// Copyright 2012 Google Inc. All Rights Reserved. // // Crypto - wrapper classes for OEMCrypto interface // #include "crypto_session.h" #include // TODO(fredgc): Add ntoh to wv_cdm_utilities.h #include #include "crypto_key.h" #include "log.h" // TODO(gmorgan,jtinker): decide if OEMCryptoCENC is needed here. #include "OEMCryptoCENC.h" #include "properties.h" #include "string_conversions.h" #include "wv_cdm_constants.h" namespace { // Encode unsigned integer into a big endian formatted string std::string EncodeUint32(unsigned int u) { std::string s; s.append(1, (u >> 24) & 0xFF); s.append(1, (u >> 16) & 0xFF); s.append(1, (u >> 8) & 0xFF); s.append(1, (u >> 0) & 0xFF); return s; } } namespace wvcdm { Lock CryptoSession::crypto_lock_; bool CryptoSession::initialized_ = false; int CryptoSession::session_count_ = 0; CryptoSession::CryptoSession() : open_(false), is_destination_buffer_type_valid_(false), security_level_(kSecurityLevelUninitialized) { Init(); } CryptoSession::~CryptoSession() { if (open_) { Close(); } Terminate(); } void CryptoSession::Init() { LOGV("CryptoSession::Init"); AutoLock auto_lock(crypto_lock_); session_count_ += 1; if (initialized_) return; OEMCryptoResult sts = OEMCrypto_Initialize(); if (OEMCrypto_SUCCESS != sts) { LOGE("OEMCrypto_Initialize failed: %d", sts); return; } initialized_ = true; } void CryptoSession::Terminate() { LOGV("CryptoSession::Terminate"); AutoLock auto_lock(crypto_lock_); session_count_ -= 1; if (session_count_ > 0 || !initialized_) return; OEMCryptoResult sts = OEMCrypto_Terminate(); if (OEMCrypto_SUCCESS != sts) { LOGE("OEMCrypto_Terminate failed: %d", sts); } initialized_ = false; } bool CryptoSession::ValidateKeybox() { LOGV("CryptoSession::ValidateKeybox: Lock"); AutoLock auto_lock(crypto_lock_); if (!initialized_) { return false; } OEMCryptoResult result = OEMCrypto_IsKeyboxValid(); return (OEMCrypto_SUCCESS == result); } bool CryptoSession::GetToken(std::string* token) { if (!token) { LOGE("CryptoSession::GetToken : No token passed to method."); return false; } uint8_t buf[KEYBOX_KEY_DATA_SIZE]; size_t bufSize = sizeof(buf); LOGV("CryptoSession::GetToken: Lock"); AutoLock auto_lock(crypto_lock_); if (!initialized_) { return false; } OEMCryptoResult sts = OEMCrypto_GetKeyData(buf, &bufSize); if (OEMCrypto_SUCCESS != sts) { return false; } token->assign((const char*)buf, (size_t)bufSize); return true; } CdmSecurityLevel CryptoSession::GetSecurityLevel() { LOGV("CryptoSession::GetSecurityLevel: Lock"); AutoLock auto_lock(crypto_lock_); if (!initialized_) { return kSecurityLevelUninitialized; } switch (security_level_) { case kSecurityLevelL1: case kSecurityLevelL2: case kSecurityLevelL3: return security_level_; default: break; } std::string security_level = OEMCrypto_SecurityLevel(); if ((security_level.size() != 2) || (security_level.at(0) != 'L')) { return kSecurityLevelUnknown; } switch (security_level.at(1)) { case '1': security_level_ = kSecurityLevelL1; break; case '2': security_level_ = kSecurityLevelL2; break; case '3': security_level_ = kSecurityLevelL3; break; default: security_level_ = kSecurityLevelUnknown; break; } return security_level_; } bool CryptoSession::GetDeviceUniqueId(std::string* device_id) { if (!device_id) { LOGE("CryptoSession::GetDeviceUniqueId : No buffer passed to method."); return false; } std::vector id; size_t id_length = 32; id.resize(id_length); LOGV("CryptoSession::GetDeviceUniqueId: Lock"); AutoLock auto_lock(crypto_lock_); if (!initialized_) { return false; } OEMCryptoResult sts = OEMCrypto_GetDeviceID(&id[0], &id_length); if (OEMCrypto_SUCCESS != sts) { return false; } *device_id = reinterpret_cast(&id[0]); return true; } bool CryptoSession::GetSystemId(uint32_t* system_id) { if (!system_id) { LOGE("CryptoSession::GetSystemId : No buffer passed to method."); return false; } uint8_t buf[KEYBOX_KEY_DATA_SIZE]; size_t buf_size = sizeof(buf); LOGV("CryptoSession::GetSystemId: Lock"); AutoLock auto_lock(crypto_lock_); if (!initialized_) { return false; } OEMCryptoResult sts = OEMCrypto_GetKeyData(buf, &buf_size); if (OEMCrypto_SUCCESS != sts) { return false; } // Decode 32-bit int encoded as network-byte-order byte array starting at // index 4. uint32_t* id = reinterpret_cast(&buf[4]); *system_id = ntohl(*id); return true; } bool CryptoSession::GetProvisioningId(std::string* provisioning_id) { if (!provisioning_id) { LOGE("CryptoSession::GetProvisioningId : No buffer passed to method."); return false; } uint8_t buf[KEYBOX_KEY_DATA_SIZE]; size_t buf_size = sizeof(buf); LOGV("CryptoSession::GetProvisioningId: Lock"); AutoLock auto_lock(crypto_lock_); if (!initialized_) { return false; } OEMCryptoResult sts = OEMCrypto_GetKeyData(buf, &buf_size); if (OEMCrypto_SUCCESS != sts) { return false; } provisioning_id->assign(reinterpret_cast(&buf[8]), 16); return true; } CdmResponseType CryptoSession::Open() { LOGV("CryptoSession::Open: Lock"); AutoLock auto_lock(crypto_lock_); if (!initialized_) return false; if (open_) return true; OEMCrypto_SESSION sid; OEMCryptoResult sts = OEMCrypto_OpenSession(&sid); if (OEMCrypto_SUCCESS == sts) { oec_session_id_ = static_cast(sid); LOGV("OpenSession: id= %ld", (uint32_t)oec_session_id_); open_ = true; } else if (OEMCrypto_ERROR_TOO_MANY_SESSIONS == sts) { return INSUFFICIENT_CRYPTO_RESOURCES; } return open_ ? NO_ERROR : UNKNOWN_ERROR; } void CryptoSession::Close() { LOGV("CloseSession: id=%ld open=%s", (uint32_t)oec_session_id_, open_ ? "true" : "false"); AutoLock auto_lock(crypto_lock_); if (!open_) return; if (OEMCrypto_SUCCESS == OEMCrypto_CloseSession(oec_session_id_)) { open_ = false; } } void CryptoSession::GenerateRequestId(std::string& req_id_str) { LOGV("CryptoSession::GenerateRequestId: Lock"); AutoLock auto_lock(crypto_lock_); // TODO(gmorgan): Get unique ID from OEMCrypto req_id_str.assign("987654321"); } bool CryptoSession::PrepareRequest(const std::string& message, bool is_provisioning, std::string* signature) { LOGV("CryptoSession::PrepareRequest: Lock"); AutoLock auto_lock(crypto_lock_); if (!signature) { LOGE("CryptoSession::PrepareRequest : No output destination provided."); return false; } if (!Properties::use_certificates_as_identification() || is_provisioning) { if (!GenerateDerivedKeys(message)) return false; if (!GenerateSignature(message, false, signature)) return false; } else { if (!GenerateSignature(message, true, signature)) return false; } return true; } bool CryptoSession::PrepareRenewalRequest(const std::string& message, std::string* signature) { LOGV("CryptoSession::PrepareRenewalRequest: Lock"); AutoLock auto_lock(crypto_lock_); if (!signature) { LOGE("CryptoSession::PrepareRenewalRequest : No output destination " "provided."); return false; } if (!GenerateSignature(message, false, signature)) { return false; } return true; } void CryptoSession::GenerateMacContext(const std::string& input_context, std::string* deriv_context) { if (!deriv_context) { LOGE("CryptoSession::GenerateMacContext : No output destination provided."); return; } const std::string kSigningKeyLabel = "AUTHENTICATION"; const size_t kSigningKeySizeBits = MAC_KEY_SIZE * 8; deriv_context->assign(kSigningKeyLabel); deriv_context->append(1, '\0'); deriv_context->append(input_context); deriv_context->append(EncodeUint32(kSigningKeySizeBits * 2)); } void CryptoSession::GenerateEncryptContext(const std::string& input_context, std::string* deriv_context) { if (!deriv_context) { LOGE("CryptoSession::GenerateEncryptContext : No output destination " "provided."); return; } const std::string kEncryptionKeyLabel = "ENCRYPTION"; const size_t kEncryptionKeySizeBits = KEY_SIZE * 8; deriv_context->assign(kEncryptionKeyLabel); deriv_context->append(1, '\0'); deriv_context->append(input_context); deriv_context->append(EncodeUint32(kEncryptionKeySizeBits)); } size_t CryptoSession::GetOffset(std::string message, std::string field) { size_t pos = message.find(field); if (pos == std::string::npos) { LOGE("CryptoSession::GetOffset : Cannot find offset for %s", field.c_str()); pos = 0; } return pos; } CdmResponseType CryptoSession::LoadKeys(const std::string& message, const std::string& signature, const std::string& mac_key_iv, const std::string& mac_key, int num_keys, const CryptoKey* key_array) { LOGV("CryptoSession::LoadKeys: Lock"); AutoLock auto_lock(crypto_lock_); const uint8_t* msg = reinterpret_cast(message.data()); const uint8_t* enc_mac_key = NULL; const uint8_t* enc_mac_key_iv = NULL; if (mac_key.size() >= MAC_KEY_SIZE && mac_key_iv.size() >= KEY_IV_SIZE) { enc_mac_key = msg + GetOffset(message, mac_key); enc_mac_key_iv = msg + GetOffset(message, mac_key_iv); } std::vector load_key_array(num_keys); for (int i = 0; i < num_keys; ++i) { const CryptoKey* ki = &key_array[i]; OEMCrypto_KeyObject* ko = &load_key_array[i]; ko->key_id = msg + GetOffset(message, ki->key_id()); ko->key_id_length = ki->key_id().length(); ko->key_data_iv = msg + GetOffset(message, ki->key_data_iv()); ko->key_data = msg + GetOffset(message, ki->key_data()); ko->key_data_length = ki->key_data().length(); if (ki->HasKeyControl()) { ko->key_control_iv = msg + GetOffset(message, ki->key_control_iv()); ko->key_control = msg + GetOffset(message, ki->key_control()); } else { LOGE("For key %d: XXX key has no control block. size=%d", i, ki->key_control().size()); ko->key_control_iv = NULL; ko->key_control = NULL; } } LOGV("LoadKeys: id=%ld", (uint32_t)oec_session_id_); OEMCryptoResult sts = OEMCrypto_LoadKeys( oec_session_id_, msg, message.size(), reinterpret_cast(signature.data()), signature.size(), enc_mac_key_iv, enc_mac_key, num_keys, &load_key_array[0]); if (OEMCrypto_SUCCESS == sts) { return KEY_ADDED; } else if (OEMCrypto_ERROR_TOO_MANY_KEYS == sts) { return INSUFFICIENT_CRYPTO_RESOURCES; } else { return KEY_ERROR; } } bool CryptoSession::LoadCertificatePrivateKey(std::string& wrapped_key) { LOGV("CryptoSession::LoadKeys: Lock"); AutoLock auto_lock(crypto_lock_); LOGV("LoadDeviceRSAKey: id=%ld", (uint32_t)oec_session_id_); OEMCryptoResult sts = OEMCrypto_LoadDeviceRSAKey( oec_session_id_, reinterpret_cast(wrapped_key.data()), wrapped_key.size()); if (OEMCrypto_SUCCESS != sts) { LOGD("LoadCertificatePrivateKey: OEMCrypto_LoadDeviceRSAKey error=%d", sts); return false; } return true; } bool CryptoSession::RefreshKeys(const std::string& message, const std::string& signature, int num_keys, const CryptoKey* key_array) { LOGV("CryptoSession::RefreshKeys: Lock"); AutoLock auto_lock(crypto_lock_); const uint8_t* msg = reinterpret_cast(message.data()); std::vector load_key_array(num_keys); for (int i = 0; i < num_keys; ++i) { const CryptoKey* ki = &key_array[i]; OEMCrypto_KeyRefreshObject* ko = &load_key_array[i]; if (ki->key_id().empty()) { ko->key_id = NULL; } else { ko->key_id = msg + GetOffset(message, ki->key_id()); } if (ki->HasKeyControl()) { if (ki->key_control_iv().empty()) { ko->key_control_iv = NULL; } else { ko->key_control_iv = msg + GetOffset(message, ki->key_control_iv()); } ko->key_control = msg + GetOffset(message, ki->key_control()); } else { ko->key_control_iv = NULL; ko->key_control = NULL; } } LOGV("RefreshKeys: id=%ld", static_cast(oec_session_id_)); return ( OEMCrypto_SUCCESS == OEMCrypto_RefreshKeys(oec_session_id_, msg, message.size(), reinterpret_cast(signature.data()), signature.size(), num_keys, &load_key_array[0])); } bool CryptoSession::SelectKey(const std::string& key_id) { LOGV("CryptoSession::SelectKey: Lock"); AutoLock auto_lock(crypto_lock_); const uint8_t* key_id_string = reinterpret_cast(key_id.data()); LOGV("SelectKey: id=%ld", static_cast(oec_session_id_)); OEMCryptoResult sts = OEMCrypto_SelectKey(oec_session_id_, key_id_string, key_id.size()); if (OEMCrypto_SUCCESS != sts) { return false; } return true; } bool CryptoSession::GenerateDerivedKeys(const std::string& message) { std::string mac_deriv_message; std::string enc_deriv_message; GenerateMacContext(message, &mac_deriv_message); GenerateEncryptContext(message, &enc_deriv_message); LOGV("GenerateDerivedKeys: id=%ld", (uint32_t)oec_session_id_); OEMCryptoResult sts = OEMCrypto_GenerateDerivedKeys( oec_session_id_, reinterpret_cast(mac_deriv_message.data()), mac_deriv_message.size(), reinterpret_cast(enc_deriv_message.data()), enc_deriv_message.size()); if (OEMCrypto_SUCCESS != sts) { LOGD("GenerateDerivedKeys: OEMCrypto_GenerateDerivedKeys error=%d", sts); return false; } return true; } bool CryptoSession::GenerateDerivedKeys(const std::string& message, const std::string& session_key) { std::string mac_deriv_message; std::string enc_deriv_message; GenerateMacContext(message, &mac_deriv_message); GenerateEncryptContext(message, &enc_deriv_message); LOGV("GenerateDerivedKeys: id=%ld", (uint32_t)oec_session_id_); OEMCryptoResult sts = OEMCrypto_DeriveKeysFromSessionKey( oec_session_id_, reinterpret_cast(session_key.data()), session_key.size(), reinterpret_cast(mac_deriv_message.data()), mac_deriv_message.size(), reinterpret_cast(enc_deriv_message.data()), enc_deriv_message.size()); if (OEMCrypto_SUCCESS != sts) { LOGD("GenerateDerivedKeys: OEMCrypto_DeriveKeysFromSessionKey err=%d", sts); return false; } return true; } bool CryptoSession::GenerateSignature(const std::string& message, bool use_rsa, std::string* signature) { LOGV("GenerateSignature: id=%ld", (uint32_t)oec_session_id_); if (!signature) return false; size_t length = 0; OEMCryptoResult sts = OEMCrypto_SUCCESS; if (use_rsa) { sts = OEMCrypto_GenerateRSASignature( oec_session_id_, reinterpret_cast(message.data()), message.size(), NULL, &length); if (OEMCrypto_ERROR_SHORT_BUFFER != sts) { LOGD("GenerateSignature: OEMCrypto_GenerateRSASignature err=%d", sts); return false; } } else { length = kSignatureSize; // TODO(gmorgan,kqyang): Use OEMCrypto_GenerateSignature to determine // length after marvell fixes their implementation. /* sts = OEMCrypto_GenerateSignature( oec_session_id_, reinterpret_cast(message.data()), message.size(), NULL, &length); */ } signature->resize(length); if (use_rsa) { sts = OEMCrypto_GenerateRSASignature( oec_session_id_, reinterpret_cast(message.data()), message.size(), reinterpret_cast(const_cast(signature->data())), &length); } else { sts = OEMCrypto_GenerateSignature( oec_session_id_, reinterpret_cast(message.data()), message.size(), reinterpret_cast(const_cast(signature->data())), &length); } if (OEMCrypto_SUCCESS != sts) { LOGD("GenerateSignature: OEMCrypto_GenerateSignature err=%d", sts); return false; } // TODO(fredgc): b/8878371 // remove in K, when L1 library reports correct length. signature->resize(length); return true; } CdmResponseType CryptoSession::Decrypt(const CdmDecryptionParameters& params) { if (!is_destination_buffer_type_valid_) { if (!SetDestinationBufferType()) return UNKNOWN_ERROR; } OEMCrypto_DestBufferDesc buffer_descriptor; buffer_descriptor.type = params.is_secure ? destination_buffer_type_ : OEMCrypto_BufferType_Clear; switch (buffer_descriptor.type) { case OEMCrypto_BufferType_Clear: buffer_descriptor.buffer.clear.address = static_cast(params.decrypt_buffer) + params.decrypt_buffer_offset; buffer_descriptor.buffer.clear.max_length = params.decrypt_buffer_length; break; case OEMCrypto_BufferType_Secure: buffer_descriptor.buffer.secure.handle = params.decrypt_buffer; buffer_descriptor.buffer.secure.offset = params.decrypt_buffer_offset; buffer_descriptor.buffer.secure.max_length = params.decrypt_buffer_length; break; case OEMCrypto_BufferType_Direct: buffer_descriptor.type = OEMCrypto_BufferType_Direct; buffer_descriptor.buffer.direct.is_video = params.is_video; break; } OEMCryptoResult sts = OEMCrypto_DecryptCTR( oec_session_id_, params.encrypt_buffer, params.encrypt_length, params.is_encrypted, &(*params.iv).front(), params.block_offset, &buffer_descriptor, params.subsample_flags); if (OEMCrypto_ERROR_INSUFFICIENT_RESOURCES == sts) { return INSUFFICIENT_CRYPTO_RESOURCES; } else if (OEMCrypto_SUCCESS != sts) { return UNKNOWN_ERROR; } return NO_ERROR; } bool CryptoSession::GenerateNonce(uint32_t* nonce) { if (!nonce) { LOGE("input parameter is null"); return false; } LOGV("CryptoSession::GenerateNonce: Lock"); AutoLock auto_lock(crypto_lock_); return (OEMCrypto_SUCCESS == OEMCrypto_GenerateNonce(oec_session_id_, nonce)); } bool CryptoSession::SetDestinationBufferType() { if (Properties::oem_crypto_use_secure_buffers()) { if (GetSecurityLevel() == kSecurityLevelL1) { destination_buffer_type_ = OEMCrypto_BufferType_Secure; } else { destination_buffer_type_ = OEMCrypto_BufferType_Clear; } } else if (Properties::oem_crypto_use_fifo()) { destination_buffer_type_ = OEMCrypto_BufferType_Direct; } else if (Properties::oem_crypto_use_userspace_buffers()) { destination_buffer_type_ = OEMCrypto_BufferType_Clear; } else { return false; } is_destination_buffer_type_valid_ = true; return true; } bool CryptoSession::RewrapDeviceRSAKey(const std::string& message, const std::string& signature, const std::string& nonce, const std::string& enc_rsa_key, const std::string& rsa_key_iv, std::string* wrapped_rsa_key) { LOGD("CryptoSession::RewrapDeviceRSAKey, session id=%ld", static_cast(oec_session_id_)); const uint8_t* signed_msg = reinterpret_cast(message.data()); const uint8_t* msg_rsa_key = NULL; const uint8_t* msg_rsa_key_iv = NULL; const uint32_t* msg_nonce = NULL; if (enc_rsa_key.size() >= MAC_KEY_SIZE && rsa_key_iv.size() >= KEY_IV_SIZE) { msg_rsa_key = signed_msg + GetOffset(message, enc_rsa_key); msg_rsa_key_iv = signed_msg + GetOffset(message, rsa_key_iv); msg_nonce = reinterpret_cast(signed_msg + GetOffset(message, nonce)); } // Gets wrapped_rsa_key_length by passing NULL as uint8_t* wrapped_rsa_key // and 0 as wrapped_rsa_key_length. size_t wrapped_rsa_key_length = 0; OEMCryptoResult status = OEMCrypto_RewrapDeviceRSAKey( oec_session_id_, signed_msg, message.size(), reinterpret_cast(signature.data()), signature.size(), msg_nonce, msg_rsa_key, enc_rsa_key.size(), msg_rsa_key_iv, NULL, &wrapped_rsa_key_length); if (status != OEMCrypto_ERROR_SHORT_BUFFER) { LOGE("OEMCrypto_RewrapDeviceRSAKey fails to get wrapped_rsa_key_length"); return false; } wrapped_rsa_key->resize(wrapped_rsa_key_length); status = OEMCrypto_RewrapDeviceRSAKey( oec_session_id_, signed_msg, message.size(), reinterpret_cast(signature.data()), signature.size(), msg_nonce, msg_rsa_key, enc_rsa_key.size(), msg_rsa_key_iv, reinterpret_cast(&(*wrapped_rsa_key)[0]), &wrapped_rsa_key_length); // TODO(fredgc): b/8878371 // remove in K, when L1 library reports correct length. wrapped_rsa_key->resize(wrapped_rsa_key_length); if (OEMCrypto_SUCCESS != status) { LOGE("OEMCrypto_RewrapDeviceRSAKey fails with %d", status); return false; } return true; } bool CryptoSession::GetRandom(uint8_t* random_data, size_t data_length) { OEMCryptoResult sts = OEMCrypto_GetRandom(random_data, data_length); if (sts != OEMCrypto_SUCCESS) { LOGE("OEMCrypto_GetRandom fails with %d", sts); return false; } return true; } }; // namespace wvcdm