypto_KeyObject* key_array() { return key_array_; }
std::vector<uint8_t>& signature() { return signature_; } std::vector<uint8_t>& signature() { return signature_; }
void set_num_keys(int num_keys) { num_keys_ = num_keys; }
int num_keys() const { return num_keys_; }
private: private:
bool open_; bool open_;
bool forced_session_id_; bool forced_session_id_;
@@ -198,8 +202,9 @@ class Session {
vector<uint8_t> pst_report_buffer_; vector<uint8_t> pst_report_buffer_;
MessageData license_; MessageData license_;
MessageData encrypted_license_; MessageData encrypted_license_;
OEMCrypto_KeyObject key_array_[kNumKeys]; OEMCrypto_KeyObject key_array_[kMaxNumKeys];
std::vector<uint8_t> signature_; std::vector<uint8_t> signature_;
int num_keys_;
}; };
} // namespace wvoec } // namespace wvoec

View File

@@ -211,8 +211,8 @@ TEST_F(OEMCryptoClientTest, MaxSessionsOpenCloseAPI10) {
ASSERT_EQ(0u, sessions_count); ASSERT_EQ(0u, sessions_count);
size_t max_sessions; size_t max_sessions;
ASSERT_EQ(OEMCrypto_SUCCESS, OEMCrypto_GetMaxNumberOfSessions(&max_sessions)); ASSERT_EQ(OEMCrypto_SUCCESS, OEMCrypto_GetMaxNumberOfSessions(&max_sessions));
// We expect OEMCrypto implementations support at least 8 sessions. // We expect OEMCrypto implementations support at least 10 sessions.
const size_t kMinimumSupportedMaxNumberOfSessions = 8u; const size_t kMinimumSupportedMaxNumberOfSessions = 10u;
ASSERT_GE(max_sessions, kMinimumSupportedMaxNumberOfSessions); ASSERT_GE(max_sessions, kMinimumSupportedMaxNumberOfSessions);
// We allow GetMaxNumberOfSessions to return an estimate. This tests with a // We allow GetMaxNumberOfSessions to return an estimate. This tests with a
// pad of 5%. Even if it's just an estimate, we still require 8 sessions. // pad of 5%. Even if it's just an estimate, we still require 8 sessions.
@@ -643,7 +643,7 @@ TEST_F(OEMCryptoSessionTests, LoadKeyWithBadRange1) {
s.session_id(), s.message_ptr(), sizeof(MessageData), &s.signature()[0], s.session_id(), s.message_ptr(), sizeof(MessageData), &s.signature()[0],
s.signature().size(), s.encrypted_license().mac_key_iv, s.signature().size(), s.encrypted_license().mac_key_iv,
&mac_keys[0], // Not pointing into buffer. &mac_keys[0], // Not pointing into buffer.
kNumKeys, s.key_array(), NULL, 0); s.num_keys(), s.key_array(), NULL, 0);
ASSERT_NE(OEMCrypto_SUCCESS, sts); ASSERT_NE(OEMCrypto_SUCCESS, sts);
} }
@@ -661,7 +661,7 @@ TEST_F(OEMCryptoSessionTests, LoadKeyWithBadRange2) {
s.session_id(), s.message_ptr(), sizeof(MessageData), &s.signature()[0], s.session_id(), s.message_ptr(), sizeof(MessageData), &s.signature()[0],
s.signature().size(), s.signature().size(),
&mac_key_iv[0], // bad. &mac_key_iv[0], // bad.
s.encrypted_license().mac_keys, kNumKeys, s.key_array(), NULL, 0); s.encrypted_license().mac_keys, s.num_keys(), s.key_array(), NULL, 0);
ASSERT_NE(OEMCrypto_SUCCESS, sts); ASSERT_NE(OEMCrypto_SUCCESS, sts);
} }
@@ -679,7 +679,7 @@ TEST_F(OEMCryptoSessionTests, LoadKeyWithBadRange3) {
OEMCryptoResult sts = OEMCrypto_LoadKeys( OEMCryptoResult sts = OEMCrypto_LoadKeys(
s.session_id(), s.message_ptr(), sizeof(MessageData), &s.signature()[0], s.session_id(), s.message_ptr(), sizeof(MessageData), &s.signature()[0],
s.signature().size(), s.encrypted_license().mac_key_iv, s.signature().size(), s.encrypted_license().mac_key_iv,
s.encrypted_license().mac_keys, kNumKeys, s.key_array(), NULL, 0); s.encrypted_license().mac_keys, s.num_keys(), s.key_array(), NULL, 0);
ASSERT_NE(OEMCrypto_SUCCESS, sts); ASSERT_NE(OEMCrypto_SUCCESS, sts);
} }
@@ -698,7 +698,7 @@ TEST_F(OEMCryptoSessionTests, LoadKeyWithBadRange4) {
OEMCryptoResult sts = OEMCrypto_LoadKeys( OEMCryptoResult sts = OEMCrypto_LoadKeys(
s.session_id(), s.message_ptr(), sizeof(MessageData), &s.signature()[0], s.session_id(), s.message_ptr(), sizeof(MessageData), &s.signature()[0],
s.signature().size(), s.encrypted_license().mac_key_iv, s.signature().size(), s.encrypted_license().mac_key_iv,
s.encrypted_license().mac_keys, kNumKeys, s.key_array(), NULL, 0); s.encrypted_license().mac_keys, s.num_keys(), s.key_array(), NULL, 0);
ASSERT_NE(OEMCrypto_SUCCESS, sts); ASSERT_NE(OEMCrypto_SUCCESS, sts);
} }
@@ -715,7 +715,7 @@ TEST_F(OEMCryptoSessionTests, LoadKeyWithBadRange5) {
OEMCryptoResult sts = OEMCrypto_LoadKeys( OEMCryptoResult sts = OEMCrypto_LoadKeys(
s.session_id(), s.message_ptr(), sizeof(MessageData), &s.signature()[0], s.session_id(), s.message_ptr(), sizeof(MessageData), &s.signature()[0],
s.signature().size(), s.encrypted_license().mac_key_iv, s.signature().size(), s.encrypted_license().mac_key_iv,
s.encrypted_license().mac_keys, kNumKeys, s.key_array(), NULL, 0); s.encrypted_license().mac_keys, s.num_keys(), s.key_array(), NULL, 0);
ASSERT_NE(OEMCrypto_SUCCESS, sts); ASSERT_NE(OEMCrypto_SUCCESS, sts);
} }
@@ -735,7 +735,7 @@ TEST_F(OEMCryptoSessionTests, LoadKeyWithBadRange6) {
OEMCryptoResult sts = OEMCrypto_LoadKeys( OEMCryptoResult sts = OEMCrypto_LoadKeys(
s.session_id(), s.message_ptr(), sizeof(MessageData), &s.signature()[0], s.session_id(), s.message_ptr(), sizeof(MessageData), &s.signature()[0],
s.signature().size(), s.encrypted_license().mac_key_iv, s.signature().size(), s.encrypted_license().mac_key_iv,
s.encrypted_license().mac_keys, kNumKeys, s.key_array(), NULL, 0); s.encrypted_license().mac_keys, s.num_keys(), s.key_array(), NULL, 0);
ASSERT_NE(OEMCrypto_SUCCESS, sts); ASSERT_NE(OEMCrypto_SUCCESS, sts);
} }
@@ -755,7 +755,7 @@ TEST_F(OEMCryptoSessionTests, LoadKeyWithBadRange7) {
OEMCryptoResult sts = OEMCrypto_LoadKeys( OEMCryptoResult sts = OEMCrypto_LoadKeys(
s.session_id(), s.message_ptr(), sizeof(MessageData), &s.signature()[0], s.session_id(), s.message_ptr(), sizeof(MessageData), &s.signature()[0],
s.signature().size(), s.encrypted_license().mac_key_iv, s.signature().size(), s.encrypted_license().mac_key_iv,
s.encrypted_license().mac_keys, kNumKeys, s.key_array(), NULL, 0); s.encrypted_license().mac_keys, s.num_keys(), s.key_array(), NULL, 0);
ASSERT_NE(OEMCrypto_SUCCESS, sts); ASSERT_NE(OEMCrypto_SUCCESS, sts);
} }
@@ -770,7 +770,7 @@ TEST_F(OEMCryptoSessionTests, LoadKeyWithBadNonce) {
OEMCryptoResult sts = OEMCrypto_LoadKeys( OEMCryptoResult sts = OEMCrypto_LoadKeys(
s.session_id(), s.message_ptr(), sizeof(MessageData), &s.signature()[0], s.session_id(), s.message_ptr(), sizeof(MessageData), &s.signature()[0],
s.signature().size(), s.encrypted_license().mac_key_iv, s.signature().size(), s.encrypted_license().mac_key_iv,
s.encrypted_license().mac_keys, kNumKeys, s.key_array(), NULL, 0); s.encrypted_license().mac_keys, s.num_keys(), s.key_array(), NULL, 0);
ASSERT_NE(OEMCrypto_SUCCESS, sts); ASSERT_NE(OEMCrypto_SUCCESS, sts);
} }
@@ -795,7 +795,7 @@ TEST_F(OEMCryptoSessionTests, LoadKeyWithRepeatNonce) {
OEMCryptoResult sts = OEMCrypto_LoadKeys( OEMCryptoResult sts = OEMCrypto_LoadKeys(
s.session_id(), s.message_ptr(), sizeof(MessageData), &s.signature()[0], s.session_id(), s.message_ptr(), sizeof(MessageData), &s.signature()[0],
s.signature().size(), s.encrypted_license().mac_key_iv, s.signature().size(), s.encrypted_license().mac_key_iv,
s.encrypted_license().mac_keys, kNumKeys, s.key_array(), NULL, 0); s.encrypted_license().mac_keys, s.num_keys(), s.key_array(), NULL, 0);
ASSERT_NE(OEMCrypto_SUCCESS, sts); ASSERT_NE(OEMCrypto_SUCCESS, sts);
} }
@@ -811,7 +811,7 @@ TEST_F(OEMCryptoSessionTests, LoadKeyWithBadVerification) {
OEMCryptoResult sts = OEMCrypto_LoadKeys( OEMCryptoResult sts = OEMCrypto_LoadKeys(
s.session_id(), s.message_ptr(), sizeof(MessageData), &s.signature()[0], s.session_id(), s.message_ptr(), sizeof(MessageData), &s.signature()[0],
s.signature().size(), s.encrypted_license().mac_key_iv, s.signature().size(), s.encrypted_license().mac_key_iv,
s.encrypted_license().mac_keys, kNumKeys, s.key_array(), NULL, 0); s.encrypted_license().mac_keys, s.num_keys(), s.key_array(), NULL, 0);
ASSERT_NE(OEMCrypto_SUCCESS, sts); ASSERT_NE(OEMCrypto_SUCCESS, sts);
} }
@@ -828,7 +828,7 @@ TEST_F(OEMCryptoSessionTests, LoadKeyWithFutureVerification) {
OEMCryptoResult sts = OEMCrypto_LoadKeys( OEMCryptoResult sts = OEMCrypto_LoadKeys(
s.session_id(), s.message_ptr(), sizeof(MessageData), &s.signature()[0], s.session_id(), s.message_ptr(), sizeof(MessageData), &s.signature()[0],
s.signature().size(), s.encrypted_license().mac_key_iv, s.signature().size(), s.encrypted_license().mac_key_iv,
s.encrypted_license().mac_keys, kNumKeys, s.key_array(), NULL, 0); s.encrypted_license().mac_keys, s.num_keys(), s.key_array(), NULL, 0);
ASSERT_NE(OEMCrypto_SUCCESS, sts); ASSERT_NE(OEMCrypto_SUCCESS, sts);
} }
@@ -842,7 +842,7 @@ TEST_F(OEMCryptoSessionTests, LoadKeysBadSignature) {
OEMCryptoResult sts = OEMCrypto_LoadKeys( OEMCryptoResult sts = OEMCrypto_LoadKeys(
s.session_id(), s.message_ptr(), sizeof(MessageData), &s.signature()[0], s.session_id(), s.message_ptr(), sizeof(MessageData), &s.signature()[0],
s.signature().size(), s.encrypted_license().mac_key_iv, s.signature().size(), s.encrypted_license().mac_key_iv,
s.encrypted_license().mac_keys, kNumKeys, s.key_array(), NULL, 0); s.encrypted_license().mac_keys, s.num_keys(), s.key_array(), NULL, 0);
ASSERT_NE(OEMCrypto_SUCCESS, sts); ASSERT_NE(OEMCrypto_SUCCESS, sts);
} }
@@ -855,7 +855,7 @@ TEST_F(OEMCryptoSessionTests, LoadKeysWithNoDerivedKeys) {
OEMCryptoResult sts = OEMCrypto_LoadKeys( OEMCryptoResult sts = OEMCrypto_LoadKeys(
s.session_id(), s.message_ptr(), sizeof(MessageData), &s.signature()[0], s.session_id(), s.message_ptr(), sizeof(MessageData), &s.signature()[0],
s.signature().size(), s.encrypted_license().mac_key_iv, s.signature().size(), s.encrypted_license().mac_key_iv,
s.encrypted_license().mac_keys, kNumKeys, s.key_array(), NULL, 0); s.encrypted_license().mac_keys, s.num_keys(), s.key_array(), NULL, 0);
ASSERT_NE(OEMCrypto_SUCCESS, sts); ASSERT_NE(OEMCrypto_SUCCESS, sts);
} }
@@ -927,7 +927,7 @@ TEST_F(OEMCryptoSessionTests, AntiRollbackHardwareRequired) {
OEMCryptoResult sts = OEMCrypto_LoadKeys( OEMCryptoResult sts = OEMCrypto_LoadKeys(
s.session_id(), s.message_ptr(), sizeof(MessageData), &s.signature()[0], s.session_id(), s.message_ptr(), sizeof(MessageData), &s.signature()[0],
s.signature().size(), s.encrypted_license().mac_key_iv, s.signature().size(), s.encrypted_license().mac_key_iv,
s.encrypted_license().mac_keys, kNumKeys, s.key_array(), NULL, 0); s.encrypted_license().mac_keys, s.num_keys(), s.key_array(), NULL, 0);
if (OEMCrypto_IsAntiRollbackHwPresent()) { if (OEMCrypto_IsAntiRollbackHwPresent()) {
ASSERT_EQ(OEMCrypto_SUCCESS, sts); ASSERT_EQ(OEMCrypto_SUCCESS, sts);
} else { } else {
@@ -949,7 +949,7 @@ TEST_F(OEMCryptoSessionTests, CheckMinimumPatchLevel) {
OEMCrypto_LoadKeys(s.session_id(), s.message_ptr(), sizeof(MessageData), OEMCrypto_LoadKeys(s.session_id(), s.message_ptr(), sizeof(MessageData),
&s.signature()[0], s.signature().size(), &s.signature()[0], s.signature().size(),
s.encrypted_license().mac_key_iv, s.encrypted_license().mac_key_iv,
s.encrypted_license().mac_keys, kNumKeys, s.encrypted_license().mac_keys, s.num_keys(),
s.key_array(), NULL, 0)); s.key_array(), NULL, 0));
if (patch_level < 0x3F) { if (patch_level < 0x3F) {
Session s; Session s;
@@ -964,7 +964,7 @@ TEST_F(OEMCryptoSessionTests, CheckMinimumPatchLevel) {
OEMCrypto_LoadKeys(s.session_id(), s.message_ptr(), sizeof(MessageData), OEMCrypto_LoadKeys(s.session_id(), s.message_ptr(), sizeof(MessageData),
&s.signature()[0], s.signature().size(), &s.signature()[0], s.signature().size(),
s.encrypted_license().mac_key_iv, s.encrypted_license().mac_key_iv,
s.encrypted_license().mac_keys, kNumKeys, s.encrypted_license().mac_keys, s.num_keys(),
s.key_array(), NULL, 0)); s.key_array(), NULL, 0));
} }
if (patch_level > 0) { if (patch_level > 0) {
@@ -980,11 +980,26 @@ TEST_F(OEMCryptoSessionTests, CheckMinimumPatchLevel) {
OEMCrypto_LoadKeys(s.session_id(), s.message_ptr(), sizeof(MessageData), OEMCrypto_LoadKeys(s.session_id(), s.message_ptr(), sizeof(MessageData),
&s.signature()[0], s.signature().size(), &s.signature()[0], s.signature().size(),
s.encrypted_license().mac_key_iv, s.encrypted_license().mac_key_iv,
s.encrypted_license().mac_keys, kNumKeys, s.encrypted_license().mac_keys, s.num_keys(),
s.key_array(), NULL, 0)); s.key_array(), NULL, 0));
} }
} }
TEST_F(OEMCryptoSessionTests, Minimum20Keys) {
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
s.set_num_keys(kMaxNumKeys);
ASSERT_NO_FATAL_FAILURE(s.GenerateTestSessionKeys());
ASSERT_NO_FATAL_FAILURE(s.FillSimpleMessage(0, 0, 0));
ASSERT_NO_FATAL_FAILURE(s.EncryptAndSign());
ASSERT_NO_FATAL_FAILURE(s.LoadTestKeys());
for (int key_index=0; key_index < kMaxNumKeys; key_index++) {
bool kSelectKeyFirst = true;
ASSERT_NO_FATAL_FAILURE(s.TestDecryptCTR(kSelectKeyFirst, OEMCrypto_SUCCESS,
key_index));
}
}
class SessionTestDecryptWithHDCP : public OEMCryptoSessionTests, class SessionTestDecryptWithHDCP : public OEMCryptoSessionTests,
public WithParamInterface<int> { public WithParamInterface<int> {
public: public:
@@ -1035,7 +1050,7 @@ class SessionTestRefreshKeyTest
protected: protected:
bool new_mac_keys_; bool new_mac_keys_;
size_t num_keys_; size_t num_keys_; // Number of keys to refresh.
}; };
TEST_P(SessionTestRefreshKeyTest, RefreshWithNonce) { TEST_P(SessionTestRefreshKeyTest, RefreshWithNonce) {
@@ -1102,8 +1117,8 @@ INSTANTIATE_TEST_CASE_P(TestRefreshAllKeys, SessionTestRefreshKeyTest,
// If multiple key control blocks, we update each key separately. // If multiple key control blocks, we update each key separately.
INSTANTIATE_TEST_CASE_P(TestRefreshEachKeys, SessionTestRefreshKeyTest, INSTANTIATE_TEST_CASE_P(TestRefreshEachKeys, SessionTestRefreshKeyTest,
Values(std::make_pair(true, kNumKeys), Values(std::make_pair(true, 4),
std::make_pair(false, kNumKeys))); std::make_pair(false, 4)));
// //
// Decrypt Tests // Decrypt Tests
@@ -3695,19 +3710,22 @@ class GenericCryptoKeyIdLengthTest : public GenericCryptoTest {
virtual void SetUp() { virtual void SetUp() {
GenericCryptoTest::SetUp(); GenericCryptoTest::SetUp();
const uint32_t kNoNonce = 0; const uint32_t kNoNonce = 0;
session_.set_num_keys(5);
ASSERT_NO_FATAL_FAILURE(session_.FillSimpleMessage( ASSERT_NO_FATAL_FAILURE(session_.FillSimpleMessage(
kDuration, wvoec_mock::kControlAllowDecrypt, kNoNonce)); kDuration, wvoec_mock::kControlAllowDecrypt, kNoNonce));
// We are testing that the key ids do not have to have the same length. SetUniformKeyIdLength(16); // Start with all key ids being 16 bytes.
// But, we are testing that the key ids do not have to have the same length.
session_.SetKeyId(0, "123456789012"); // 12 bytes (common key id length). session_.SetKeyId(0, "123456789012"); // 12 bytes (common key id length).
session_.SetKeyId(1, "12345"); // short key id. session_.SetKeyId(1, "12345"); // short key id.
session_.SetKeyId(2, "1234567890123456"); // 16 byte key id. (default) session_.SetKeyId(2, "1234567890123456"); // 16 byte key id. (default)
session_.SetKeyId(3, "12345678901234"); // 14 byte. (uncommon) session_.SetKeyId(3, "12345678901234"); // 14 byte. (uncommon)
session_.SetKeyId(4, "1"); // very short key id.
ASSERT_EQ(2u, kLongKeyId); ASSERT_EQ(2u, kLongKeyId);
} }
// Make all four keys have the same length. // Make all four keys have the same length.
void SetUniformKeyIdLength(size_t key_id_length) { void SetUniformKeyIdLength(size_t key_id_length) {
for (unsigned int i = 0; i < 4; i++) { for (unsigned int i = 0; i < session_.num_keys(); i++) {
string key_id; string key_id;
key_id.resize(key_id_length, i + 'a'); key_id.resize(key_id_length, i + 'a');
session_.SetKeyId(i, key_id); session_.SetKeyId(i, key_id);
@@ -3715,7 +3733,7 @@ class GenericCryptoKeyIdLengthTest : public GenericCryptoTest {
} }
void TestWithKey(unsigned int key_index) { void TestWithKey(unsigned int key_index) {
ASSERT_LE(key_index, kNumKeys); ASSERT_LT(key_index, session_.num_keys());
EncryptAndLoadKeys(); EncryptAndLoadKeys();
vector<uint8_t> encrypted; vector<uint8_t> encrypted;
// To make sure OEMCrypto is not expecting the key_id to be zero padded, we // To make sure OEMCrypto is not expecting the key_id to be zero padded, we
@@ -3748,6 +3766,10 @@ TEST_F(GenericCryptoKeyIdLengthTest, ShortKeyId) { TestWithKey(1); }
TEST_F(GenericCryptoKeyIdLengthTest, LongKeyId) { TestWithKey(2); } TEST_F(GenericCryptoKeyIdLengthTest, LongKeyId) { TestWithKey(2); }
TEST_F(GenericCryptoKeyIdLengthTest, FourteenByteKeyId) { TestWithKey(3); }
TEST_F(GenericCryptoKeyIdLengthTest, VeryShortKeyId) { TestWithKey(4); }
TEST_F(GenericCryptoKeyIdLengthTest, UniformShortKeyId) { TEST_F(GenericCryptoKeyIdLengthTest, UniformShortKeyId) {
SetUniformKeyIdLength(5); SetUniformKeyIdLength(5);
TestWithKey(2); TestWithKey(2);
@@ -3910,7 +3932,7 @@ TEST_F(UsageTableTest, RepeatOnlineLicense) {
OEMCrypto_LoadKeys(s2.session_id(), s.message_ptr(), sizeof(MessageData), OEMCrypto_LoadKeys(s2.session_id(), s.message_ptr(), sizeof(MessageData),
&s.signature()[0], s.signature().size(), &s.signature()[0], s.signature().size(),
s.encrypted_license().mac_key_iv, s.encrypted_license().mac_key_iv,
s.encrypted_license().mac_keys, kNumKeys, s.encrypted_license().mac_keys, s.num_keys(),
s.key_array(), pst_ptr, pst.length())); s.key_array(), pst_ptr, pst.length()));
ASSERT_NO_FATAL_FAILURE(s2.close()); ASSERT_NO_FATAL_FAILURE(s2.close());
} }
@@ -3928,7 +3950,7 @@ TEST_F(UsageTableTest, OnlineEmptyPST) {
OEMCryptoResult sts = OEMCrypto_LoadKeys( OEMCryptoResult sts = OEMCrypto_LoadKeys(
s.session_id(), s.message_ptr(), sizeof(MessageData), &s.signature()[0], s.session_id(), s.message_ptr(), sizeof(MessageData), &s.signature()[0],
s.signature().size(), s.encrypted_license().mac_key_iv, s.signature().size(), s.encrypted_license().mac_key_iv,
s.encrypted_license().mac_keys, kNumKeys, s.key_array(), NULL, 0); s.encrypted_license().mac_keys, s.num_keys(), s.key_array(), NULL, 0);
ASSERT_NE(OEMCrypto_SUCCESS, sts); ASSERT_NE(OEMCrypto_SUCCESS, sts);
ASSERT_NO_FATAL_FAILURE(s.close()); ASSERT_NO_FATAL_FAILURE(s.close());
} }
@@ -4523,7 +4545,7 @@ TEST_P(UsageTableTestWithMAC, BadReloadOfflineLicense) {
OEMCrypto_LoadKeys(s2.session_id(), s2.message_ptr(), sizeof(MessageData), OEMCrypto_LoadKeys(s2.session_id(), s2.message_ptr(), sizeof(MessageData),
&s2.signature()[0], s2.signature().size(), &s2.signature()[0], s2.signature().size(),
s2.encrypted_license().mac_key_iv, s2.encrypted_license().mac_key_iv,
s2.encrypted_license().mac_keys, kNumKeys, s2.encrypted_license().mac_keys, s.num_keys(),
s2.key_array(), pst_ptr, pst.length())); s2.key_array(), pst_ptr, pst.length()));
ASSERT_NO_FATAL_FAILURE(s2.close()); ASSERT_NO_FATAL_FAILURE(s2.close());
@@ -4549,7 +4571,7 @@ TEST_P(UsageTableTestWithMAC, OfflineBadNonce) {
OEMCryptoResult sts = OEMCrypto_LoadKeys( OEMCryptoResult sts = OEMCrypto_LoadKeys(
s.session_id(), s.message_ptr(), sizeof(MessageData), &s.signature()[0], s.session_id(), s.message_ptr(), sizeof(MessageData), &s.signature()[0],
s.signature().size(), s.encrypted_license().mac_key_iv, s.signature().size(), s.encrypted_license().mac_key_iv,
s.encrypted_license().mac_keys, kNumKeys, s.key_array(), pst_ptr, s.encrypted_license().mac_keys, s.num_keys(), s.key_array(), pst_ptr,
pst.length()); pst.length());
ASSERT_NE(OEMCrypto_SUCCESS, sts); ASSERT_NE(OEMCrypto_SUCCESS, sts);
ASSERT_NO_FATAL_FAILURE(s.close()); ASSERT_NO_FATAL_FAILURE(s.close());
@@ -4567,7 +4589,7 @@ TEST_P(UsageTableTestWithMAC, OfflineEmptyPST) {
OEMCryptoResult sts = OEMCrypto_LoadKeys( OEMCryptoResult sts = OEMCrypto_LoadKeys(
s.session_id(), s.message_ptr(), sizeof(MessageData), &s.signature()[0], s.session_id(), s.message_ptr(), sizeof(MessageData), &s.signature()[0],
s.signature().size(), s.encrypted_license().mac_key_iv, s.signature().size(), s.encrypted_license().mac_key_iv,
s.encrypted_license().mac_keys, kNumKeys, s.key_array(), NULL, 0); s.encrypted_license().mac_keys, s.num_keys(), s.key_array(), NULL, 0);
ASSERT_NE(OEMCrypto_SUCCESS, sts); ASSERT_NE(OEMCrypto_SUCCESS, sts);
ASSERT_NO_FATAL_FAILURE(s.close()); ASSERT_NO_FATAL_FAILURE(s.close());
} }
@@ -4604,7 +4626,7 @@ TEST_P(UsageTableTestWithMAC, DeactivateOfflineLicense) {
OEMCrypto_LoadKeys(s2.session_id(), s.message_ptr(), sizeof(MessageData), OEMCrypto_LoadKeys(s2.session_id(), s.message_ptr(), sizeof(MessageData),
&s.signature()[0], s.signature().size(), &s.signature()[0], s.signature().size(),
s.encrypted_license().mac_key_iv, s.encrypted_license().mac_key_iv,
s.encrypted_license().mac_keys, kNumKeys, s.encrypted_license().mac_keys, s.num_keys(),
s.key_array(), pst_ptr, pst.length())); s.key_array(), pst_ptr, pst.length()));
// But we can still generate a report. // But we can still generate a report.
Session s3; Session s3;
@@ -4628,7 +4650,7 @@ TEST_P(UsageTableTestWithMAC, BadRange) {
OEMCrypto_LoadKeys(s.session_id(), s.message_ptr(), sizeof(MessageData), OEMCrypto_LoadKeys(s.session_id(), s.message_ptr(), sizeof(MessageData),
&s.signature()[0], s.signature().size(), &s.signature()[0], s.signature().size(),
s.encrypted_license().mac_key_iv, s.encrypted_license().mac_key_iv,
s.encrypted_license().mac_keys, kNumKeys, s.encrypted_license().mac_keys, s.num_keys(),
s.key_array(), pst_ptr, pst.length())); s.key_array(), pst_ptr, pst.length()));
} }
@@ -4848,7 +4870,7 @@ TEST_F(UsageTableTest, LoadSharedLicense) {
ASSERT_NO_FATAL_FAILURE(s.LoadTestKeys(pst, true)); ASSERT_NO_FATAL_FAILURE(s.LoadTestKeys(pst, true));
ASSERT_NO_FATAL_FAILURE(s.FillSimpleMessage(0, 0, 0)); ASSERT_NO_FATAL_FAILURE(s.FillSimpleMessage(0, 0, 0));
// The second set of keys are not loaded. // The second set of keys are not loaded.
for (unsigned int i = 0; i < kNumKeys; i++) { for (unsigned int i = 0; i < s.num_keys(); i++) {
memset(s.license().keys[i].key_id, 'A' + i, memset(s.license().keys[i].key_id, 'A' + i,
s.license().keys[i].key_id_length); s.license().keys[i].key_id_length);
} }