// Copyright 2023 Google LLC. All Rights Reserved. This file and proprietary // source code may only be used and distributed under the Widevine // License Agreement. // #include "oemcrypto_provisioning_test.h" #include "log.h" #include "oemcrypto_basic_test.h" #include "oemcrypto_resource_test.h" #include "oemcrypto_session_tests_helper.h" #include "platform.h" namespace wvoec { /// @addtogroup provision /// @{ // This test is used to print the device ID to stdout. TEST_F(OEMCryptoKeyboxTest, NormalGetDeviceId) { OEMCryptoResult sts; uint8_t dev_id[128] = {0}; size_t dev_id_len = 128; sts = OEMCrypto_GetDeviceID(dev_id, &dev_id_len); ASSERT_EQ(OEMCrypto_SUCCESS, sts); cout << " NormalGetDeviceId: dev_id = " << MaybeHex(dev_id, dev_id_len) << " len = " << dev_id_len << endl; } TEST_F(OEMCryptoKeyboxTest, GetDeviceIdShortBuffer) { OEMCryptoResult sts; uint8_t dev_id[128]; for (int i = 0; i < 128; ++i) { dev_id[i] = 0x55; } dev_id[127] = '\0'; size_t dev_id_len = 0; sts = OEMCrypto_GetDeviceID(dev_id, &dev_id_len); ASSERT_EQ(OEMCrypto_ERROR_SHORT_BUFFER, sts); // On short buffer error, function should return minimum buffer length ASSERT_GT(dev_id_len, 0u); // Should also return short buffer if passed a zero length and a null buffer. dev_id_len = 0; sts = OEMCrypto_GetDeviceID(nullptr, &dev_id_len); ASSERT_EQ(OEMCrypto_ERROR_SHORT_BUFFER, sts); // On short buffer error, function should return minimum buffer length ASSERT_GT(dev_id_len, 0u); } TEST_F(OEMCryptoKeyboxTest, NormalGetKeyData) { OEMCryptoResult sts; uint8_t key_data[256]; size_t key_data_len = sizeof(key_data); sts = OEMCrypto_GetKeyData(key_data, &key_data_len); uint32_t* data = reinterpret_cast(key_data); printf(" NormalGetKeyData: system_id = %u = 0x%04X, version=%u\n", htonl(data[1]), htonl(data[1]), htonl(data[0])); ASSERT_EQ(OEMCrypto_SUCCESS, sts); } TEST_F(OEMCryptoKeyboxTest, GetKeyDataNullPointer) { OEMCryptoResult sts; uint8_t key_data[256]; sts = OEMCrypto_GetKeyData(key_data, nullptr); ASSERT_NE(OEMCrypto_SUCCESS, sts); } // This test makes sure the installed keybox is valid. It doesn't really check // that it is a production keybox. That must be done by an integration test. TEST_F(OEMCryptoKeyboxTest, ProductionKeyboxValid) { ASSERT_EQ(OEMCrypto_SUCCESS, OEMCrypto_IsKeyboxValid()); } // This tests GenerateDerivedKeys with an 8k context. TEST_F(OEMCryptoKeyboxTest, GenerateDerivedKeysFromKeyboxLargeBuffer) { Session s; ASSERT_NO_FATAL_FAILURE(s.open()); const size_t max_size = GetResourceValue(kLargeMessageSize); vector mac_context(max_size); vector enc_context(max_size); // Stripe the data so the two vectors are not identical, and not all zeroes. for (size_t i = 0; i < max_size; i++) { mac_context[i] = i % 0x100; enc_context[i] = (3 * i) % 0x100; } ASSERT_EQ(OEMCrypto_SUCCESS, OEMCrypto_GenerateDerivedKeys( s.session_id(), mac_context.data(), mac_context.size(), enc_context.data(), enc_context.size())); } // This verifies that the device really does claim to have a certificate. // It should be filtered out for devices that have a keybox. TEST_F(OEMCryptoProv30Test, DeviceClaimsOEMCertificate) { ASSERT_EQ(OEMCrypto_OEMCertificate, OEMCrypto_GetProvisioningMethod()); } TEST_F(OEMCryptoProv30Test, GetDeviceId) { OEMCryptoResult sts; std::vector dev_id(128, 0); size_t dev_id_len = dev_id.size(); sts = OEMCrypto_GetDeviceID(dev_id.data(), &dev_id_len); if (sts == OEMCrypto_ERROR_SHORT_BUFFER) { ASSERT_GT(dev_id_len, 0u); dev_id.resize(dev_id_len); sts = OEMCrypto_GetDeviceID(dev_id.data(), &dev_id_len); } ASSERT_EQ(OEMCrypto_SUCCESS, sts); dev_id.resize(dev_id_len); cout << " NormalGetDeviceId: dev_id = " << MaybeHex(dev_id) << " len = " << dev_id_len << endl; } // The OEM certificate must be valid. TEST_F(OEMCryptoProv30Test, CertValidAPI15) { ASSERT_EQ(OEMCrypto_SUCCESS, OEMCrypto_IsKeyboxOrOEMCertValid()); } TEST_F(OEMCryptoProv30Test, OEMCertValid) { Session s; ASSERT_NO_FATAL_FAILURE(s.open()); bool kVerify = true; ASSERT_NO_FATAL_FAILURE(s.LoadOEMCert(kVerify)); // Load and verify. } // This verifies that the OEM Certificate cannot be used for other RSA padding // schemes. Those schemes should only be used by cast receiver certificates. TEST_F(OEMCryptoProv30Test, OEMCertForbiddenPaddingScheme) { Session s; ASSERT_NO_FATAL_FAILURE(s.open()); ASSERT_NO_FATAL_FAILURE(s.LoadOEMCert()); OEMCryptoResult sts; // Sign a Message vector data(500); GetRandBytes(data.data(), data.size()); size_t signature_length = 0; // We need a size one vector to pass as a pointer. vector signature(1, 0); vector zero(1, 0); sts = OEMCrypto_GenerateRSASignature(s.session_id(), data.data(), data.size(), signature.data(), &signature_length, kSign_PKCS1_Block1); if (OEMCrypto_ERROR_SHORT_BUFFER == sts) { // The OEMCrypto could complain about buffer length first, so let's // resize and check if it's writing to the signature again. signature.resize(signature_length, 0); zero.resize(signature_length, 0); sts = OEMCrypto_GenerateRSASignature(s.session_id(), data.data(), data.size(), signature.data(), &signature_length, kSign_PKCS1_Block1); } EXPECT_NE(OEMCrypto_SUCCESS, sts) << "OEM Cert Signed with forbidden kSign_PKCS1_Block1."; ASSERT_EQ(zero, signature); // signature should not be computed. } // Calling OEMCrypto_GetOEMPublicCertificate should not change the session's // private key. TEST_F(OEMCryptoProv30Test, GetCertOnlyAPI16) { if (wrapped_drm_key_.size() == 0) { // If we don't have a wrapped key yet, create one. // This wrapped key will be shared by all sessions in the test. ASSERT_NO_FATAL_FAILURE(CreateWrappedDRMKey()); } Session s; ASSERT_NO_FATAL_FAILURE(s.open()); // Install the DRM Cert's RSA key. ASSERT_NO_FATAL_FAILURE(s.LoadWrappedRsaDrmKey(wrapped_drm_key_)); ASSERT_NO_FATAL_FAILURE(s.SetTestRsaPublicKey()); // Request the OEM Cert. -- This should NOT load the OEM Private key. vector public_cert; size_t public_cert_length = 0; ASSERT_EQ(OEMCrypto_ERROR_SHORT_BUFFER, OEMCrypto_GetOEMPublicCertificate(nullptr, &public_cert_length)); ASSERT_LT(0u, public_cert_length); public_cert.resize(public_cert_length); ASSERT_EQ(OEMCrypto_SUCCESS, OEMCrypto_GetOEMPublicCertificate( public_cert.data(), &public_cert_length)); // Derive keys from the session key -- this should use the DRM Cert's key. // It should NOT use the OEM Private key because that key should not have // been loaded. ASSERT_NO_FATAL_FAILURE(s.GenerateDerivedKeysFromSessionKey()); // Now fill a message and try to load it. LicenseRoundTrip license_messages(&s); license_messages.set_control(0); ASSERT_NO_FATAL_FAILURE(license_messages.SignAndVerifyRequest()); ASSERT_NO_FATAL_FAILURE(license_messages.CreateDefaultResponse()); ASSERT_NO_FATAL_FAILURE(license_messages.EncryptAndSignResponse()); ASSERT_EQ(OEMCrypto_SUCCESS, license_messages.LoadResponse()); } // This verifies that the device really does claim to have BCC. // It should be filtered out for devices that have a keybox or factory OEM // cert. TEST_F(OEMCryptoProv40Test, DeviceClaimsBootCertificateChain) { ASSERT_EQ(OEMCrypto_GetProvisioningMethod(), OEMCrypto_BootCertificateChain); } // Verifies that short buffer error returns when the buffer is short. TEST_F(OEMCryptoProv40Test, GetBootCertificateChainShortBuffer) { std::vector bcc; size_t bcc_size = 0; std::vector additional_signature; size_t additional_signature_size = 0; ASSERT_EQ(OEMCrypto_GetBootCertificateChain(bcc.data(), &bcc_size, additional_signature.data(), &additional_signature_size), OEMCrypto_ERROR_SHORT_BUFFER); ASSERT_NE(bcc_size, 0uL); } // Verifies BCC can be successfully returned. TEST_F(OEMCryptoProv40Test, GetBootCertificateChainSuccess) { std::vector bcc; size_t bcc_size = 0; std::vector additional_signature; size_t additional_signature_size = 0; ASSERT_EQ(OEMCrypto_GetBootCertificateChain(bcc.data(), &bcc_size, additional_signature.data(), &additional_signature_size), OEMCrypto_ERROR_SHORT_BUFFER); bcc.resize(bcc_size); additional_signature.resize(additional_signature_size); ASSERT_EQ(OEMCrypto_GetBootCertificateChain(bcc.data(), &bcc_size, additional_signature.data(), &additional_signature_size), OEMCrypto_SUCCESS); } // Verifies that short buffer error returns when the buffer is short. TEST_F(OEMCryptoProv40Test, GenerateCertificateKeyPairShortBuffer) { Session s; ASSERT_NO_FATAL_FAILURE(s.open()); std::vector public_key; size_t public_key_size = 0; std::vector public_key_signature; size_t public_key_signature_size = 0; std::vector wrapped_private_key; size_t wrapped_private_key_size = 0; OEMCrypto_PrivateKeyType key_type; ASSERT_EQ( OEMCrypto_GenerateCertificateKeyPair( s.session_id(), public_key.data(), &public_key_size, public_key_signature.data(), &public_key_signature_size, wrapped_private_key.data(), &wrapped_private_key_size, &key_type), OEMCrypto_ERROR_SHORT_BUFFER); ASSERT_NE(public_key_size, 0uL); ASSERT_NE(public_key_signature_size, 0uL); ASSERT_NE(wrapped_private_key_size, 0uL); } // Verifies a pair of key can be successfully returned. TEST_F(OEMCryptoProv40Test, GenerateCertificateKeyPairSuccess) { Session s; ASSERT_NO_FATAL_FAILURE(s.open()); std::vector public_key; size_t public_key_size = 0; std::vector public_key_signature; size_t public_key_signature_size = 0; std::vector wrapped_private_key; size_t wrapped_private_key_size = 0; OEMCrypto_PrivateKeyType key_type; ASSERT_EQ( OEMCrypto_GenerateCertificateKeyPair( s.session_id(), public_key.data(), &public_key_size, public_key_signature.data(), &public_key_signature_size, wrapped_private_key.data(), &wrapped_private_key_size, &key_type), OEMCrypto_ERROR_SHORT_BUFFER); public_key.resize(public_key_size); public_key_signature.resize(public_key_signature_size); wrapped_private_key.resize(wrapped_private_key_size); ASSERT_EQ( OEMCrypto_GenerateCertificateKeyPair( s.session_id(), public_key.data(), &public_key_size, public_key_signature.data(), &public_key_signature_size, wrapped_private_key.data(), &wrapped_private_key_size, &key_type), OEMCrypto_SUCCESS); public_key.resize(public_key_size); public_key_signature.resize(public_key_signature_size); wrapped_private_key.resize(wrapped_private_key_size); // Parse the public key generated to make sure it is correctly formatted. ASSERT_NO_FATAL_FAILURE(s.SetPublicKeyFromSubjectPublicKey( key_type, public_key.data(), public_key_size)); } // Verifies the generated key pairs are different on each call. TEST_F(OEMCryptoProv40Test, GenerateCertificateKeyPairsAreDifferent) { Session s; ASSERT_NO_FATAL_FAILURE(s.open()); // Large buffer to make sure it is large enough. size_t public_key_size1 = 10000; std::vector public_key1(public_key_size1); size_t public_key_signature_size1 = 10000; std::vector public_key_signature1(public_key_signature_size1); size_t wrapped_private_key_size1 = 10000; std::vector wrapped_private_key1(wrapped_private_key_size1); OEMCrypto_PrivateKeyType key_type1; ASSERT_EQ( OEMCrypto_GenerateCertificateKeyPair( s.session_id(), public_key1.data(), &public_key_size1, public_key_signature1.data(), &public_key_signature_size1, wrapped_private_key1.data(), &wrapped_private_key_size1, &key_type1), OEMCrypto_SUCCESS); EXPECT_NE(public_key_size1, 0UL); EXPECT_NE(public_key_signature_size1, 0UL); EXPECT_NE(wrapped_private_key_size1, 0UL); public_key1.resize(public_key_size1); public_key_signature1.resize(public_key_signature_size1); wrapped_private_key1.resize(wrapped_private_key_size1); size_t public_key_size2 = 10000; std::vector public_key2(public_key_size2); size_t public_key_signature_size2 = 10000; std::vector public_key_signature2(public_key_signature_size2); size_t wrapped_private_key_size2 = 10000; std::vector wrapped_private_key2(wrapped_private_key_size2); OEMCrypto_PrivateKeyType key_type2; ASSERT_EQ( OEMCrypto_GenerateCertificateKeyPair( s.session_id(), public_key2.data(), &public_key_size2, public_key_signature2.data(), &public_key_signature_size2, wrapped_private_key2.data(), &wrapped_private_key_size2, &key_type2), OEMCrypto_SUCCESS); EXPECT_NE(public_key_size2, 0UL); EXPECT_NE(public_key_signature_size2, 0UL); EXPECT_NE(wrapped_private_key_size2, 0UL); public_key2.resize(public_key_size2); public_key_signature2.resize(public_key_signature_size2); wrapped_private_key2.resize(wrapped_private_key_size2); EXPECT_NE(public_key1, public_key2); EXPECT_NE(public_key_signature1, public_key_signature2); EXPECT_NE(wrapped_private_key1, wrapped_private_key2); } TEST_F(OEMCryptoProv40Test, GetDeviceInformationAPI18) { std::vector device_info; size_t device_info_length = 0; OEMCryptoResult sts = OEMCrypto_GetDeviceInformation(device_info.data(), &device_info_length); ASSERT_EQ(sts, OEMCrypto_ERROR_SHORT_BUFFER); ASSERT_NE(device_info_length, 0uL); device_info.resize(device_info_length); ASSERT_EQ( OEMCrypto_GetDeviceInformation(device_info.data(), &device_info_length), OEMCrypto_SUCCESS); EXPECT_NE(device_info_length, 0uL); } TEST_F(OEMCryptoProv40Test, GetDeviceSignedCsrPayloadAPI18) { std::vector challenge(64, 0xaa); // TODO: add cppbor support for oemcrypto tests for all targets. Before that, // use hex values which are equivalent of the commented cppbor statement. // std::vector device_info = cppbor::Map() // .add("manufacturer", "google") // .add("fused", 0) // .add("other", "ignored") // .canonicalize() // .encode(); // std::vector device_info = { 0xa3, 0x65, 0x66, 0x75, 0x73, 0x65, 0x64, 0x0, 0x65, 0x6f, 0x74, 0x68, 0x65, 0x72, 0x67, 0x69, 0x67, 0x6e, 0x6f, 0x72, 0x65, 0x64, 0x6c, 0x6d, 0x61, 0x6e, 0x75, 0x66, 0x61, 0x63, 0x74, 0x75, 0x72, 0x65, 0x72, 0x66, 0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65}; std::vector signed_csr_payload; size_t signed_csr_payload_length = 0; OEMCryptoResult sts = OEMCrypto_GetDeviceSignedCsrPayload( challenge.data(), challenge.size(), device_info.data(), device_info.size(), signed_csr_payload.data(), &signed_csr_payload_length); ASSERT_EQ(sts, OEMCrypto_ERROR_SHORT_BUFFER); ASSERT_NE(signed_csr_payload_length, 0uL); signed_csr_payload.resize(signed_csr_payload_length); ASSERT_EQ(OEMCrypto_GetDeviceSignedCsrPayload( challenge.data(), challenge.size(), device_info.data(), device_info.size(), signed_csr_payload.data(), &signed_csr_payload_length), OEMCrypto_SUCCESS); EXPECT_NE(signed_csr_payload_length, 0uL); } TEST_F(OEMCryptoProv40Test, GetDeviceSignedCsrPayloadInvalid) { std::vector signed_csr_payload; size_t signed_csr_payload_length = 0; std::vector challenge(64, 0xaa); std::vector device_info = { 0xa3, 0x65, 0x66, 0x75, 0x73, 0x65, 0x64, 0x0, 0x65, 0x6f, 0x74, 0x68, 0x65, 0x72, 0x67, 0x69, 0x67, 0x6e, 0x6f, 0x72, 0x65, 0x64, 0x6c, 0x6d, 0x61, 0x6e, 0x75, 0x66, 0x61, 0x63, 0x74, 0x75, 0x72, 0x65, 0x72, 0x66, 0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65}; std::vector challenge_empty; OEMCryptoResult sts = OEMCrypto_GetDeviceSignedCsrPayload( challenge_empty.data(), challenge_empty.size(), device_info.data(), device_info.size(), signed_csr_payload.data(), &signed_csr_payload_length); if (sts == OEMCrypto_ERROR_NOT_IMPLEMENTED) return; ASSERT_EQ(sts, OEMCrypto_ERROR_INVALID_CONTEXT); // Oversized challenge std::vector challenge_long(65, 0xaa); sts = OEMCrypto_GetDeviceSignedCsrPayload( challenge_long.data(), challenge_long.size(), device_info.data(), device_info.size(), signed_csr_payload.data(), &signed_csr_payload_length); ASSERT_EQ(sts, OEMCrypto_ERROR_INVALID_CONTEXT); std::vector device_empty; sts = OEMCrypto_GetDeviceSignedCsrPayload( challenge.data(), challenge.size(), device_empty.data(), device_empty.size(), signed_csr_payload.data(), &signed_csr_payload_length); ASSERT_EQ(sts, OEMCrypto_ERROR_INVALID_CONTEXT); } // Verifies that an OEM private key can be installed. TEST_F(OEMCryptoProv40Test, InstallOemPrivateKeySuccess) { Session s; ASSERT_NO_FATAL_FAILURE(s.open()); // First generate a key pair. // Large buffer to make sure it is large enough. size_t public_key_size = 10000; std::vector public_key(public_key_size); size_t public_key_signature_size = 10000; std::vector public_key_signature(public_key_signature_size); size_t wrapped_private_key_size = 10000; std::vector wrapped_private_key(wrapped_private_key_size); OEMCrypto_PrivateKeyType key_type; ASSERT_EQ( OEMCrypto_GenerateCertificateKeyPair( s.session_id(), public_key.data(), &public_key_size, public_key_signature.data(), &public_key_signature_size, wrapped_private_key.data(), &wrapped_private_key_size, &key_type), OEMCrypto_SUCCESS); public_key.resize(public_key_size); public_key_signature.resize(public_key_signature_size); wrapped_private_key.resize(wrapped_private_key_size); // Install the generated private key. ASSERT_EQ(OEMCrypto_InstallOemPrivateKey(s.session_id(), key_type, wrapped_private_key.data(), wrapped_private_key_size), OEMCrypto_SUCCESS); } // If data is empty or random, the API should return non-success status. TEST_F(OEMCryptoProv40Test, InstallOemPrivateKeyInvalidDataFail) { Session s; ASSERT_NO_FATAL_FAILURE(s.open()); // Empty key fails. std::vector wrapped_private_key; OEMCrypto_PrivateKeyType key_type = OEMCrypto_RSA_Private_Key; ASSERT_NE(OEMCrypto_InstallOemPrivateKey(s.session_id(), key_type, wrapped_private_key.data(), wrapped_private_key.size()), OEMCrypto_SUCCESS); // Random key data fails. wrapped_private_key = {1, 2, 3}; ASSERT_NE(OEMCrypto_InstallOemPrivateKey(s.session_id(), key_type, wrapped_private_key.data(), wrapped_private_key.size()), OEMCrypto_SUCCESS); } // Verifies that an OEM private key can be installed, and used by // GenerateCertificateKeyPair call. TEST_F(OEMCryptoProv40Test, InstallOemPrivateKeyCanBeUsed) { Session s; ASSERT_NO_FATAL_FAILURE(s.open()); // First generate a key pair. size_t public_key_size1 = 10000; std::vector public_key1(public_key_size1); size_t public_key_signature_size1 = 10000; std::vector public_key_signature1(public_key_signature_size1); size_t wrapped_private_key_size1 = 10000; std::vector wrapped_private_key1(wrapped_private_key_size1); OEMCrypto_PrivateKeyType key_type1; ASSERT_EQ( OEMCrypto_GenerateCertificateKeyPair( s.session_id(), public_key1.data(), &public_key_size1, public_key_signature1.data(), &public_key_signature_size1, wrapped_private_key1.data(), &wrapped_private_key_size1, &key_type1), OEMCrypto_SUCCESS); EXPECT_NE(public_key_size1, 0UL); EXPECT_NE(public_key_signature_size1, 0UL); EXPECT_NE(wrapped_private_key_size1, 0UL); public_key1.resize(public_key_size1); public_key_signature1.resize(public_key_signature_size1); wrapped_private_key1.resize(wrapped_private_key_size1); // Install the generated private key. ASSERT_EQ(OEMCrypto_InstallOemPrivateKey(s.session_id(), key_type1, wrapped_private_key1.data(), wrapped_private_key_size1), OEMCrypto_SUCCESS); // Now calling GenerateCertificateKeyPair should use wrapped_private_key to // sign the newly generated public key. size_t public_key_size2 = 10000; std::vector public_key2(public_key_size2); size_t public_key_signature_size2 = 10000; std::vector public_key_signature2(public_key_signature_size2); size_t wrapped_private_key_size2 = 10000; std::vector wrapped_private_key2(wrapped_private_key_size2); OEMCrypto_PrivateKeyType key_type2; ASSERT_EQ( OEMCrypto_GenerateCertificateKeyPair( s.session_id(), public_key2.data(), &public_key_size2, public_key_signature2.data(), &public_key_signature_size2, wrapped_private_key2.data(), &wrapped_private_key_size2, &key_type2), OEMCrypto_SUCCESS); EXPECT_NE(public_key_size2, 0UL); EXPECT_NE(public_key_signature_size2, 0UL); EXPECT_NE(wrapped_private_key_size2, 0UL); public_key2.resize(public_key_size2); public_key_signature2.resize(public_key_signature_size2); wrapped_private_key2.resize(wrapped_private_key_size2); // Verify public_key_signature2 with public_key1. if (key_type2 == OEMCrypto_PrivateKeyType::OEMCrypto_RSA_Private_Key) { ASSERT_NO_FATAL_FAILURE(s.SetRsaPublicKeyFromSubjectPublicKey( public_key1.data(), public_key1.size())); ASSERT_NO_FATAL_FAILURE( s.VerifyRsaSignature(public_key2, public_key_signature2.data(), public_key_signature2.size(), kSign_RSASSA_PSS)); } else if (key_type2 == OEMCrypto_PrivateKeyType::OEMCrypto_ECC_Private_Key) { ASSERT_NO_FATAL_FAILURE(s.SetEccPublicKeyFromSubjectPublicKey( public_key1.data(), public_key1.size())); ASSERT_NO_FATAL_FAILURE(s.VerifyEccSignature(public_key2, public_key_signature2.data(), public_key_signature2.size())); } } /** Verify that the private key from an OEM Cert cannot be loaded as a DRM * cert. */ TEST_F(OEMCryptoProv40Test, OEMPrivateKeyCannotBeDRMKey) { // Create an OEM Cert and save it for alter. Session s1; ASSERT_NO_FATAL_FAILURE(s1.open()); ASSERT_NO_FATAL_FAILURE(CreateProv4OEMKey(&s1)); ASSERT_EQ(s1.IsPublicKeySet(), true); s1.close(); const std::vector wrapped_oem_key1 = wrapped_oem_key_; // Now create a new OEM cert, load the second key, and try to load key1 // as the DRM key. Session s2; ASSERT_NO_FATAL_FAILURE(s2.open()); ASSERT_NO_FATAL_FAILURE(CreateProv4OEMKey(&s2)); s2.close(); // Load the current key as the OEM key in session 3. Session s3; ASSERT_NO_FATAL_FAILURE(s3.open()); // Now try to load key 1 as a DRM key. That should fail. ASSERT_EQ(OEMCrypto_ERROR_INVALID_KEY, OEMCrypto_LoadDRMPrivateKey(s3.session_id(), oem_key_type_, wrapped_oem_key1.data(), wrapped_oem_key1.size())); } /** The private key for a DRM Cert cannot be loaded as an OEM Certificate. */ TEST_F(OEMCryptoProv40Test, DRMPrivateKeyCannotBeOEMKey) { // Create a DRM cert and save it for later. Session s1; // Make sure the drm private key exists. ASSERT_NO_FATAL_FAILURE(s1.open()); ASSERT_NO_FATAL_FAILURE(InstallTestDrmKey(&s1)); ASSERT_NE(wrapped_drm_key_.size(), 0u); // Now try to load the drm private key as an OEM key. Session s2; ASSERT_NO_FATAL_FAILURE(s2.open()); ASSERT_EQ(OEMCrypto_ERROR_INVALID_KEY, OEMCrypto_InstallOemPrivateKey( s2.session_id(), drm_key_type_, reinterpret_cast(wrapped_drm_key_.data()), wrapped_drm_key_.size())); } TEST_F(OEMCryptoProv40Test, GetDeviceId) { OEMCryptoResult sts; std::vector dev_id; size_t dev_id_len = dev_id.size(); sts = OEMCrypto_GetDeviceID(dev_id.data(), &dev_id_len); if (sts == OEMCrypto_ERROR_SHORT_BUFFER) { ASSERT_GT(dev_id_len, 0u); dev_id.resize(dev_id_len); sts = OEMCrypto_GetDeviceID(dev_id.data(), &dev_id_len); } ASSERT_EQ(OEMCrypto_SUCCESS, sts); dev_id.resize(dev_id_len); cout << " NormalGetDeviceId: dev_id = " << MaybeHex(dev_id) << " len = " << dev_id_len << endl; // Device id should be stable. Query again. std::vector dev_id2(dev_id_len); sts = OEMCrypto_GetDeviceID(dev_id2.data(), &dev_id_len); ASSERT_EQ(OEMCrypto_SUCCESS, sts); ASSERT_EQ(dev_id2, dev_id); } // Verifies provisioning stage 1 OEM cert provisioning round trip works TEST_F(OEMCryptoProv40Test, ProvisionOemCert) { Session s; ASSERT_NO_FATAL_FAILURE(s.open()); ASSERT_NO_FATAL_FAILURE(CreateProv4OEMKey(&s)); ASSERT_EQ(s.IsPublicKeySet(), true); } // Verifies both provisioning stages OEM and DRM cert provisioning round trip // works TEST_F(OEMCryptoProv40Test, ProvisionDrmCert) { Session s; ASSERT_NO_FATAL_FAILURE(s.open()); ASSERT_NO_FATAL_FAILURE(InstallTestDrmKey(&s)); ASSERT_EQ(s.IsPublicKeySet(), true); } /// @} } // namespace wvoec