// Copyright 2018 Google LLC. All Rights Reserved. This file and proprietary // source code may only be used and distributed under the Widevine Master // License Agreement. // // Reference implementation of OEMCrypto APIs // #include "oemcrypto_session.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "keys.h" #include "log.h" #include "oemcrypto_engine_ref.h" #include "oemcrypto_key_ref.h" #include "oemcrypto_logging.h" #include "oemcrypto_rsa_key_shared.h" #include "oemcrypto_types.h" #include "disallow_copy_and_assign.h" #include "string_conversions.h" static const int kPssSaltLength = 20; namespace { // Increment counter for AES-CTR. The CENC spec specifies we increment only // the low 64 bits of the IV counter, and leave the high 64 bits alone. void ctr128_inc64(uint8_t* counter) { uint32_t n = 16; do { if (++counter[--n] != 0) return; } while (n > 8); } } // namespace namespace wvoec_ref { /***************************************/ class ContentKeysContext : public SessionContextKeys { public: explicit ContentKeysContext() {} virtual ~ContentKeysContext() {} virtual size_t size() { return session_keys_.size(); } bool Insert(const KeyId& key_id, const Key& key_data); virtual Key* Find(const KeyId& key_id); virtual void Remove(const KeyId& key_id); virtual void UpdateDuration(const KeyControlBlock& control); virtual OEMCrypto_LicenseType type() { return OEMCrypto_ContentLicense; } virtual bool SetContentKey(const KeyId& entitlement_id, const KeyId& content_key_id, const std::vector& content_key); virtual bool GetEntitlementKey(const KeyId& entitlement_id, const std::vector** entitlement_key); private: SessionKeyTable session_keys_; CORE_DISALLOW_COPY_AND_ASSIGN(ContentKeysContext); }; bool ContentKeysContext::Insert(const KeyId& key_id, const Key& key_data) { return session_keys_.Insert(key_id, key_data); } Key* ContentKeysContext::Find(const KeyId& key_id) { return session_keys_.Find(key_id); } void ContentKeysContext::Remove(const KeyId& key_id) { session_keys_.Remove(key_id); } void ContentKeysContext::UpdateDuration(const KeyControlBlock& control) { session_keys_.UpdateDuration(control); } bool ContentKeysContext::SetContentKey( const KeyId& entitlement_id, const KeyId& content_key_id, const std::vector& content_key) { // Unsupported action for this type. return false; } bool ContentKeysContext::GetEntitlementKey(const KeyId& entitlement_id, const std::vector** key) { // Unsupported action for this type. return false; }; /***************************************/ class EntitlementKeysContext : public SessionContextKeys { public: EntitlementKeysContext() {} virtual ~EntitlementKeysContext() {} virtual size_t size() { return session_keys_.size(); } bool Insert(const KeyId& key_id, const Key& key_data); virtual Key* Find(const KeyId& key_id); virtual void Remove(const KeyId& key_id); virtual void UpdateDuration(const KeyControlBlock& control); virtual bool SetContentKey(const KeyId& entitlement_id, const KeyId& content_key_id, const std::vector& content_key); virtual bool GetEntitlementKey(const KeyId& entitlement_id, const std::vector** key); virtual OEMCrypto_LicenseType type() { return OEMCrypto_EntitlementLicense; } private: EntitlementKeyTable session_keys_; CORE_DISALLOW_COPY_AND_ASSIGN(EntitlementKeysContext); }; bool EntitlementKeysContext::Insert(const KeyId& key_id, const Key& key_data) { return session_keys_.Insert(key_id, key_data); } Key* EntitlementKeysContext::Find(const KeyId& key_id) { return session_keys_.Find(key_id); } void EntitlementKeysContext::Remove(const KeyId& key_id) { session_keys_.Remove(key_id); } void EntitlementKeysContext::UpdateDuration(const KeyControlBlock& control) { session_keys_.UpdateDuration(control); } bool EntitlementKeysContext::SetContentKey( const KeyId& entitlement_id, const KeyId& content_key_id, const std::vector& content_key) { return session_keys_.SetContentKey(entitlement_id, content_key_id, content_key); } bool EntitlementKeysContext::GetEntitlementKey( const KeyId& entitlement_id, const std::vector** out_key) { return session_keys_.GetEntitlementKey(entitlement_id, out_key); } /***************************************/ SessionContext::~SessionContext() { if (usage_entry_) { delete usage_entry_; usage_entry_ = NULL; } if (session_keys_) { delete session_keys_; session_keys_ = NULL; } } // Internal utility function to derive key using CMAC-128 bool SessionContext::DeriveKey(const std::vector& key, const std::vector& context, int counter, std::vector* out) { if (key.empty() || counter > 4 || context.empty() || out == NULL) { LOGE("[DeriveKey(): OEMCrypto_ERROR_INVALID_CONTEXT]"); return false; } const EVP_CIPHER* cipher = EVP_aes_128_cbc(); CMAC_CTX* cmac_ctx = CMAC_CTX_new(); if (!cmac_ctx) { LOGE("[DeriveKey(): OEMCrypto_ERROR_CMAC_FAILURE]"); return false; } if (!CMAC_Init(cmac_ctx, &key[0], key.size(), cipher, 0)) { LOGE("[DeriveKey(): OEMCrypto_ERROR_CMAC_FAILURE]"); CMAC_CTX_free(cmac_ctx); return false; } std::vector message; message.push_back(counter); message.insert(message.end(), context.begin(), context.end()); if (!CMAC_Update(cmac_ctx, &message[0], message.size())) { LOGE("[DeriveKey(): OEMCrypto_ERROR_CMAC_FAILURE]"); CMAC_CTX_free(cmac_ctx); return false; } size_t reslen; uint8_t res[128]; if (!CMAC_Final(cmac_ctx, res, &reslen)) { LOGE("[DeriveKey(): OEMCrypto_ERROR_CMAC_FAILURE]"); CMAC_CTX_free(cmac_ctx); return false; } out->assign(res, res + reslen); CMAC_CTX_free(cmac_ctx); return true; } bool SessionContext::DeriveKeys(const std::vector& master_key, const std::vector& mac_key_context, const std::vector& enc_key_context) { // Generate derived key for mac key std::vector mac_key_server; std::vector mac_key_client; std::vector mac_key_part2; if (!DeriveKey(master_key, mac_key_context, 1, &mac_key_server)) { return false; } if (!DeriveKey(master_key, mac_key_context, 2, &mac_key_part2)) { return false; } mac_key_server.insert(mac_key_server.end(), mac_key_part2.begin(), mac_key_part2.end()); if (!DeriveKey(master_key, mac_key_context, 3, &mac_key_client)) { return false; } if (!DeriveKey(master_key, mac_key_context, 4, &mac_key_part2)) { return false; } mac_key_client.insert(mac_key_client.end(), mac_key_part2.begin(), mac_key_part2.end()); // Generate derived key for encryption key std::vector enc_key; if (!DeriveKey(master_key, enc_key_context, 1, &enc_key)) { return false; } if (LogCategoryEnabled(kLoggingDumpDerivedKeys)) { LOGI((" mac_key_context = " + wvcdm::b2a_hex(mac_key_context)).c_str()); LOGI((" enc_key_context = " + wvcdm::b2a_hex(enc_key_context)).c_str()); LOGI((" mac_key_server = " + wvcdm::b2a_hex(mac_key_server)).c_str()); LOGI((" mac_key_client = " + wvcdm::b2a_hex(mac_key_client)).c_str()); LOGI((" enc_key = " + wvcdm::b2a_hex(enc_key)).c_str()); } set_mac_key_server(mac_key_server); set_mac_key_client(mac_key_client); set_encryption_key(enc_key); return true; } bool SessionContext::RSADeriveKeys( const std::vector& enc_session_key, const std::vector& mac_key_context, const std::vector& enc_key_context) { if (!rsa_key()) { LOGE("[RSADeriveKeys(): no RSA key set]"); return false; } if (enc_session_key.size() != static_cast(RSA_size(rsa_key()))) { LOGE("[RSADeriveKeys(): encrypted session key wrong size:%zu, expected %d]", enc_session_key.size(), RSA_size(rsa_key())); dump_boringssl_error(); return false; } session_key_.resize(RSA_size(rsa_key())); int decrypted_size = RSA_private_decrypt(enc_session_key.size(), &enc_session_key[0], &session_key_[0], rsa_key(), RSA_PKCS1_OAEP_PADDING); if (-1 == decrypted_size) { LOGE("[RSADeriveKeys(): error decrypting session key.]"); dump_boringssl_error(); return false; } session_key_.resize(decrypted_size); if (decrypted_size != static_cast(wvoec::KEY_SIZE)) { LOGE("[RSADeriveKeys(): error. Session key is wrong size: %d.]", decrypted_size); dump_boringssl_error(); session_key_.clear(); return false; } return DeriveKeys(session_key_, mac_key_context, enc_key_context); } // Utility function to generate a message signature bool SessionContext::GenerateSignature(const uint8_t* message, size_t message_length, uint8_t* signature, size_t* signature_length) { if (message == NULL || message_length == 0 || signature == NULL || signature_length == 0) { LOGE("[OEMCrypto_GenerateSignature(): OEMCrypto_ERROR_INVALID_CONTEXT]"); return false; } if (mac_key_client_.size() != wvoec::MAC_KEY_SIZE) { return false; } if (*signature_length < SHA256_DIGEST_LENGTH) { *signature_length = SHA256_DIGEST_LENGTH; return false; } bool using_usage_entry_mac_key_client = false; std::vector usage_entry_mac_key_client; if (usage_entry_status_ == kUsageEntryLoaded) { usage_entry_mac_key_client.assign( usage_entry_->mac_key_client(), usage_entry_->mac_key_client() + wvoec::MAC_KEY_SIZE * sizeof(uint8_t)); using_usage_entry_mac_key_client = mac_key_client_ == usage_entry_mac_key_client; } if (using_usage_entry_mac_key_client && LogCategoryEnabled(kLoggingDumpDerivedKeys)) { LOGI(("message signed with HMAC and usage_entry_'s mac_key_client, " "mac_key_client = " + wvcdm::b2a_hex(usage_entry_mac_key_client)).c_str()); } else if (LogCategoryEnabled(kLoggingDumpDerivedKeys)) { LOGI(("message signed with HMAC and mac_key_client_, mac_key_client_ = " + wvcdm::b2a_hex(mac_key_client_)).c_str()); } unsigned int md_len = *signature_length; if (HMAC(EVP_sha256(), &mac_key_client_[0], wvoec::MAC_KEY_SIZE, message, message_length, signature, &md_len)) { *signature_length = md_len; return true; } return false; } size_t SessionContext::RSASignatureSize() { if (!rsa_key()) { LOGE("[GenerateRSASignature(): no RSA key set]"); return 0; } return static_cast(RSA_size(rsa_key())); } OEMCryptoResult SessionContext::GenerateRSASignature( const uint8_t* message, size_t message_length, uint8_t* signature, size_t* signature_length, RSA_Padding_Scheme padding_scheme) { if (message == NULL || message_length == 0 || signature == NULL || signature_length == 0) { LOGE("[GenerateRSASignature(): OEMCrypto_ERROR_INVALID_CONTEXT]"); return OEMCrypto_ERROR_INVALID_CONTEXT; } if (!rsa_key()) { LOGE("[GenerateRSASignature(): no RSA key set]"); return OEMCrypto_ERROR_INVALID_RSA_KEY; } if (*signature_length < static_cast(RSA_size(rsa_key()))) { *signature_length = RSA_size(rsa_key()); return OEMCrypto_ERROR_SHORT_BUFFER; } if ((padding_scheme & allowed_schemes_) != padding_scheme) { LOGE("[GenerateRSASignature(): padding_scheme not allowed]"); return OEMCrypto_ERROR_INVALID_RSA_KEY; } // This is the standard padding scheme used for license requests. if (padding_scheme == kSign_RSASSA_PSS) { // Hash the message using SHA1. uint8_t hash[SHA_DIGEST_LENGTH]; if (!SHA1(message, message_length, hash)) { LOGE("[GeneratRSASignature(): error creating signature hash.]"); dump_boringssl_error(); return OEMCrypto_ERROR_UNKNOWN_FAILURE; } // Add PSS padding. std::vector padded_digest(*signature_length); int status = RSA_padding_add_PKCS1_PSS_mgf1( rsa_key(), &padded_digest[0], hash, EVP_sha1(), NULL, kPssSaltLength); if (status == -1) { LOGE("[GeneratRSASignature(): error padding hash.]"); dump_boringssl_error(); return OEMCrypto_ERROR_UNKNOWN_FAILURE; } // Encrypt PSS padded digest. status = RSA_private_encrypt(*signature_length, &padded_digest[0], signature, rsa_key(), RSA_NO_PADDING); if (status == -1) { LOGE("[GeneratRSASignature(): error in private encrypt.]"); dump_boringssl_error(); return OEMCrypto_ERROR_UNKNOWN_FAILURE; } // This is the alternate padding scheme used by cast receivers only. } else if (padding_scheme == kSign_PKCS1_Block1) { if (message_length > 83) { LOGE("[GeneratRSASignature(): RSA digest too large.]"); return OEMCrypto_ERROR_SIGNATURE_FAILURE; } // Pad the message with PKCS1 padding, and then encrypt. size_t status = RSA_private_encrypt(message_length, message, signature, rsa_key(), RSA_PKCS1_PADDING); if (status != *signature_length) { LOGE("[GeneratRSASignature(): error in RSA private encrypt. status=%d]", status); dump_boringssl_error(); return OEMCrypto_ERROR_UNKNOWN_FAILURE; } } else { // Bad RSA_Padding_Scheme return OEMCrypto_ERROR_INVALID_RSA_KEY; } return OEMCrypto_SUCCESS; } // Validate message signature bool SessionContext::ValidateMessage(const uint8_t* given_message, size_t message_length, const uint8_t* given_signature, size_t signature_length) { if (signature_length != SHA256_DIGEST_LENGTH) { return false; } uint8_t computed_signature[SHA256_DIGEST_LENGTH]; memset(computed_signature, 0, SHA256_DIGEST_LENGTH); unsigned int md_len = SHA256_DIGEST_LENGTH; if (LogCategoryEnabled(kLoggingDumpDerivedKeys)) { LOGI(("message verified with HMAC and mac_key_server, key = " + wvcdm::b2a_hex(mac_key_server_)).c_str()); } if (!HMAC(EVP_sha256(), &mac_key_server_[0], mac_key_server_.size(), given_message, message_length, computed_signature, &md_len)) { LOGE("ValidateMessage: Could not compute signature."); return false; } if (memcmp(given_signature, computed_signature, signature_length)) { LOGE("Invalid signature given: %s", wvcdm::HexEncode(given_signature, signature_length).c_str()); LOGE("Invalid signature computed: %s", wvcdm::HexEncode(computed_signature, signature_length).c_str()); return false; } return true; } OEMCryptoResult SessionContext::CheckStatusOnline(uint32_t nonce, uint32_t control) { if (!(control & wvoec::kControlNonceEnabled)) { LOGE("LoadKeys: Server provided Nonce_Required but Nonce_Enabled = 0."); // Server error. Continue, and assume nonce required. } if (!CheckNonce(nonce)) return OEMCrypto_ERROR_INVALID_NONCE; switch (usage_entry_status_) { case kNoUsageEntry: LOGE("LoadKeys: Session did not create usage entry."); return OEMCrypto_ERROR_INVALID_CONTEXT; case kUsageEntryLoaded: LOGE("LoadKeys: Session reloaded existing entry."); return OEMCrypto_ERROR_INVALID_CONTEXT; case kUsageEntryNew: return OEMCrypto_SUCCESS; default: // invalid status. return OEMCrypto_ERROR_UNKNOWN_FAILURE; } } OEMCryptoResult SessionContext::CheckStatusOffline(uint32_t nonce, uint32_t control) { if (control & wvoec::kControlNonceEnabled) { LOGE("KCB: Server provided NonceOrEntry but Nonce_Enabled = 1."); // Server error. Continue, and assume nonce required. } switch (usage_entry_status_) { case kNoUsageEntry: LOGE("LoadKeys: Session did not create or load usage entry."); return OEMCrypto_ERROR_INVALID_CONTEXT; case kUsageEntryLoaded: // Repeat load. Calling function will verify pst and keys. return OEMCrypto_SUCCESS; case kUsageEntryNew: // First load. Verify nonce. if (!CheckNonce(nonce)) return OEMCrypto_ERROR_INVALID_NONCE; return OEMCrypto_SUCCESS; default: // invalid status. return OEMCrypto_ERROR_UNKNOWN_FAILURE; } } OEMCryptoResult SessionContext::CheckNonceOrEntry( const KeyControlBlock& key_control_block) { switch (key_control_block.control_bits() & wvoec::kControlReplayMask) { case wvoec::kControlNonceRequired: // Online license. Nonce always required. return CheckStatusOnline(key_control_block.nonce(), key_control_block.control_bits()); break; case wvoec::kControlNonceOrEntry: // Offline license. Nonce required on first use. return CheckStatusOffline(key_control_block.nonce(), key_control_block.control_bits()); break; default: if ((key_control_block.control_bits() & wvoec::kControlNonceEnabled) && (!CheckNonce(key_control_block.nonce()))) { LOGE("LoadKeys: BAD Nonce"); return OEMCrypto_ERROR_INVALID_NONCE; } } return OEMCrypto_SUCCESS; } void SessionContext::StartTimer() { timer_start_ = time(NULL); } uint32_t SessionContext::CurrentTimer() { time_t now = time(NULL); return now - timer_start_; } OEMCryptoResult SessionContext::LoadKeys( const uint8_t* message, size_t message_length, const uint8_t* signature, size_t signature_length, const uint8_t* enc_mac_key_iv, const uint8_t* enc_mac_keys, size_t num_keys, const OEMCrypto_KeyObject* key_array, const uint8_t* pst, size_t pst_length, const uint8_t* srm_requirement, OEMCrypto_LicenseType license_type) { // Validate message signature if (!ValidateMessage(message, message_length, signature, signature_length)) { return OEMCrypto_ERROR_SIGNATURE_FAILURE; } if (!session_keys_) { switch (license_type) { case OEMCrypto_ContentLicense: session_keys_ = new ContentKeysContext(); break; case OEMCrypto_EntitlementLicense: session_keys_ = new EntitlementKeysContext(); break; default: return OEMCrypto_ERROR_INVALID_CONTEXT; } } else { if (session_keys_->type() != license_type) { return OEMCrypto_ERROR_INVALID_CONTEXT; } } StartTimer(); if (srm_requirement) { const std::string kSRMVerificationString = "HDCPDATA"; if (memcmp(srm_requirement, kSRMVerificationString.c_str(), kSRMVerificationString.size())) { LOGE("SRM Requirement Data has bad verification string: %8s", srm_requirement); return OEMCrypto_ERROR_INVALID_CONTEXT; } uint32_t minimum_version = htonl(*reinterpret_cast(srm_requirement + 8)); uint16_t current_version = 0; if (OEMCrypto_SUCCESS != ce_->current_srm_version(¤t_version)) { LOGW("[LoadKeys: SRM Version not available."); srm_requirements_status_ = InvalidSRMVersion; } else if (current_version < minimum_version) { LOGW("[LoadKeys: SRM Version is too small %d, required: %d", current_version, minimum_version); srm_requirements_status_ = InvalidSRMVersion; } else if (ce_->srm_blacklisted_device_attached()) { LOGW("[LoadKeys: SRM blacklisted device attached]"); srm_requirements_status_ = InvalidSRMVersion; } else { LOGI("[LoadKeys: SRM Versions is %d, required: %d]", current_version, minimum_version); srm_requirements_status_ = ValidSRMVersion; } } // If there are already keys installed in this session, then we can load // a shared license. bool second_license = (session_keys_->size() > 0); // Decrypt and install keys in key object // Each key will have a key control block. They will all have the same nonce. OEMCryptoResult status = OEMCrypto_SUCCESS; std::vector key_id; std::vector enc_key_data; std::vector key_data_iv; std::vector key_control; std::vector key_control_iv; for (unsigned int i = 0; i < num_keys; i++) { key_id.assign(key_array[i].key_id, key_array[i].key_id + key_array[i].key_id_length); enc_key_data.assign(key_array[i].key_data, key_array[i].key_data + key_array[i].key_data_length); key_data_iv.assign(key_array[i].key_data_iv, key_array[i].key_data_iv + wvoec::KEY_IV_SIZE); if (key_array[i].key_control == NULL) { status = OEMCrypto_ERROR_UNKNOWN_FAILURE; break; } key_control.assign(key_array[i].key_control, key_array[i].key_control + wvoec::KEY_CONTROL_SIZE); key_control_iv.assign(key_array[i].key_control_iv, key_array[i].key_control_iv + wvoec::KEY_IV_SIZE); OEMCryptoResult result = InstallKey(key_id, enc_key_data, key_data_iv, key_control, key_control_iv, second_license); if (result != OEMCrypto_SUCCESS) { status = result; break; } } FlushNonces(); if (status != OEMCrypto_SUCCESS) return status; // enc_mac_key can be NULL if license renewal is not supported if (enc_mac_keys != NULL) { // V2.1 license protocol: update mac keys after processing license response const std::vector enc_mac_keys_str = std::vector( enc_mac_keys, enc_mac_keys + 2 * wvoec::MAC_KEY_SIZE); const std::vector enc_mac_key_iv_str = std::vector( enc_mac_key_iv, enc_mac_key_iv + wvoec::KEY_IV_SIZE); if (!UpdateMacKeys(enc_mac_keys_str, enc_mac_key_iv_str)) { LOGE("Failed to update mac keys.\n"); return OEMCrypto_ERROR_UNKNOWN_FAILURE; } } if (usage_entry_) { OEMCryptoResult result = OEMCrypto_SUCCESS; switch (usage_entry_status_) { case kNoUsageEntry: if (pst_length > 0) { LOGE("LoadKeys: PST specified but no usage entry loaded."); return OEMCrypto_ERROR_INVALID_CONTEXT; } break; // no extra check. case kUsageEntryNew: result = usage_entry_->SetPST(pst, pst_length); if (result != OEMCrypto_SUCCESS) { return result; } if (!usage_entry_->SetMacKeys(mac_key_server_, mac_key_client_)) { LOGE("LoadKeys: Usage table can't set keys.\n"); return OEMCrypto_ERROR_UNKNOWN_FAILURE; } if (LogCategoryEnabled(kLoggingDumpDerivedKeys)) { LOGI(("usage_entry_'s mac_key_client_ has changed to = " + wvcdm::b2a_hex(mac_key_client_)).c_str()); } break; case kUsageEntryLoaded: if (!usage_entry_->VerifyPST(pst, pst_length)) { return OEMCrypto_ERROR_WRONG_PST; } if (!usage_entry_->VerifyMacKeys(mac_key_server_, mac_key_client_)) { LOGE("LoadKeys: Usage table entry mac keys do not match.\n"); return OEMCrypto_ERROR_WRONG_KEYS; } if (usage_entry_->Inactive()) return OEMCrypto_ERROR_LICENSE_INACTIVE; break; } } return OEMCrypto_SUCCESS; } OEMCryptoResult SessionContext::LoadEntitledContentKeys( size_t num_keys, const OEMCrypto_EntitledContentKeyObject* key_array) { if (!key_array) { return OEMCrypto_ERROR_UNKNOWN_FAILURE; } if (!session_keys_ || session_keys_->type() != OEMCrypto_EntitlementLicense) { return OEMCrypto_ERROR_INVALID_CONTEXT; } for (size_t i = 0; i < num_keys; ++i) { const OEMCrypto_EntitledContentKeyObject* key_data = &key_array[i]; std::vector entitlement_key_id; entitlement_key_id.assign( key_data->entitlement_key_id, key_data->entitlement_key_id + key_data->entitlement_key_id_length); const std::vector* entitlement_key = NULL; if (!session_keys_->GetEntitlementKey(entitlement_key_id, &entitlement_key)) { return OEMCrypto_KEY_NOT_ENTITLED; } std::vector content_key; std::vector iv; std::vector encrypted_content_key; std::vector content_key_id; iv.assign(key_data->content_key_data_iv, key_data->content_key_data_iv + 16); encrypted_content_key.assign( key_data->content_key_data, key_data->content_key_data + key_data->content_key_data_length); content_key_id.assign( key_data->content_key_id, key_data->content_key_id + key_data->content_key_id_length); if (!DecryptMessage(*entitlement_key, iv, encrypted_content_key, &content_key, 256 /* key size */)) { return OEMCrypto_ERROR_UNKNOWN_FAILURE; } if (!session_keys_->SetContentKey(entitlement_key_id, content_key_id, content_key)) { return OEMCrypto_ERROR_UNKNOWN_FAILURE; } } return OEMCrypto_SUCCESS; } OEMCryptoResult SessionContext::InstallKey( const KeyId& key_id, const std::vector& key_data, const std::vector& key_data_iv, const std::vector& key_control, const std::vector& key_control_iv, bool second_license) { // Decrypt encrypted key_data using derived encryption key and offered iv std::vector content_key; std::vector key_control_str; if (!DecryptMessage(encryption_key_, key_data_iv, key_data, &content_key, 128 /* key size */)) { LOGE("[Installkey(): Could not decrypt key data]"); return OEMCrypto_ERROR_UNKNOWN_FAILURE; } if (LogCategoryEnabled(kLoggingDumpContentKeys)) { LOGI((" InstallKey: key_id = " + wvcdm::b2a_hex(key_id)).c_str()); LOGI( (" InstallKey: content_key = " + wvcdm::b2a_hex(content_key)).c_str()); LOGI((" InstallKey: key_control = " + wvcdm::b2a_hex(key_control_str)) .c_str()); } // Key control must be supplied by license server if (key_control.empty()) { LOGE("[Installkey(): WARNING: No Key Control]"); return OEMCrypto_ERROR_INVALID_CONTEXT; } if (key_control_iv.empty()) { LOGE("[Installkey(): ERROR: No Key Control IV]"); return OEMCrypto_ERROR_INVALID_CONTEXT; } if (!DecryptMessage(content_key, key_control_iv, key_control, &key_control_str, 128 /* key size */)) { LOGE("[Installkey(): ERROR: Could not decrypt content key]"); return OEMCrypto_ERROR_UNKNOWN_FAILURE; } if (LogCategoryEnabled(kLoggingDumpKeyControlBlocks)) { LOGD("Key ID: %s", wvcdm::b2a_hex(key_id).c_str()); } KeyControlBlock key_control_block(key_control_str); if (!key_control_block.valid()) { LOGE("Error parsing key control."); return OEMCrypto_ERROR_INVALID_CONTEXT; } if ((key_control_block.control_bits() & wvoec::kControlRequireAntiRollbackHardware) && !ce_->config_is_anti_rollback_hw_present()) { LOGE("Anti-rollback hardware is required but hardware not present."); return OEMCrypto_ERROR_UNKNOWN_FAILURE; } uint8_t minimum_patch_level = (key_control_block.control_bits() & wvoec::kControlSecurityPatchLevelMask) >> wvoec::kControlSecurityPatchLevelShift; if (minimum_patch_level > OEMCrypto_Security_Patch_Level()) { LOGE("[InstallKey(): security patch level: %d. Minimum:%d]", OEMCrypto_Security_Patch_Level(), minimum_patch_level); return OEMCrypto_ERROR_UNKNOWN_FAILURE; } OEMCryptoResult result = CheckNonceOrEntry(key_control_block); if (result != OEMCrypto_SUCCESS) { LOGE("LoadKeys: Failed Nonce/PST check."); return result; } if (key_control_block.control_bits() & wvoec::kSharedLicense) { if (!second_license) { LOGE("LoadKeys: Shared License, but no keys previously loaded."); return OEMCrypto_ERROR_MISSING_MASTER; } } if (key_control_block.control_bits() & wvoec::kControlSRMVersionRequired) { if (srm_requirements_status_ == NoSRMVersion) { LOGE("[LoadKeys: control bit says SRM version required]"); return OEMCrypto_ERROR_INVALID_CONTEXT; } if (srm_requirements_status_ == InvalidSRMVersion) { // If the SRM version is too small, treat this key as local display only. key_control_block.RequireLocalDisplay(); } } Key key(content_key, key_control_block); if (!session_keys_) { return OEMCrypto_ERROR_INVALID_CONTEXT; } session_keys_->Insert(key_id, key); return OEMCrypto_SUCCESS; } bool SessionContext::InstallRSAEncryptedKey( const uint8_t* encrypted_message_key, size_t encrypted_message_key_length) { encryption_key_.resize(RSA_size(rsa_key())); int decrypted_size = RSA_private_decrypt( encrypted_message_key_length, encrypted_message_key, &encryption_key_[0], rsa_key(), RSA_PKCS1_OAEP_PADDING); if (-1 == decrypted_size) { LOGE("[RSADeriveKeys(): error decrypting session key.]"); dump_boringssl_error(); return false; } encryption_key_.resize(decrypted_size); if (decrypted_size != static_cast(wvoec::KEY_SIZE)) { LOGE("[RSADeriveKeys(): error. Session key is wrong size: %d.]", decrypted_size); dump_boringssl_error(); encryption_key_.clear(); return false; } return true; } OEMCryptoResult SessionContext::RefreshKey( const KeyId& key_id, const std::vector& key_control, const std::vector& key_control_iv) { if (!session_keys_) { return OEMCrypto_ERROR_INVALID_CONTEXT; } if (key_id.empty()) { // Key control is not encrypted if key id is NULL KeyControlBlock key_control_block(key_control); if (!key_control_block.valid()) { LOGE("Parse key control error."); return OEMCrypto_ERROR_INVALID_CONTEXT; } if ((key_control_block.control_bits() & wvoec::kControlNonceEnabled) && (!CheckNonce(key_control_block.nonce()))) { LOGE("KCB: BAD Nonce"); return OEMCrypto_ERROR_INVALID_NONCE; } // Apply duration to all keys in this session session_keys_->UpdateDuration(key_control_block); return OEMCrypto_SUCCESS; } Key* content_key = session_keys_->Find(key_id); if (NULL == content_key) { if (LogCategoryEnabled(kLoggingDumpKeyControlBlocks)) { LOGD("Error: no matching content key."); } return OEMCrypto_ERROR_UNKNOWN_FAILURE; } if (key_control.empty()) { if (LogCategoryEnabled(kLoggingDumpKeyControlBlocks)) { LOGD("Error: no key_control."); } return OEMCrypto_ERROR_UNKNOWN_FAILURE; } const std::vector content_key_value = content_key->value(); // Decrypt encrypted key control block std::vector control; if (key_control_iv.empty()) { if (LogCategoryEnabled(kLoggingDumpKeyControlBlocks)) { LOGD("Key control block is NOT encrypted."); } control = key_control; } else { if (LogCategoryEnabled(kLoggingDumpKeyControlBlocks)) { LOGD("Key control block is encrypted."); } if (!DecryptMessage(content_key_value, key_control_iv, key_control, &control, 128 /* key size */)) { if (LogCategoryEnabled(kLoggingDumpKeyControlBlocks)) { LOGD("Error decrypting key control block."); } return OEMCrypto_ERROR_UNKNOWN_FAILURE; } } KeyControlBlock key_control_block(control); if (!key_control_block.valid()) { if (LogCategoryEnabled(kLoggingDumpKeyControlBlocks)) { LOGD("Parse key control error."); } return OEMCrypto_ERROR_INVALID_CONTEXT; } if ((key_control_block.control_bits() & wvoec::kControlNonceEnabled) && (!CheckNonce(key_control_block.nonce()))) { LOGE("KCB: BAD Nonce"); return OEMCrypto_ERROR_INVALID_NONCE; } content_key->UpdateDuration(key_control_block); return OEMCrypto_SUCCESS; } bool SessionContext::DecryptRSAKey(const uint8_t* enc_rsa_key, size_t enc_rsa_key_length, const uint8_t* enc_rsa_key_iv, uint8_t* pkcs8_rsa_key) { // Decrypt rsa key with keybox. uint8_t iv_buffer[wvoec::KEY_IV_SIZE]; memcpy(iv_buffer, enc_rsa_key_iv, wvoec::KEY_IV_SIZE); AES_KEY aes_key; AES_set_decrypt_key(&encryption_key_[0], 128, &aes_key); AES_cbc_encrypt(enc_rsa_key, pkcs8_rsa_key, enc_rsa_key_length, &aes_key, iv_buffer, AES_DECRYPT); return true; } bool SessionContext::EncryptRSAKey(const uint8_t* pkcs8_rsa_key, size_t enc_rsa_key_length, const uint8_t* enc_rsa_key_iv, uint8_t* enc_rsa_key) { // Encrypt rsa key with keybox. uint8_t iv_buffer[wvoec::KEY_IV_SIZE]; memcpy(iv_buffer, enc_rsa_key_iv, wvoec::KEY_IV_SIZE); AES_KEY aes_key; AES_set_encrypt_key(&encryption_key_[0], 128, &aes_key); AES_cbc_encrypt(pkcs8_rsa_key, enc_rsa_key, enc_rsa_key_length, &aes_key, iv_buffer, AES_ENCRYPT); return true; } bool SessionContext::LoadRSAKey(const uint8_t* pkcs8_rsa_key, size_t rsa_key_length) { rsa_key_.reset(); if (rsa_key_length < 8) { LOGE("[LoadRSAKey(): Very Short Buffer]"); return false; } if ((memcmp(pkcs8_rsa_key, "SIGN", 4) == 0)) { uint32_t schemes_n; memcpy((uint8_t*)&schemes_n, pkcs8_rsa_key + 4, sizeof(uint32_t)); allowed_schemes_ = htonl(schemes_n); pkcs8_rsa_key += 8; rsa_key_length -= 8; } else { allowed_schemes_ = kSign_RSASSA_PSS; } return rsa_key_.LoadPkcs8RsaKey(pkcs8_rsa_key, rsa_key_length); } OEMCryptoResult SessionContext::CheckKeyUse(const std::string& log_string, uint32_t use_type, OEMCryptoBufferType buffer_type) { const KeyControlBlock& control = current_content_key()->control(); if (use_type && (!(control.control_bits() & use_type))) { LOGE("[%s(): control bit says not allowed.", log_string.c_str()); return OEMCrypto_ERROR_UNKNOWN_FAILURE; } if (control.control_bits() & wvoec::kControlDataPathSecure) { if (!ce_->config_closed_platform() && buffer_type == OEMCrypto_BufferType_Clear) { LOGE("[%s(): Secure key with insecure buffer]", log_string.c_str()); return OEMCrypto_ERROR_DECRYPT_FAILED; } } if (control.control_bits() & wvoec::kControlReplayMask) { if (!CheckUsageEntry()) { LOGE("[%s(): usage entry not valid]", log_string.c_str()); return OEMCrypto_ERROR_UNKNOWN_FAILURE; } } if (control.duration() > 0) { if (control.duration() < CurrentTimer()) { LOGE("[%s(): key expired.", log_string.c_str()); return OEMCrypto_ERROR_KEY_EXPIRED; } } if (!ce_->config_local_display_only()) { // Only look at HDCP and Analog restrictions if the display can be // non-local. if (control.control_bits() & wvoec::kControlHDCPRequired) { uint8_t required_hdcp = (control.control_bits() & wvoec::kControlHDCPVersionMask) >> wvoec::kControlHDCPVersionShift; if (ce_->srm_blacklisted_device_attached()) { required_hdcp = HDCP_NO_DIGITAL_OUTPUT; } // For reference implementation, we pretend we can handle the current // HDCP version. if (required_hdcp > ce_->config_current_hdcp_capability() || ce_->config_current_hdcp_capability() == 0) { return OEMCrypto_ERROR_INSUFFICIENT_HDCP; } } } if (!ce_->config_local_display_only() || buffer_type == OEMCrypto_BufferType_Clear) { if (control.control_bits() & wvoec::kControlDisableAnalogOutput) { LOGE("[%s(): control bit says disable analog.", log_string.c_str()); return OEMCrypto_ERROR_ANALOG_OUTPUT; } } return OEMCrypto_SUCCESS; } OEMCryptoResult SessionContext::Generic_Encrypt(const uint8_t* in_buffer, size_t buffer_length, const uint8_t* iv, OEMCrypto_Algorithm algorithm, uint8_t* out_buffer) { // Check there is a content key if (current_content_key() == NULL) { LOGE("[Generic_Encrypt(): OEMCrypto_ERROR_NO_CONTENT_KEY]"); return OEMCrypto_ERROR_NO_CONTENT_KEY; } const std::vector& key = current_content_key()->value(); // Set the AES key. if (static_cast(key.size()) != AES_BLOCK_SIZE) { LOGE("[Generic_Encrypt(): CONTENT_KEY has wrong size: %d", key.size()); return OEMCrypto_ERROR_UNKNOWN_FAILURE; } OEMCryptoResult result = CheckKeyUse("Generic_Encrypt", wvoec::kControlAllowEncrypt, OEMCrypto_BufferType_Clear); if (result != OEMCrypto_SUCCESS) return result; if (algorithm != OEMCrypto_AES_CBC_128_NO_PADDING) { LOGE("[Generic_Encrypt(): algorithm bad."); return OEMCrypto_ERROR_UNKNOWN_FAILURE; } if (buffer_length % AES_BLOCK_SIZE != 0) { LOGE("[Generic_Encrypt(): buffers size bad."); return OEMCrypto_ERROR_UNKNOWN_FAILURE; } const uint8_t* key_u8 = &key[0]; AES_KEY aes_key; if (AES_set_encrypt_key(key_u8, AES_BLOCK_SIZE * 8, &aes_key) != 0) { LOGE("[Generic_Encrypt(): FAILURE]"); return OEMCrypto_ERROR_UNKNOWN_FAILURE; } uint8_t iv_buffer[wvoec::KEY_IV_SIZE]; memcpy(iv_buffer, iv, wvoec::KEY_IV_SIZE); AES_cbc_encrypt(in_buffer, out_buffer, buffer_length, &aes_key, iv_buffer, AES_ENCRYPT); return OEMCrypto_SUCCESS; } OEMCryptoResult SessionContext::Generic_Decrypt(const uint8_t* in_buffer, size_t buffer_length, const uint8_t* iv, OEMCrypto_Algorithm algorithm, uint8_t* out_buffer) { // Check there is a content key if (current_content_key() == NULL) { LOGE("[Generic_Decrypt(): OEMCrypto_ERROR_NO_CONTENT_KEY]"); return OEMCrypto_ERROR_NO_CONTENT_KEY; } const std::vector& key = current_content_key()->value(); // Set the AES key. if (static_cast(key.size()) != AES_BLOCK_SIZE) { LOGE("[Generic_Decrypt(): CONTENT_KEY has wrong size."); return OEMCrypto_ERROR_UNKNOWN_FAILURE; } OEMCryptoResult result = CheckKeyUse("Generic_Decrypt", wvoec::kControlAllowDecrypt, OEMCrypto_BufferType_Clear); if (result != OEMCrypto_SUCCESS) return result; if (algorithm != OEMCrypto_AES_CBC_128_NO_PADDING) { LOGE("[Generic_Decrypt(): bad algorithm."); return OEMCrypto_ERROR_UNKNOWN_FAILURE; } if (buffer_length % AES_BLOCK_SIZE != 0) { LOGE("[Generic_Decrypt(): bad buffer size."); return OEMCrypto_ERROR_UNKNOWN_FAILURE; } const uint8_t* key_u8 = &key[0]; AES_KEY aes_key; if (AES_set_decrypt_key(key_u8, AES_BLOCK_SIZE * 8, &aes_key) != 0) { LOGE("[Generic_Decrypt(): FAILURE]"); return OEMCrypto_ERROR_UNKNOWN_FAILURE; } uint8_t iv_buffer[wvoec::KEY_IV_SIZE]; memcpy(iv_buffer, iv, wvoec::KEY_IV_SIZE); AES_cbc_encrypt(in_buffer, out_buffer, buffer_length, &aes_key, iv_buffer, AES_DECRYPT); return OEMCrypto_SUCCESS; } OEMCryptoResult SessionContext::Generic_Sign(const uint8_t* in_buffer, size_t buffer_length, OEMCrypto_Algorithm algorithm, uint8_t* signature, size_t* signature_length) { // Check there is a content key if (current_content_key() == NULL) { LOGE("[Generic_Sign(): OEMCrypto_ERROR_NO_CONTENT_KEY]"); return OEMCrypto_ERROR_NO_CONTENT_KEY; } if (*signature_length < SHA256_DIGEST_LENGTH) { *signature_length = SHA256_DIGEST_LENGTH; LOGE("[Generic_Sign(): bad signature length."); return OEMCrypto_ERROR_UNKNOWN_FAILURE; } const std::vector& key = current_content_key()->value(); if (static_cast(key.size()) != SHA256_DIGEST_LENGTH) { LOGE("[Generic_Sign(): CONTENT_KEY has wrong size; %d", key.size()); return OEMCrypto_ERROR_UNKNOWN_FAILURE; } OEMCryptoResult result = CheckKeyUse("Generic_Sign", wvoec::kControlAllowSign, OEMCrypto_BufferType_Clear); if (result != OEMCrypto_SUCCESS) return result; if (algorithm != OEMCrypto_HMAC_SHA256) { LOGE("[Generic_Sign(): bad algorithm."); return OEMCrypto_ERROR_UNKNOWN_FAILURE; } unsigned int md_len = *signature_length; if (HMAC(EVP_sha256(), &key[0], key.size(), in_buffer, buffer_length, signature, &md_len)) { *signature_length = md_len; return OEMCrypto_SUCCESS; } LOGE("[Generic_Sign(): hmac failed."); dump_boringssl_error(); return OEMCrypto_ERROR_UNKNOWN_FAILURE; } OEMCryptoResult SessionContext::Generic_Verify(const uint8_t* in_buffer, size_t buffer_length, OEMCrypto_Algorithm algorithm, const uint8_t* signature, size_t signature_length) { // Check there is a content key if (current_content_key() == NULL) { LOGE("[Decrypt_Verify(): OEMCrypto_ERROR_NO_CONTENT_KEY]"); return OEMCrypto_ERROR_UNKNOWN_FAILURE; } if (signature_length < SHA256_DIGEST_LENGTH) { return OEMCrypto_ERROR_UNKNOWN_FAILURE; } const std::vector& key = current_content_key()->value(); if (static_cast(key.size()) != SHA256_DIGEST_LENGTH) { LOGE("[Generic_Verify(): CONTENT_KEY has wrong size: %d", key.size()); return OEMCrypto_ERROR_UNKNOWN_FAILURE; } OEMCryptoResult result = CheckKeyUse("Generic_Verify", wvoec::kControlAllowVerify, OEMCrypto_BufferType_Clear); if (result != OEMCrypto_SUCCESS) return result; if (algorithm != OEMCrypto_HMAC_SHA256) { LOGE("[Generic_Verify(): bad algorithm."); return OEMCrypto_ERROR_UNKNOWN_FAILURE; } unsigned int md_len = signature_length; uint8_t computed_signature[SHA256_DIGEST_LENGTH]; if (HMAC(EVP_sha256(), &key[0], key.size(), in_buffer, buffer_length, computed_signature, &md_len)) { if (0 == memcmp(signature, computed_signature, SHA256_DIGEST_LENGTH)) { return OEMCrypto_SUCCESS; } else { return OEMCrypto_ERROR_SIGNATURE_FAILURE; } } LOGE("[Generic_Verify(): HMAC failed."); dump_boringssl_error(); return OEMCrypto_ERROR_UNKNOWN_FAILURE; } bool SessionContext::UpdateMacKeys(const std::vector& enc_mac_keys, const std::vector& iv) { // Decrypt mac key from enc_mac_key using device_keya std::vector mac_keys; if (!DecryptMessage(encryption_key_, iv, enc_mac_keys, &mac_keys, 128 /* key size */)) { return false; } mac_key_server_ = std::vector( mac_keys.begin(), mac_keys.begin() + wvoec::MAC_KEY_SIZE); mac_key_client_ = std::vector(mac_keys.begin() + wvoec::MAC_KEY_SIZE, mac_keys.end()); if (LogCategoryEnabled(kLoggingDumpDerivedKeys)) { LOGI(("mac_key_client_ has been updated to = " + wvcdm::b2a_hex(mac_key_client_)).c_str()); } return true; } bool SessionContext::QueryKeyControlBlock(const KeyId& key_id, uint32_t* data) { if (!session_keys_) { return false; } const Key* content_key = session_keys_->Find(key_id); if (LogCategoryEnabled(kLoggingTraceDecryption)) { LOGI(("Select Key: key_id = " + wvcdm::b2a_hex(key_id)).c_str()); if (content_key) { LOGI(("Select Key: key = " + wvcdm::b2a_hex(content_key->value())) .c_str()); } else { LOGI("Select Key: key = null."); } } if (NULL == content_key) { LOGE("[QueryKeyControlBlock(): No key matches key id]"); return false; } data[0] = 0; // verification optional. data[1] = htonl(content_key->control().duration()); data[2] = 0; // nonce optional. data[3] = htonl(content_key->control().control_bits()); return true; } OEMCryptoResult SessionContext::SelectContentKey( const KeyId& key_id, OEMCryptoCipherMode cipher_mode) { if (LogCategoryEnabled(kLoggingTraceDecryption)) { LOGI(" Select Key: key_id = %s", wvcdm::b2a_hex(key_id).c_str()); LOGI(" Select Key: cipher_mode = %s", (cipher_mode == OEMCrypto_CipherMode_CTR) ? "CTR" : "CBC"); } if (!session_keys_) { LOGE("Select Key: no session keys."); return OEMCrypto_ERROR_INVALID_CONTEXT; } Key* content_key = session_keys_->Find(key_id); if (NULL == content_key) { LOGE("No key matches key id"); return OEMCrypto_KEY_NOT_LOADED; } if (LogCategoryEnabled(kLoggingTraceDecryption)) { LOGI((" Select Key: key = " + wvcdm::b2a_hex(content_key->value())) .c_str()); } content_key->set_ctr_mode(cipher_mode == OEMCrypto_CipherMode_CTR); current_content_key_ = content_key; const KeyControlBlock& control = current_content_key()->control(); if (control.duration() > 0) { if (control.duration() < CurrentTimer()) { LOGE("[SelectContentKey(): KEY_EXPIRED %d versus %d]", control.duration(), CurrentTimer()); return OEMCrypto_ERROR_KEY_EXPIRED; } } return OEMCrypto_SUCCESS; } void SessionContext::AddNonce(uint32_t nonce) { nonce_table_.AddNonce(nonce); } bool SessionContext::CheckNonce(uint32_t nonce) { return nonce_table_.CheckNonce(nonce); } void SessionContext::FlushNonces() { nonce_table_.Flush(); } bool SessionContext::CheckUsageEntry() { if (!usage_entry_) return false; return usage_entry_->CheckForUse(); } OEMCryptoResult SessionContext::CreateNewUsageEntry( uint32_t* usage_entry_number) { OEMCryptoResult result = ce_->usage_table().CreateNewUsageEntry( this, &usage_entry_, usage_entry_number); if (usage_entry_) { usage_entry_status_ = kUsageEntryNew; } return result; } OEMCryptoResult SessionContext::LoadUsageEntry( uint32_t index, const std::vector& buffer) { OEMCryptoResult result = ce_->usage_table().LoadUsageEntry(this, &usage_entry_, index, buffer); if (usage_entry_) { usage_entry_status_ = kUsageEntryLoaded; // Copy the mac keys to the current session. mac_key_server_ = std::vector( usage_entry_->mac_key_server(), usage_entry_->mac_key_server() + wvoec::MAC_KEY_SIZE); mac_key_client_ = std::vector( usage_entry_->mac_key_client(), usage_entry_->mac_key_client() + wvoec::MAC_KEY_SIZE); if (LogCategoryEnabled(kLoggingDumpDerivedKeys)) { LOGI(("mac_key_client_ has been updated to = " + wvcdm::b2a_hex(mac_key_client_)).c_str()); } } return result; } OEMCryptoResult SessionContext::UpdateUsageEntry(uint8_t* header_buffer, size_t* header_buffer_length, uint8_t* entry_buffer, size_t* entry_buffer_length) { if (!usage_entry_) { LOGE("UpdateUsageEntry: Session has no entry."); return OEMCrypto_ERROR_INVALID_CONTEXT; } return ce_->usage_table().UpdateUsageEntry(this, usage_entry_, header_buffer, header_buffer_length, entry_buffer, entry_buffer_length); } OEMCryptoResult SessionContext::DeactivateUsageEntry( const std::vector& pst) { if (!usage_entry_) return OEMCrypto_ERROR_INVALID_CONTEXT; usage_entry_->Deactivate(pst); return OEMCrypto_SUCCESS; } OEMCryptoResult SessionContext::ReportUsage(const std::vector& pst, uint8_t* buffer, size_t* buffer_length) { if (!usage_entry_) return OEMCrypto_ERROR_INVALID_CONTEXT; return usage_entry_->ReportUsage(pst, buffer, buffer_length); } OEMCryptoResult SessionContext::MoveEntry(uint32_t new_index) { if (!usage_entry_) return OEMCrypto_ERROR_INVALID_CONTEXT; return ce_->usage_table().MoveEntry(usage_entry_, new_index); } OEMCryptoResult SessionContext::CopyOldUsageEntry( const std::vector& pst) { if (!usage_entry_) return OEMCrypto_ERROR_INVALID_CONTEXT; return usage_entry_->CopyOldUsageEntry(pst); } // Internal utility function to decrypt the message bool SessionContext::DecryptMessage(const std::vector& key, const std::vector& iv, const std::vector& message, std::vector* decrypted, uint32_t key_size) { if (key.empty() || iv.empty() || message.empty() || !decrypted) { LOGE("[DecryptMessage(): OEMCrypto_ERROR_INVALID_CONTEXT]"); return false; } decrypted->resize(message.size()); uint8_t iv_buffer[16]; memcpy(iv_buffer, &iv[0], 16); AES_KEY aes_key; AES_set_decrypt_key(&key[0], key_size, &aes_key); AES_cbc_encrypt(&message[0], &(decrypted->front()), message.size(), &aes_key, iv_buffer, AES_DECRYPT); return true; } OEMCryptoResult SessionContext::DecryptCENC( const uint8_t* iv, size_t block_offset, const OEMCrypto_CENCEncryptPatternDesc* pattern, const uint8_t* cipher_data, size_t cipher_data_length, bool is_encrypted, uint8_t* clear_data, OEMCryptoBufferType buffer_type) { // If the data is clear, we do not need a current key selected. if (!is_encrypted) { if (buffer_type != OEMCrypto_BufferType_Direct) { memmove(reinterpret_cast(clear_data), cipher_data, cipher_data_length); return OEMCrypto_SUCCESS; } // For reference implementation, we quietly drop the clear direct video. return OEMCrypto_SUCCESS; } // Check there is a content key if (current_content_key() == NULL) { LOGE("[DecryptCTR(): OEMCrypto_ERROR_NO_CONTENT_KEY]"); return OEMCrypto_ERROR_DECRYPT_FAILED; } OEMCryptoResult result = CheckKeyUse("DecryptCENC", 0, buffer_type); if (result != OEMCrypto_SUCCESS) return result; const std::vector& content_key = current_content_key()->value(); // Set the AES key. if (static_cast(content_key.size()) != AES_BLOCK_SIZE) { LOGE("[DecryptCTR(): CONTENT_KEY has wrong size: %d", content_key.size()); return OEMCrypto_ERROR_DECRYPT_FAILED; } const uint8_t* key_u8 = &content_key[0]; if (buffer_type == OEMCrypto_BufferType_Direct) { // For reference implementation, we quietly drop the decrypted direct video. return OEMCrypto_SUCCESS; } if (!current_content_key()->ctr_mode()) { if (block_offset > 0) return OEMCrypto_ERROR_INVALID_CONTEXT; return DecryptCBC(key_u8, iv, pattern, cipher_data, cipher_data_length, clear_data); } if (pattern->skip > 0) { return PatternDecryptCTR(key_u8, iv, block_offset, pattern, cipher_data, cipher_data_length, clear_data); } return DecryptCTR(key_u8, iv, block_offset, cipher_data, cipher_data_length, clear_data); } OEMCryptoResult SessionContext::DecryptCBC( const uint8_t* key, const uint8_t* initial_iv, const OEMCrypto_CENCEncryptPatternDesc* pattern, const uint8_t* cipher_data, size_t cipher_data_length, uint8_t* clear_data) { AES_KEY aes_key; AES_set_decrypt_key(&key[0], AES_BLOCK_SIZE * 8, &aes_key); uint8_t iv[AES_BLOCK_SIZE]; uint8_t next_iv[AES_BLOCK_SIZE]; memcpy(iv, &initial_iv[0], AES_BLOCK_SIZE); size_t l = 0; size_t pattern_offset = pattern->offset; while (l < cipher_data_length) { size_t size = std::min(cipher_data_length - l, static_cast(AES_BLOCK_SIZE)); size_t pattern_length = pattern->encrypt + pattern->skip; bool skip_block = (pattern_offset >= pattern->encrypt) && (pattern_length > 0); if (pattern_length > 0) { pattern_offset = (pattern_offset + 1) % pattern_length; } if (skip_block || (size < AES_BLOCK_SIZE)) { memmove(&clear_data[l], &cipher_data[l], size); } else { uint8_t aes_output[AES_BLOCK_SIZE]; // Save the iv for the next block, in case cipher_data is in the same // buffer as clear_data. memcpy(next_iv, &cipher_data[l], AES_BLOCK_SIZE); AES_decrypt(&cipher_data[l], aes_output, &aes_key); for (size_t n = 0; n < AES_BLOCK_SIZE; n++) { clear_data[l + n] = aes_output[n] ^ iv[n]; } memcpy(iv, next_iv, AES_BLOCK_SIZE); } l += size; } return OEMCrypto_SUCCESS; } OEMCryptoResult SessionContext::PatternDecryptCTR( const uint8_t* key, const uint8_t* initial_iv, size_t block_offset, const OEMCrypto_CENCEncryptPatternDesc* pattern, const uint8_t* cipher_data, size_t cipher_data_length, uint8_t* clear_data) { AES_KEY aes_key; AES_set_encrypt_key(&key[0], AES_BLOCK_SIZE * 8, &aes_key); uint8_t iv[AES_BLOCK_SIZE]; memcpy(iv, &initial_iv[0], AES_BLOCK_SIZE); size_t l = 0; size_t pattern_offset = pattern->offset; while (l < cipher_data_length) { size_t size = std::min(cipher_data_length - l, AES_BLOCK_SIZE - block_offset); size_t pattern_length = pattern->encrypt + pattern->skip; bool skip_block = (pattern_offset >= pattern->encrypt) && (pattern_length > 0); if (pattern_length > 0) { pattern_offset = (pattern_offset + 1) % pattern_length; } if (skip_block) { memmove(&clear_data[l], &cipher_data[l], size); } else { uint8_t aes_output[AES_BLOCK_SIZE]; AES_encrypt(iv, aes_output, &aes_key); for (size_t n = 0; n < size; n++) { clear_data[l + n] = aes_output[n + block_offset] ^ cipher_data[l + n]; } ctr128_inc64(iv); } l += size; block_offset = 0; } return OEMCrypto_SUCCESS; } // This is a special case of PatternDecryptCTR with no skip pattern. It uses // more optimized versions of openssl's implementation of AES CTR mode. OEMCryptoResult SessionContext::DecryptCTR(const uint8_t* key_u8, const uint8_t* iv, size_t block_offset, const uint8_t* cipher_data, size_t cipher_data_length, uint8_t* clear_data) { // Local copy (will be modified). // Allocated as 64-bit ints to enforce 64-bit alignment for later access as a // 64-bit value. uint64_t aes_iv[2]; assert(sizeof(aes_iv) == AES_BLOCK_SIZE); // The double-cast is needed to comply with strict aliasing rules. uint8_t* aes_iv_u8 = reinterpret_cast(reinterpret_cast(aes_iv)); memcpy(aes_iv_u8, &iv[0], AES_BLOCK_SIZE); // The CENC spec specifies we increment only the low 64 bits of the IV // counter, and leave the high 64 bits alone. This is different from the // OpenSSL implementation, which increments the entire 128 bit iv. That is // why we implement the CTR loop ourselves. size_t l = 0; if (block_offset > 0 && l < cipher_data_length) { // Encrypt the IV. uint8_t ecount_buf[AES_BLOCK_SIZE]; AES_KEY aes_key; if (AES_set_encrypt_key(key_u8, AES_BLOCK_SIZE * 8, &aes_key) != 0) { LOGE("[DecryptCTR(): FAILURE]"); return OEMCrypto_ERROR_DECRYPT_FAILED; } AES_encrypt(aes_iv_u8, ecount_buf, &aes_key); for (int n = block_offset; n < AES_BLOCK_SIZE && l < cipher_data_length; ++n, ++l) { clear_data[l] = cipher_data[l] ^ ecount_buf[n]; } ctr128_inc64(aes_iv_u8); block_offset = 0; } uint64_t remaining = cipher_data_length - l; int out_len = 0; while (remaining) { EVP_CIPHER_CTX* evp_cipher_ctx = EVP_CIPHER_CTX_new(); EVP_CIPHER_CTX_set_padding(evp_cipher_ctx, 0); if (!EVP_DecryptInit_ex(evp_cipher_ctx, EVP_aes_128_ctr(), NULL, key_u8, aes_iv_u8)) { LOGE("[DecryptCTR(): EVP_INIT ERROR]"); EVP_CIPHER_CTX_free(evp_cipher_ctx); return OEMCrypto_ERROR_DECRYPT_FAILED; } // Test the MSB of the counter portion of the initialization vector. If the // value is 0xFF the counter is near wrapping. In this case we calculate // the number of bytes we can safely decrypt before the counter wraps. uint64_t decrypt_length = 0; if (aes_iv_u8[8] == 0xFF) { uint64_t bottom_64_bits = wvcdm::ntohll64(aes_iv[1]); uint64_t bytes_before_iv_wrap = (~bottom_64_bits + 1) * AES_BLOCK_SIZE; decrypt_length = bytes_before_iv_wrap < remaining ? bytes_before_iv_wrap : remaining; } else { decrypt_length = remaining; } if (!EVP_DecryptUpdate(evp_cipher_ctx, &clear_data[l], &out_len, &cipher_data[l], decrypt_length)) { LOGE("[DecryptCTR(): EVP_UPDATE_ERROR]"); EVP_CIPHER_CTX_free(evp_cipher_ctx); return OEMCrypto_ERROR_DECRYPT_FAILED; } l += decrypt_length; remaining = cipher_data_length - l; int final; if (!EVP_DecryptFinal_ex(evp_cipher_ctx, &clear_data[cipher_data_length - remaining], &final)) { LOGE("[DecryptCTR(): EVP_FINAL_ERROR]"); EVP_CIPHER_CTX_free(evp_cipher_ctx); return OEMCrypto_ERROR_DECRYPT_FAILED; } EVP_CIPHER_CTX_free(evp_cipher_ctx); // If remaining is not zero, reset the iv before the second pass. if (remaining) { memcpy(aes_iv_u8, &iv[0], AES_BLOCK_SIZE); memset(&aes_iv_u8[8], 0, AES_BLOCK_SIZE / 2); } } return OEMCrypto_SUCCESS; } } // namespace wvoec_ref