Files
android/libwvdrmengine/oemcrypto/test/oemcrypto_test.cpp
Fred Gylys-Colwell a615671f48 Unit test for loading nonce-free offline license
Merge from Widevine repo of http://go/wvgerrit/100964

The previous nonce-free test used the same session to generate the
request as to load the license. However, it is a realistic use case to
have a new session used for loading the license.

The use case relates to a pre-loaded, shared license.

Test: Ran unit tests on taimen and on v16 ref implementation
Bug: 156853321
Change-Id: Ibc07744a16edcd3952d88d73660a75d0c3e8eeb8
2020-06-02 08:30:34 -07:00

6335 lines
271 KiB
C++

// Copyright 2018 Google LLC. All Rights Reserved. This file and proprietary
// source code may only be used and distributed under the Widevine Master
// License Agreement.
//
// OEMCrypto unit tests
//
#include <ctype.h>
#include <openssl/aes.h>
#include <openssl/err.h>
#include <openssl/hmac.h>
#include <openssl/rand.h>
#include <openssl/rsa.h>
#include <openssl/sha.h>
#include <openssl/x509.h>
#include <stdint.h>
#include <gtest/gtest.h>
#include <algorithm>
#include <chrono>
#include <iostream>
#include <map>
#include <string>
#include <utility>
#include <vector>
#include "OEMCryptoCENC.h"
#include "clock.h"
#include "log.h"
#include "oec_decrypt_fallback_chain.h"
#include "oec_device_features.h"
#include "oec_session_util.h"
#include "oec_test_data.h"
#include "oemcrypto_session_tests_helper.h"
#include "oemcrypto_types.h"
#include "platform.h"
#include "string_conversions.h"
#include "test_sleep.h"
#include "wvcrc32.h"
using ::testing::Bool;
using ::testing::Combine;
using ::testing::Range;
using ::testing::tuple;
using ::testing::Values;
using ::testing::WithParamInterface;
using namespace std;
namespace std { // GTest wants PrintTo to be in the std namespace.
void PrintTo(const tuple<OEMCrypto_CENCEncryptPatternDesc, OEMCryptoCipherMode,
wvoec::OutputType>& param,
ostream* os) {
OEMCrypto_CENCEncryptPatternDesc pattern = ::testing::get<0>(param);
OEMCryptoCipherMode mode = ::testing::get<1>(param);
wvoec::OutputType output = ::testing::get<2>(param);
bool decrypt_inplace = output.decrypt_inplace;
OEMCryptoBufferType type = output.type;
*os << ((mode == OEMCrypto_CipherMode_CTR) ? "CTR mode" : "CBC mode")
<< ", pattern=(encrypt:" << pattern.encrypt << ", skip:" << pattern.skip
<< ")";
switch (type) {
case OEMCrypto_BufferType_Clear:
*os << ", BufferType = Clear";
break;
case OEMCrypto_BufferType_Secure:
*os << ", BufferType = Secure";
break;
case OEMCrypto_BufferType_Direct:
*os << ", BufferType = Direct";
break;
default:
*os << ", type = <bad type " << type << ">";
break;
}
if (decrypt_inplace) *os << " (in place)";
}
} // namespace std
namespace wvoec {
namespace {
constexpr size_t kBufferOverrunPadding = 16;
// Resource tiers:
constexpr size_t KiB = 1024;
constexpr size_t MiB = 1024 * 1024;
// With OEMCrypto v15 and above, we have different resource requirements
// depending on the resource rating reported by OEMCrypto. This function looks
// up the required value for the specified resource for the target OEMCrypto
// library.
template <typename T, size_t N>
T GetResourceValue(T (&resource_values)[N]) {
if (global_features.resource_rating < 1) return resource_values[0];
if (global_features.resource_rating > N) return resource_values[N - 1];
return resource_values[global_features.resource_rating - 1];
}
// After API 16, we require 300 entries in the usage table. Before API 16, we
// required 200.
size_t RequiredUsageSize() {
return global_features.api_version < 16 ? 200 : 300;
}
// These are the maximum sizes we test. That means it is the minimum size that
// OEMCrypto must support.
// clang-format off
const size_t kMaxSampleSize[] = { 1*MiB, 2*MiB, 4*MiB, 16*MiB};
const size_t kMaxNumberSubsamples[] = { 10, 16, 32, 64};
const size_t kMaxSubsampleSize[] = { 100*KiB, 500*KiB, 1*MiB, 4*MiB};
const size_t kMaxGenericBuffer[] = { 10*KiB, 100*KiB, 500*KiB, 1*MiB};
const size_t kMaxConcurrentSession[] = { 10, 20, 20, 30};
const size_t kMaxKeysPerSession[] = { 4, 20, 20, 30};
const size_t kMaxTotalKeys[] = { 16, 40, 80, 90};
const size_t kLargeMessageSize[] = { 8*KiB, 8*KiB, 16*KiB, 32*KiB};
// Note: Frame rate and simultaneous playback are specified by resource rating,
// but are tested at the system level, so there are no unit tests for frame
// rate. Similarly, number of subsamples for AV1
// const size_t kAV1NumberSubsamples[] = { 72, 144, 288, 576};
// clang-format on
} // namespace
class OEMCryptoClientTest : public ::testing::Test, public SessionUtil {
protected:
OEMCryptoClientTest() {}
void SetUp() override {
::testing::Test::SetUp();
wvcdm::TestSleep::SyncFakeClock();
const ::testing::TestInfo* const test_info =
::testing::UnitTest::GetInstance()->current_test_info();
LOGD("Running test %s.%s", test_info->test_case_name(), test_info->name());
OEMCrypto_SetSandbox(kTestSandbox, sizeof(kTestSandbox));
ASSERT_EQ(OEMCrypto_SUCCESS, OEMCrypto_Initialize());
}
void TearDown() override {
OEMCrypto_Terminate();
::testing::Test::TearDown();
}
const uint8_t* find(const vector<uint8_t>& message,
const vector<uint8_t>& substring) {
vector<uint8_t>::const_iterator pos = search(
message.begin(), message.end(), substring.begin(), substring.end());
if (pos == message.end()) {
return nullptr;
}
return &(*pos);
}
};
//
// General tests.
// This test is first, becuase it might give an idea why other
// tests are failing when the device has the wrong keybox installed.
TEST_F(OEMCryptoClientTest, VersionNumber) {
const std::string log_message =
"OEMCrypto unit tests for API 16.2. Tests last updated 2020-03-27";
cout << " " << log_message << "\n";
LOGI("%s", log_message.c_str());
// If any of the following fail, then it is time to update the log message
// above.
EXPECT_EQ(ODK_MAJOR_VERSION, 16);
EXPECT_EQ(ODK_MINOR_VERSION, 2);
EXPECT_EQ(kCurrentAPI, 16u);
const char* level = OEMCrypto_SecurityLevel();
ASSERT_NE(nullptr, level);
ASSERT_EQ('L', level[0]);
cout << " OEMCrypto Security Level is " << level << endl;
uint32_t version = OEMCrypto_APIVersion();
cout << " OEMCrypto API version is " << version << endl;
if (OEMCrypto_SupportsUsageTable()) {
cout << " OEMCrypto supports usage tables" << endl;
} else {
cout << " OEMCrypto does not support usage tables" << endl;
}
if (version >= 15) {
const uint32_t tier = OEMCrypto_ResourceRatingTier();
cout << " Resource Rating Tier: " << tier << endl;
const char* build_info = OEMCrypto_BuildInformation();
ASSERT_NE(nullptr, build_info);
ASSERT_TRUE(strnlen(build_info, 256) <= 256)
<< "BuildInformation should be a short printable string.";
cout << " BuildInformation: " << build_info << endl;
}
ASSERT_GE(version, 8u);
ASSERT_LE(version, kCurrentAPI);
}
// The resource rating is a number from 1 to 4. The first three levels were
// initially defined in API 15 and they were expanded in API 16.
TEST_F(OEMCryptoClientTest, ResourceRatingAPI15) {
ASSERT_GE(OEMCrypto_ResourceRatingTier(), 1u);
ASSERT_LE(OEMCrypto_ResourceRatingTier(), 4u);
}
// OEMCrypto must declare what type of provisioning scheme it uses.
TEST_F(OEMCryptoClientTest, ProvisioningDeclaredAPI12) {
OEMCrypto_ProvisioningMethod provisioning_method =
OEMCrypto_GetProvisioningMethod();
cout << " Provisioning method = "
<< ProvisioningMethodName(provisioning_method) << endl;
ASSERT_NE(OEMCrypto_ProvisioningError, provisioning_method);
}
const char* HDCPCapabilityAsString(OEMCrypto_HDCP_Capability value) {
switch (value) {
case HDCP_NONE:
return "No HDCP supported, no secure data path";
case HDCP_V1:
return "HDCP version 1.0";
case HDCP_V2:
return "HDCP version 2.0";
case HDCP_V2_1:
return "HDCP version 2.1";
case HDCP_V2_2:
return "HDCP version 2.2";
case HDCP_V2_3:
return "HDCP version 2.3";
case HDCP_NO_DIGITAL_OUTPUT:
return "No HDCP device attached/using local display with secure path";
default:
return "<INVALID VALUE>";
}
}
TEST_F(OEMCryptoClientTest, CheckHDCPCapabilityAPI09) {
OEMCryptoResult sts;
OEMCrypto_HDCP_Capability current, maximum;
sts = OEMCrypto_GetHDCPCapability(&current, &maximum);
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
printf(" Current HDCP Capability: 0x%02x = %s.\n", current,
HDCPCapabilityAsString(current));
printf(" Maximum HDCP Capability: 0x%02x = %s.\n", maximum,
HDCPCapabilityAsString(maximum));
}
TEST_F(OEMCryptoClientTest, CheckSRMCapabilityV13) {
// This just tests some trivial functionality of the SRM update functions.
bool supported = OEMCrypto_IsSRMUpdateSupported();
printf(" Update SRM Supported: %s.\n",
supported ? "true" : "false");
uint16_t version = 0;
OEMCryptoResult current_result = OEMCrypto_GetCurrentSRMVersion(&version);
if (current_result == OEMCrypto_SUCCESS) {
printf(" Current SRM Version: %d.\n", version);
EXPECT_NE(OEMCrypto_SUCCESS, OEMCrypto_GetCurrentSRMVersion(nullptr));
} else if (current_result == OEMCrypto_LOCAL_DISPLAY_ONLY) {
printf(" Current SRM Status: Local Display Only.\n");
} else {
EXPECT_EQ(OEMCrypto_ERROR_NOT_IMPLEMENTED, current_result);
}
vector<uint8_t> bad_srm(42);
GetRandBytes(bad_srm.data(), bad_srm.size());
EXPECT_NE(OEMCrypto_SUCCESS,
OEMCrypto_LoadSRM(bad_srm.data(), bad_srm.size()));
}
TEST_F(OEMCryptoClientTest, CheckMaxNumberOfSessionsAPI10) {
size_t sessions_count;
ASSERT_EQ(OEMCrypto_SUCCESS,
OEMCrypto_GetNumberOfOpenSessions(&sessions_count));
ASSERT_EQ(0u, sessions_count);
size_t maximum;
OEMCryptoResult sts = OEMCrypto_GetMaxNumberOfSessions(&maximum);
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
printf(" Max Number of Sessions: %zu.\n", maximum);
size_t required_max = GetResourceValue(kMaxConcurrentSession);
ASSERT_GE(maximum, required_max);
}
TEST_F(OEMCryptoClientTest, CheckUsageTableSizeAPI16) {
const size_t maximum = OEMCrypto_MaximumUsageTableHeaderSize();
printf(" Max Usage Table Size: %zu.\n", maximum);
// A maximum of 0 means the table is constrained by dynamic memory allocation.
if (maximum > 0) ASSERT_GE(maximum, RequiredUsageSize());
}
//
// initialization tests
//
TEST_F(OEMCryptoClientTest, NormalInitTermination) {
// Should be able to terminate OEMCrypto, and then restart it.
ASSERT_EQ(OEMCrypto_SUCCESS, OEMCrypto_Terminate());
OEMCrypto_SetSandbox(kTestSandbox, sizeof(kTestSandbox));
ASSERT_EQ(OEMCrypto_SUCCESS, OEMCrypto_Initialize());
}
//
// Session Tests
//
TEST_F(OEMCryptoClientTest, NormalSessionOpenClose) {
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
ASSERT_NO_FATAL_FAILURE(s.close());
}
TEST_F(OEMCryptoClientTest, TwoSessionsOpenClose) {
Session s1;
Session s2;
ASSERT_NO_FATAL_FAILURE(s1.open());
ASSERT_NO_FATAL_FAILURE(s2.open());
ASSERT_NO_FATAL_FAILURE(s1.close());
ASSERT_NO_FATAL_FAILURE(s2.close());
}
// This test verifies that OEMCrypto can open approximately as many sessions as
// it claims.
TEST_F(OEMCryptoClientTest, MaxSessionsOpenCloseAPI10) {
size_t sessions_count;
ASSERT_EQ(OEMCrypto_SUCCESS,
OEMCrypto_GetNumberOfOpenSessions(&sessions_count));
ASSERT_EQ(0u, sessions_count);
size_t max_sessions;
ASSERT_EQ(OEMCrypto_SUCCESS, OEMCrypto_GetMaxNumberOfSessions(&max_sessions));
// We expect OEMCrypto implementations support at least this many sessions.
size_t required_number = GetResourceValue(kMaxConcurrentSession);
ASSERT_GE(max_sessions, required_number);
// We allow GetMaxNumberOfSessions to return an estimate. This tests with a
// pad of 5%. Even if it's just an estimate, we still require 8 sessions.
size_t max_sessions_with_pad = max(max_sessions * 19 / 20, required_number);
vector<OEMCrypto_SESSION> sessions;
// Limit the number of sessions for testing.
const size_t kMaxNumberOfSessionsForTesting = 0x100u;
for (size_t i = 0; i < kMaxNumberOfSessionsForTesting; i++) {
OEMCrypto_SESSION session_id;
OEMCryptoResult sts = OEMCrypto_OpenSession(&session_id);
// GetMaxNumberOfSessions might be an estimate. We allow OEMCrypto to report
// a max that is less than what is actually supported. Assume the number
// returned is |max|. OpenSessions shall not fail if number of active
// sessions is less than |max|; OpenSessions should fail with
// OEMCrypto_ERROR_TOO_MANY_SESSIONS if too many sessions are open.
if (sts != OEMCrypto_SUCCESS) {
ASSERT_EQ(OEMCrypto_ERROR_TOO_MANY_SESSIONS, sts);
ASSERT_GE(i, max_sessions_with_pad);
break;
}
ASSERT_EQ(OEMCrypto_SUCCESS,
OEMCrypto_GetNumberOfOpenSessions(&sessions_count));
ASSERT_EQ(i + 1, sessions_count);
sessions.push_back(session_id);
}
for (size_t i = 0; i < sessions.size(); i++) {
ASSERT_EQ(OEMCrypto_SUCCESS, OEMCrypto_CloseSession(sessions[i]));
ASSERT_EQ(OEMCrypto_SUCCESS,
OEMCrypto_GetNumberOfOpenSessions(&sessions_count));
ASSERT_EQ(sessions.size() - i - 1, sessions_count);
}
if (sessions.size() == kMaxNumberOfSessionsForTesting) {
printf(
" MaxSessionsOpenClose: reaches "
"kMaxNumberOfSessionsForTesting(%zu). GetMaxNumberOfSessions = %zu. "
"ERROR_TOO_MANY_SESSIONS not tested.",
kMaxNumberOfSessionsForTesting, max_sessions);
}
}
// Verify that GetRandom does work, and does some sanity checks on how random
// the data is. Basically, we say that calling GetRandom twice should not
// generate much overlap.
TEST_F(OEMCryptoClientTest, GetRandomLargeBuffer) {
// 32 bytes. Not very large, but that's all we really need in one call.
const size_t size = 32;
uint8_t data1[size];
uint8_t data2[size];
memset(data1, 0, size);
memset(data2, 0, size);
ASSERT_EQ(OEMCrypto_SUCCESS, OEMCrypto_GetRandom(data1, size));
ASSERT_EQ(OEMCrypto_SUCCESS, OEMCrypto_GetRandom(data2, size));
// We don't have enough data to see that the data is really random,
// so we'll just do a spot check that two calls don't return the same values.
int count = 0;
for (size_t i = 0; i < size; i++) {
if (data1[i] == data2[i]) count++;
}
ASSERT_LE(count, 3); // P(count > 3) = 1/256^3 = 6e-8.
}
TEST_F(OEMCryptoClientTest, GenerateNonce) {
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
s.GenerateNonce();
}
// Prevent a nonce flood even if each nonce is in a different session.
TEST_F(OEMCryptoClientTest, PreventNonceFlood2API16) {
int error_counter = 0;
const int64_t test_start = wvcdm::Clock().GetCurrentTime();
// More than 200 nonces per second should generate an error.
// To allow for some slop, we actually test for more.
const int flood_cutoff = 200;
const int loop_count = flood_cutoff * 2;
for (int i = 0; i < loop_count; i++) {
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
s.GenerateNonce(&error_counter);
}
const int64_t test_end = wvcdm::Clock().GetCurrentTime();
int valid_counter = loop_count - error_counter;
// Either oemcrypto should enforce a delay, or it should return an error from
// GenerateNonce -- in either case the number of valid nonces is rate
// limited. We add two seconds to allow for round off error in both
// test_start and test_end.
EXPECT_LE(valid_counter, flood_cutoff * (test_end - test_start + 2));
error_counter = 0;
// After a pause, we should be able to regenerate nonces.
wvcdm::TestSleep::Sleep(2);
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
s.GenerateNonce(&error_counter);
EXPECT_EQ(0, error_counter);
}
// Prevent a nonce flood even if some nonces are in a different session. This
// is different from the test above because there are several session open at
// the same time. We want to make sure you can't get a flood of nonces by
// opening a flood of sessions.
TEST_F(OEMCryptoClientTest, PreventNonceFlood3API16) {
int request_counter = 0;
int error_counter = 0;
const int64_t test_start = wvcdm::Clock().GetCurrentTime();
// More than 200 nonces per second should generate an error.
// To allow for some slop, we actually test for more.
const int flood_cutoff = 200;
const size_t session_count = GetResourceValue(kMaxConcurrentSession);
const size_t loop_count = 2 * flood_cutoff / session_count + 1;
for (size_t i = 0; i < loop_count; i++) {
std::vector<Session> s(session_count);
for (size_t j = 0; j < session_count; j++) {
ASSERT_NO_FATAL_FAILURE(s[j].open());
request_counter++;
s[j].GenerateNonce(&error_counter);
}
}
const int64_t test_end = wvcdm::Clock().GetCurrentTime();
int valid_counter = request_counter - error_counter;
// Either oemcrypto should enforce a delay, or it should return an error from
// GenerateNonce -- in either case the number of valid nonces is rate
// limited. We add two seconds to allow for round off error in both
// test_start and test_end.
EXPECT_LE(valid_counter, flood_cutoff * (test_end - test_start + 2));
error_counter = 0;
// After a pause, we should be able to regenerate nonces.
wvcdm::TestSleep::Sleep(2);
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
s.GenerateNonce(&error_counter);
EXPECT_EQ(0, error_counter);
}
// This verifies that CopyBuffer works, even before a license has been loaded.
TEST_F(OEMCryptoClientTest, ClearCopyTestAPI10) {
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
const int kDataSize = 256;
vector<uint8_t> input_buffer(kDataSize);
GetRandBytes(input_buffer.data(), input_buffer.size());
vector<uint8_t> output_buffer(kDataSize);
OEMCrypto_DestBufferDesc dest_buffer_descriptor;
dest_buffer_descriptor.type = OEMCrypto_BufferType_Clear;
dest_buffer_descriptor.buffer.clear.address = output_buffer.data();
dest_buffer_descriptor.buffer.clear.address_length = output_buffer.size();
ASSERT_EQ(
OEMCrypto_SUCCESS,
OEMCrypto_CopyBuffer(s.session_id(), input_buffer.data(),
input_buffer.size(), &dest_buffer_descriptor,
OEMCrypto_FirstSubsample | OEMCrypto_LastSubsample));
ASSERT_EQ(input_buffer, output_buffer);
ASSERT_EQ(
OEMCrypto_ERROR_INVALID_CONTEXT,
OEMCrypto_CopyBuffer(s.session_id(), nullptr, input_buffer.size(),
&dest_buffer_descriptor,
OEMCrypto_FirstSubsample | OEMCrypto_LastSubsample));
ASSERT_EQ(OEMCrypto_ERROR_INVALID_CONTEXT,
OEMCrypto_CopyBuffer(
s.session_id(), input_buffer.data(), input_buffer.size(),
nullptr, OEMCrypto_FirstSubsample | OEMCrypto_LastSubsample));
dest_buffer_descriptor.buffer.clear.address = nullptr;
ASSERT_EQ(
OEMCrypto_ERROR_INVALID_CONTEXT,
OEMCrypto_CopyBuffer(s.session_id(), input_buffer.data(),
input_buffer.size(), &dest_buffer_descriptor,
OEMCrypto_FirstSubsample | OEMCrypto_LastSubsample));
dest_buffer_descriptor.buffer.clear.address = output_buffer.data();
dest_buffer_descriptor.buffer.clear.address_length = output_buffer.size() - 1;
ASSERT_EQ(
OEMCrypto_ERROR_SHORT_BUFFER,
OEMCrypto_CopyBuffer(s.session_id(), input_buffer.data(),
input_buffer.size(), &dest_buffer_descriptor,
OEMCrypto_FirstSubsample | OEMCrypto_LastSubsample));
}
// This verifies that CopyBuffer works on the maximum required buffer size.
TEST_F(OEMCryptoClientTest, ClearCopyTestLargeSubsample) {
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
size_t max_size = GetResourceValue(kMaxSubsampleSize);
vector<uint8_t> input_buffer(max_size);
GetRandBytes(input_buffer.data(), input_buffer.size());
vector<uint8_t> output_buffer(max_size);
OEMCrypto_DestBufferDesc dest_buffer_descriptor;
dest_buffer_descriptor.type = OEMCrypto_BufferType_Clear;
dest_buffer_descriptor.buffer.clear.address = output_buffer.data();
dest_buffer_descriptor.buffer.clear.address_length = output_buffer.size();
ASSERT_EQ(
OEMCrypto_SUCCESS,
OEMCrypto_CopyBuffer(s.session_id(), input_buffer.data(),
input_buffer.size(), &dest_buffer_descriptor,
OEMCrypto_FirstSubsample | OEMCrypto_LastSubsample));
ASSERT_EQ(input_buffer, output_buffer);
}
TEST_F(OEMCryptoClientTest, CanLoadTestKeys) {
ASSERT_NE(DeviceFeatures::NO_METHOD, global_features.derive_key_method)
<< "Session tests cannot run with out a test keybox or RSA cert.";
}
// Tests using this class are only used for devices with a keybox. They are not
// run for devices with an OEM Certificate.
class OEMCryptoKeyboxTest : public OEMCryptoClientTest {
void SetUp() override {
OEMCryptoClientTest::SetUp();
OEMCryptoResult sts = OEMCrypto_IsKeyboxValid();
// If the production keybox is valid, use it for these tests. Most of the
// other tests will use a test keybox anyway, but it's nice to check the
// device ID for the real keybox if we can.
if (sts == OEMCrypto_SUCCESS) return;
printf("Production keybox is NOT valid. All tests use test keybox.\n");
ASSERT_EQ(
OEMCrypto_SUCCESS,
OEMCrypto_LoadTestKeybox(reinterpret_cast<const uint8_t*>(&kTestKeybox),
sizeof(kTestKeybox)));
}
};
// This test is used to print the device ID to stdout.
TEST_F(OEMCryptoKeyboxTest, NormalGetDeviceId) {
OEMCryptoResult sts;
uint8_t dev_id[128] = {0};
size_t dev_id_len = 128;
sts = OEMCrypto_GetDeviceID(dev_id, &dev_id_len);
cout << " NormalGetDeviceId: dev_id = " << dev_id
<< " len = " << dev_id_len << endl;
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
}
TEST_F(OEMCryptoKeyboxTest, GetDeviceIdShortBuffer) {
OEMCryptoResult sts;
uint8_t dev_id[128];
for (int i = 0; i < 128; ++i) {
dev_id[i] = 0x55;
}
dev_id[127] = '\0';
size_t dev_id_len = 0;
sts = OEMCrypto_GetDeviceID(dev_id, &dev_id_len);
ASSERT_EQ(OEMCrypto_ERROR_SHORT_BUFFER, sts);
// On short buffer error, function should return minimum buffer length
ASSERT_GT(dev_id_len, 0u);
// Should also return short buffer if passed a zero length and a null buffer.
dev_id_len = 0;
sts = OEMCrypto_GetDeviceID(nullptr, &dev_id_len);
ASSERT_EQ(OEMCrypto_ERROR_SHORT_BUFFER, sts);
// On short buffer error, function should return minimum buffer length
ASSERT_GT(dev_id_len, 0u);
}
TEST_F(OEMCryptoKeyboxTest, NormalGetKeyData) {
OEMCryptoResult sts;
uint8_t key_data[256];
size_t key_data_len = sizeof(key_data);
sts = OEMCrypto_GetKeyData(key_data, &key_data_len);
uint32_t* data = reinterpret_cast<uint32_t*>(key_data);
printf(" NormalGetKeyData: system_id = %d = 0x%04X, version=%d\n",
htonl(data[1]), htonl(data[1]), htonl(data[0]));
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
}
TEST_F(OEMCryptoKeyboxTest, GetKeyDataNullPointer) {
OEMCryptoResult sts;
uint8_t key_data[256];
sts = OEMCrypto_GetKeyData(key_data, nullptr);
ASSERT_NE(OEMCrypto_SUCCESS, sts);
}
// This test makes sure the installed keybox is valid. It doesn't really check
// that it is a production keybox. That must be done by an integration test.
TEST_F(OEMCryptoKeyboxTest, ProductionKeyboxValid) {
ASSERT_EQ(OEMCrypto_SUCCESS, OEMCrypto_IsKeyboxValid());
}
// This tests GenerateDerivedKeys with an 8k context.
TEST_F(OEMCryptoKeyboxTest, GenerateDerivedKeysFromKeyboxLargeBuffer) {
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
const size_t max_size = GetResourceValue(kLargeMessageSize);
vector<uint8_t> mac_context(max_size);
vector<uint8_t> enc_context(max_size);
// Stripe the data so the two vectors are not identical, and not all zeroes.
for (size_t i = 0; i < max_size; i++) {
mac_context[i] = i % 0x100;
enc_context[i] = (3 * i) % 0x100;
}
ASSERT_EQ(OEMCrypto_SUCCESS,
OEMCrypto_GenerateDerivedKeys(
s.session_id(), mac_context.data(), mac_context.size(),
enc_context.data(), enc_context.size()));
}
// This class is for tests that have an OEM Certificate instead of a keybox.
class OEMCryptoProv30Test : public OEMCryptoClientTest {};
// This verifies that the device really does claim to have a certificate.
// It should be filtered out for devices that have a keybox.
TEST_F(OEMCryptoProv30Test, DeviceClaimsOEMCertificate) {
ASSERT_EQ(OEMCrypto_OEMCertificate, OEMCrypto_GetProvisioningMethod());
}
TEST_F(OEMCryptoProv30Test, GetDeviceId) {
OEMCryptoResult sts;
std::vector<uint8_t> dev_id(128, 0);
size_t dev_id_len = dev_id.size();
sts = OEMCrypto_GetDeviceID(dev_id.data(), &dev_id_len);
if (sts == OEMCrypto_ERROR_SHORT_BUFFER) {
ASSERT_GT(dev_id_len, 0u);
dev_id.resize(dev_id_len);
sts = OEMCrypto_GetDeviceID(dev_id.data(), &dev_id_len);
}
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
dev_id.resize(dev_id_len);
cout << " NormalGetDeviceId: dev_id = " << dev_id.data()
<< " len = " << dev_id_len << endl;
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
}
// The OEM certificate must be valid.
TEST_F(OEMCryptoProv30Test, CertValidAPI15) {
ASSERT_EQ(OEMCrypto_SUCCESS, OEMCrypto_IsKeyboxOrOEMCertValid());
}
TEST_F(OEMCryptoProv30Test, OEMCertValid) {
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
bool kVerify = true;
ASSERT_NO_FATAL_FAILURE(s.LoadOEMCert(kVerify)); // Load and verify.
}
// This verifies that the OEM Certificate cannot be used for other RSA padding
// schemes. Those schemes should only be used by cast receiver certificates.
TEST_F(OEMCryptoProv30Test, OEMCertForbiddenPaddingScheme) {
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
ASSERT_NO_FATAL_FAILURE(s.LoadOEMCert());
OEMCryptoResult sts;
// Sign a Message
vector<uint8_t> data(500);
GetRandBytes(data.data(), data.size());
size_t signature_length = 0;
// We need a size one vector to pass as a pointer.
vector<uint8_t> signature(1, 0);
vector<uint8_t> zero(1, 0);
sts = OEMCrypto_GenerateRSASignature(s.session_id(), data.data(), data.size(),
signature.data(), &signature_length,
kSign_PKCS1_Block1);
if (OEMCrypto_ERROR_SHORT_BUFFER == sts) {
// The OEMCrypto could complain about buffer length first, so let's
// resize and check if it's writing to the signature again.
signature.resize(signature_length, 0);
zero.resize(signature_length, 0);
sts = OEMCrypto_GenerateRSASignature(s.session_id(), data.data(),
data.size(), signature.data(),
&signature_length, kSign_PKCS1_Block1);
}
EXPECT_NE(OEMCrypto_SUCCESS, sts)
<< "OEM Cert Signed with forbidden kSign_PKCS1_Block1.";
ASSERT_EQ(zero, signature); // signature should not be computed.
}
// Calling OEMCrypto_GetOEMPublicCertificate should not change the session's
// private key.
TEST_F(OEMCryptoProv30Test, GetCertOnlyAPI16) {
if (wrapped_rsa_key_.size() == 0) {
// If we don't have a wrapped key yet, create one.
// This wrapped key will be shared by all sessions in the test.
ASSERT_NO_FATAL_FAILURE(CreateWrappedRSAKey());
}
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
// Install the DRM Cert's RSA key.
ASSERT_NO_FATAL_FAILURE(s.InstallRSASessionTestKey(wrapped_rsa_key_));
ASSERT_NO_FATAL_FAILURE(s.PreparePublicKey());
// Request the OEM Cert. -- This should NOT load the OEM Private key.
vector<uint8_t> public_cert;
size_t public_cert_length = 0;
ASSERT_EQ(OEMCrypto_ERROR_SHORT_BUFFER,
OEMCrypto_GetOEMPublicCertificate(nullptr, &public_cert_length));
ASSERT_LT(0u, public_cert_length);
public_cert.resize(public_cert_length);
ASSERT_EQ(OEMCrypto_SUCCESS, OEMCrypto_GetOEMPublicCertificate(
public_cert.data(), &public_cert_length));
// Derive keys from the session key -- this should use the DRM Cert's key. It
// should NOT use the OEM Private key because that key should not have been
// loaded.
ASSERT_NO_FATAL_FAILURE(s.GenerateDerivedKeysFromSessionKey());
// Now fill a message and try to load it.
LicenseRoundTrip license_messages(&s);
license_messages.set_control(0);
ASSERT_NO_FATAL_FAILURE(license_messages.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_SUCCESS, license_messages.LoadResponse());
}
//
// AddKey Tests
//
// These tests will use either a test keybox or a test certificate to derive
// session keys.
class OEMCryptoSessionTests : public OEMCryptoClientTest {
public:
vector<uint8_t> encrypted_usage_header_;
protected:
OEMCryptoSessionTests() {}
void SetUp() override {
OEMCryptoClientTest::SetUp();
EnsureTestKeys();
if (global_features.usage_table) {
CreateUsageTableHeader();
}
}
void CreateUsageTableHeader(bool expect_success = true) {
size_t header_buffer_length = 0;
OEMCryptoResult sts =
OEMCrypto_CreateUsageTableHeader(nullptr, &header_buffer_length);
if (expect_success) {
ASSERT_EQ(OEMCrypto_ERROR_SHORT_BUFFER, sts);
} else {
ASSERT_NE(OEMCrypto_SUCCESS, sts);
if (sts != OEMCrypto_ERROR_SHORT_BUFFER) return;
}
encrypted_usage_header_.resize(header_buffer_length);
sts = OEMCrypto_CreateUsageTableHeader(encrypted_usage_header_.data(),
&header_buffer_length);
if (expect_success) {
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
} else {
ASSERT_NE(OEMCrypto_SUCCESS, sts);
}
}
};
class OEMCryptoSessionTestKeyboxTest : public OEMCryptoSessionTests {};
TEST_F(OEMCryptoSessionTestKeyboxTest, TestKeyboxIsValid) {
ASSERT_EQ(OEMCrypto_SUCCESS, OEMCrypto_IsKeyboxValid());
}
// This class is for testing a single license with the default API version
// of 16.
class OEMCryptoLicenseTestAPI16 : public OEMCryptoSessionTests {
public:
OEMCryptoLicenseTestAPI16()
: license_api_version_(kCurrentAPI), license_messages_(&session_) {}
void SetUp() override {
OEMCryptoSessionTests::SetUp();
ASSERT_NO_FATAL_FAILURE(session_.open());
ASSERT_NO_FATAL_FAILURE(InstallTestRSAKey(&session_));
}
void TearDown() override {
ASSERT_NO_FATAL_FAILURE(session_.close());
OEMCryptoSessionTests::TearDown();
}
protected:
Session session_;
uint32_t license_api_version_;
LicenseRoundTrip license_messages_;
};
// This class is used to test a license that is from a server either that is
// current or one version old.
class OEMCryptoLicenseTest : public OEMCryptoLicenseTestAPI16,
public WithParamInterface<uint32_t> {
protected:
void SetUp() override {
// The only difference between this class and its parent is that we use a
// different license api:
license_api_version_ = GetParam();
license_messages_.set_api_version(license_api_version_);
OEMCryptoLicenseTestAPI16::SetUp();
}
};
// This class is used to test a license that is only for v15 license.
class OEMCryptoLicenseTestAPI15 : public OEMCryptoLicenseTestAPI16 {
void SetUp() override {
// The only difference between this class and its parent is that we use a
// different license api:
license_api_version_ = 15;
license_messages_.set_api_version(license_api_version_);
OEMCryptoLicenseTestAPI16::SetUp();
}
};
// This class is used to test each key control block verification string in the
// range kc09-kc1?. This test is parameterized by the API number in the key
// control lock.
class OEMCryptoLicenseTestRangeAPI : public OEMCryptoLicenseTest {};
// Verify that a license may be signed.
TEST_P(OEMCryptoLicenseTest, SignLicenseRequest) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
}
TEST_P(OEMCryptoLicenseTest, SignLicenseRequestNoNonce) {
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
}
// Verify that a large license request may be signed.
TEST_P(OEMCryptoLicenseTest, SignLargeLicenseRequest) {
const size_t max_size = GetResourceValue(kLargeMessageSize);
license_messages_.set_message_size(max_size);
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
}
// Verify that a license may be loaded without a nonce.
TEST_P(OEMCryptoLicenseTest, LoadKeyNoNonce) {
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
license_messages_.set_control(0);
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
}
// Verify that a preloaded license may be loaded without first signing the
// request. This test is important for the preloaded licenses used by ATSC and
// CAS.
TEST_P(OEMCryptoLicenseTest, LoadKeyWithNoRequest) {
if (license_api_version_ > global_features.api_version) {
// We should not attempt to preload a license with an API higher than that
// of OEMCrypto.
license_api_version_ = global_features.api_version;
license_messages_.set_api_version(license_api_version_);
}
license_messages_.set_control(0);
// The test code uses the core request to create the core response.
license_messages_.core_request().api_major_version = ODK_MAJOR_VERSION;
license_messages_.core_request().api_minor_version = ODK_MINOR_VERSION;
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
// Load license in a different session, which did not create the request.
Session session2;
ASSERT_NO_FATAL_FAILURE(session2.open());
ASSERT_NO_FATAL_FAILURE(InstallTestRSAKey(&session2));
ASSERT_NO_FATAL_FAILURE(session2.GenerateDerivedKeysFromSessionKey());
ASSERT_EQ(OEMCrypto_SUCCESS, license_messages_.LoadResponse(&session2));
}
// Verify that a license may be loaded with a nonce.
TEST_P(OEMCryptoLicenseTest, LoadKeyWithNonce) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
}
// Verify that a second license may not be loaded in a session.
TEST_P(OEMCryptoLicenseTest, LoadKeyNoNonceTwiceAPI16) {
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
license_messages_.set_control(0);
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
// A second load, should NOT succeed.
ASSERT_EQ(OEMCrypto_ERROR_LICENSE_RELOAD, license_messages_.LoadResponse());
}
// Verify that a second license may not be loaded in a session.
TEST_P(OEMCryptoLicenseTest, LoadKeyWithNonceTwiceAPI16) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
// A second load, should NOT succeed.
ASSERT_EQ(OEMCrypto_ERROR_LICENSE_RELOAD, license_messages_.LoadResponse());
}
// This verifies that entitlement keys and entitled content keys can be loaded.
TEST_P(OEMCryptoLicenseTest, LoadEntitlementKeysAPI14) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
license_messages_.set_license_type(OEMCrypto_EntitlementLicense);
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
EntitledMessage entitled_message_1(&license_messages_);
entitled_message_1.FillKeyArray();
ASSERT_NO_FATAL_FAILURE(entitled_message_1.LoadKeys(OEMCrypto_SUCCESS));
EntitledMessage entitled_message_2(&license_messages_);
entitled_message_2.FillKeyArray();
ASSERT_NO_FATAL_FAILURE(entitled_message_2.LoadKeys(OEMCrypto_SUCCESS));
}
// This verifies that entitled content keys cannot be loaded if we have not yet
// loaded the entitlement keys.
TEST_P(OEMCryptoLicenseTest, LoadEntitlementKeysNoEntitlementKeysAPI14) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
license_messages_.set_license_type(OEMCrypto_EntitlementLicense);
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
EntitledMessage entitled_message_1(&license_messages_);
entitled_message_1.FillKeyArray();
ASSERT_NO_FATAL_FAILURE(
entitled_message_1.LoadKeys(OEMCrypto_ERROR_INVALID_CONTEXT));
}
// This verifies that entitled content keys cannot be loaded if we have loaded
// the wrong entitlement keys.
TEST_P(OEMCryptoLicenseTest, LoadEntitlementKeysWrongEntitlementKeysAPI14) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
license_messages_.set_license_type(OEMCrypto_EntitlementLicense);
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
EntitledMessage entitled_message_1(&license_messages_);
entitled_message_1.FillKeyArray();
const std::string key_id = "no_key";
entitled_message_1.SetEntitlementKeyId(0, key_id);
ASSERT_NO_FATAL_FAILURE(
entitled_message_1.LoadKeys(OEMCrypto_KEY_NOT_ENTITLED));
}
// This tests load license with an 8k license response.
TEST_P(OEMCryptoLicenseTest, LoadKeyLargeBuffer) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
const size_t max_size = GetResourceValue(kLargeMessageSize);
license_messages_.set_message_size(max_size);
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
}
// Verify that you can't use LoadKeys on a v16 license.
TEST_F(OEMCryptoLicenseTestAPI16, UseWrongLoadAPI16) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
// After the license round trip was create for v16, we now tell it to use v15
// so it call LoadKeys instead of LoadLicense. This means the license request
// was made from a v16 device, and the response was created and signed by a
// v16 server. So OEMCrypto should only accept it if we load it using
// LoadLicense. A call to LoadKeys should fail.
license_messages_.set_api_version(kCoreMessagesAPI - 1);
ASSERT_NE(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
}
//---------------------------------------------------------------------------//
//---------------------------------------------------------------------------//
// Each of the following LoadKeyWithBadRange_* tests is similar. They verify
// that OEMCrypto_LoadLicense checks the range of all the pointers. It should
// reject a message if the pointer does not point into the message buffer.
//---------------------------------------------------------------------------//
//---------------------------------------------------------------------------//
TEST_P(OEMCryptoLicenseTest, LoadKeyWithBadRange_enc_mac_keys) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
// See the comment in LicenseRoundTrip::LoadResponse for why we increment by
// the message size.
license_messages_.core_response().enc_mac_keys.offset +=
sizeof(license_messages_.response_data());
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_NE(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
}
TEST_P(OEMCryptoLicenseTest, LoadKeyWithBadRange_enc_mac_keys_iv) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
// See the comment in LicenseRoundTrip::LoadResponse for why we increment by
// the message size.
license_messages_.core_response().enc_mac_keys_iv.offset +=
sizeof(license_messages_.response_data());
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_NE(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
}
TEST_P(OEMCryptoLicenseTest, LoadKeyWithBadRange_key_id) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
// See the comment in LicenseRoundTrip::LoadResponse for why we increment by
// the message size.
license_messages_.core_response().key_array[0].key_id.offset +=
sizeof(license_messages_.response_data());
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_NE(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
}
TEST_P(OEMCryptoLicenseTest, LoadKeyWithBadRange_key_data) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
// See the comment in LicenseRoundTrip::LoadResponse for why we increment by
// the message size.
license_messages_.core_response().key_array[1].key_data.offset +=
sizeof(license_messages_.response_data());
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_NE(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
}
TEST_P(OEMCryptoLicenseTest, LoadKeyWithBadRange_key_data_iv) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
// See the comment in LicenseRoundTrip::LoadResponse for why we increment by
// the message size.
license_messages_.core_response().key_array[1].key_data_iv.offset +=
sizeof(license_messages_.response_data());
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_NE(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
}
TEST_P(OEMCryptoLicenseTest, LoadKeyWithBadRange_key_control) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
// See the comment in LicenseRoundTrip::LoadResponse for why we increment by
// the message size.
license_messages_.core_response().key_array[2].key_control.offset +=
sizeof(license_messages_.response_data());
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_NE(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
}
TEST_P(OEMCryptoLicenseTest, LoadKeyWithBadRange_key_control_iv) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
// See the comment in LicenseRoundTrip::LoadResponse for why we increment by
// the message size.
license_messages_.core_response().key_array[2].key_control_iv.offset +=
sizeof(license_messages_.response_data());
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_NE(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
}
TEST_P(OEMCryptoLicenseTest, LoadKeyWithBadRange_pst) {
license_messages_.set_control(wvoec::kControlNonceOrEntry);
license_messages_.set_pst("my_pst");
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
// See the comment in LicenseRoundTrip::LoadResponse for why we increment by
// the message size.
license_messages_.core_response().pst.offset +=
sizeof(license_messages_.response_data());
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
// If we have a pst, then we need a usage entry.
ASSERT_NO_FATAL_FAILURE(session_.CreateNewUsageEntry());
ASSERT_NE(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
}
//---------------------------------------------------------------------------//
//---------------------------------------------------------------------------//
// The IV should not be identical to the data right before the encrypted mac
// keys. This requirement was added in 15.2, so it frequently fails on
// production devices.
// This test is being restricted to v16 devices on rvc-dev branch because we
// only required v15.1 on Android for Q.
TEST_F(OEMCryptoLicenseTestAPI15, LoadKeyWithSuspiciousIVAPI16) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
// This is suspicious: the data right before the mac keys is identical to the
// iv.
memcpy(license_messages_.response_data().padding,
license_messages_.response_data().mac_key_iv,
sizeof(license_messages_.response_data().padding));
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_NE(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
}
// Test that LoadKeys fails when a key is loaded with no key control block.
TEST_P(OEMCryptoLicenseTest, LoadKeyWithNullKeyControl) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
license_messages_.core_response().key_array[2].key_control.offset = 0;
license_messages_.core_response().key_array[2].key_control.length = 0;
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_NE(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
}
// Test that LoadKeys fails when the key control block encryption has a null IV.
TEST_P(OEMCryptoLicenseTest, LoadKeyWithNullKeyControlIv) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
license_messages_.core_response().key_array[2].key_control_iv.offset = 0;
license_messages_.core_response().key_array[2].key_control_iv.length = 0;
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_NE(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
}
// Verify that LoadKeys fails when a key's nonce is wrong.
TEST_P(OEMCryptoLicenseTest, LoadKeyWithBadNonce) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
for (unsigned int i = 0; i < license_messages_.num_keys(); i++)
license_messages_.response_data().keys[i].control.nonce ^= 42;
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_ERROR_INVALID_NONCE, license_messages_.LoadResponse());
}
// Verify that LoadKeys fails when the core message's nonce is wrong.
TEST_F(OEMCryptoLicenseTestAPI16, LoadKeyWithBadNonce2) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
license_messages_.core_request().nonce ^= 42;
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_ERROR_INVALID_NONCE, license_messages_.LoadResponse());
}
// Verify that LoadKeys fails when the core message's session is wrong.
TEST_F(OEMCryptoLicenseTestAPI16, LoadKeyWithBadNonce3) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
license_messages_.core_request().session_id++;
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_ERROR_INVALID_NONCE, license_messages_.LoadResponse());
}
// Verify that LoadKeys fails when an attempt is made to use a nonce twice.
TEST_P(OEMCryptoLicenseTest, LoadKeyWithRepeatNonce) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
const uint32_t nonce = session_.nonce();
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
// This is the first attempt. It should succeed.
ASSERT_EQ(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
// Now, open a new session and try to load a license with the same nonce.
session_.close();
ASSERT_NO_FATAL_FAILURE(session_.open());
ASSERT_NO_FATAL_FAILURE(InstallTestRSAKey(&session_));
license_messages_.skip_nonce_check();
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
// Repeat the nonce.
license_messages_.core_request().nonce = nonce;
for (unsigned int i = 0; i < license_messages_.num_keys(); i++)
license_messages_.response_data().keys[i].control.nonce = htonl(nonce);
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_ERROR_INVALID_NONCE, license_messages_.LoadResponse());
}
// This tests that a nonce cannot be used in new session. This is similar to
// the previous test, but does not use the nonce in the first session. The nonce
// should be tied to a session, so generating a nonce in the first session and
// then using it in the second session should fail.
TEST_P(OEMCryptoLicenseTest, LoadKeyNonceReopenSession) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
uint32_t nonce = session_.nonce();
// Do not use the nonce now. Close session and use it after re-opening.
ASSERT_NO_FATAL_FAILURE(session_.close());
// Actually, this isn't the same session. OEMCrypto opens a new session, but
// we are guarding against the possiblity that it re-uses the session data
// and might not clear out the nonce correctly.
ASSERT_NO_FATAL_FAILURE(session_.open());
ASSERT_NO_FATAL_FAILURE(InstallTestRSAKey(&session_));
license_messages_.skip_nonce_check();
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
license_messages_.core_request().nonce = nonce;
for (unsigned int i = 0; i < license_messages_.num_keys(); i++)
license_messages_.response_data().keys[i].control.nonce = htonl(nonce);
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_ERROR_INVALID_NONCE, license_messages_.LoadResponse());
}
// This tests that a nonce cannot be used in wrong session. This is similar to
// the previous test, except we do not close session 1 before we open session 2.
TEST_P(OEMCryptoLicenseTest, LoadKeyNonceWrongSession) {
// First, open a session and generate a nonce. We don't use the nonce in this
// session.
Session s2;
ASSERT_NO_FATAL_FAILURE(s2.open());
ASSERT_NO_FATAL_FAILURE(InstallTestRSAKey(&s2));
ASSERT_NO_FATAL_FAILURE(s2.GenerateNonce());
uint32_t nonce = s2.nonce();
// Do not use the nonce. Also, leave the session open. We want to make sure
// that session_ and s2 do NOT share a nonce. This is different from
// the LoadKeyNonceReopenSession in that we do not close s1.
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
license_messages_.core_request().nonce = nonce;
for (unsigned int i = 0; i < license_messages_.num_keys(); i++)
license_messages_.response_data().keys[i].control.nonce = htonl(nonce);
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_ERROR_INVALID_NONCE, license_messages_.LoadResponse());
}
// LoadKeys should fail if the key control block as a bad verification string.
TEST_P(OEMCryptoLicenseTest, LoadKeyWithBadVerification) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
license_messages_.response_data().keys[1].control.verification[2] = 'Z';
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_NE(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
}
// This test verifies that LoadKeys still works when the message is not aligned
// in memory on a word (2 or 4 byte) boundary.
TEST_P(OEMCryptoLicenseTest, LoadKeyUnalignedMessageAPI16) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
std::vector<uint8_t> buffer(1, '0'); // A string of 1 byte long.
size_t offset = buffer.size();
ASSERT_EQ(1u, offset);
// We assume that vectors are allocated on as a small chunk of data that is
// aligned on a word boundary. I.e. we assume buffer is word aligned. Next,
// we append the message to buffer after the single padding byte.
buffer.insert(buffer.end(),
license_messages_.encrypted_response_buffer().begin(),
license_messages_.encrypted_response_buffer().end());
// Thus, buffer[offset] is NOT word aligned.
const uint8_t* unaligned_message = &buffer[offset];
if (license_api_version_ < kCoreMessagesAPI) {
ASSERT_EQ(OEMCrypto_SUCCESS,
OEMCrypto_LoadKeys(
session_.session_id(), unaligned_message,
license_messages_.encrypted_response_buffer().size(),
license_messages_.response_signature().data(),
license_messages_.response_signature().size(),
license_messages_.core_response().enc_mac_keys_iv,
license_messages_.core_response().enc_mac_keys,
license_messages_.core_response().key_array_length,
license_messages_.core_response().key_array,
license_messages_.core_response().pst,
license_messages_.core_response().srm_restriction_data,
static_cast<OEMCrypto_LicenseType>(
license_messages_.core_response().license_type)));
} else {
ASSERT_EQ(OEMCrypto_SUCCESS,
OEMCrypto_LoadLicense(
session_.session_id(), unaligned_message,
license_messages_.encrypted_response_buffer().size(),
license_messages_.serialized_core_message().size(),
license_messages_.response_signature().data(),
license_messages_.response_signature().size()));
}
}
// Verifies that a session can't reload a license without being closed and
// reopened.
TEST_P(OEMCryptoLicenseTest, LoadLicenseAgainFailureAPI16) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
ASSERT_EQ(OEMCrypto_ERROR_LICENSE_RELOAD, license_messages_.LoadResponse());
}
TEST_P(OEMCryptoLicenseTestRangeAPI, LoadKeys) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
// Re-set the API version. The function VerifyRequestSignature sets the api to
// be a sane value. But in this test, we want to verify an unsupported version
// is rejected.
license_messages_.set_api_version(license_api_version_);
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
// If this is a future API, then LoadKeys should fail.
if (global_features.api_version < license_api_version_) {
ASSERT_NE(OEMCrypto_SUCCESS, license_messages_.LoadResponse())
<< "Load License succeeded for future api kc" << license_api_version_;
} else {
// Otherwise, LoadKeys should succeed.
ASSERT_EQ(OEMCrypto_SUCCESS, license_messages_.LoadResponse())
<< "Load License failed for key control block kc"
<< license_api_version_;
}
}
// Range of API versions to test. This should start several versions old, and
// go to the current API + 2. We use +2 because we want to test at least 1
// future API, and the ::testing::Range is not inclusive.
INSTANTIATE_TEST_CASE_P(TestAll, OEMCryptoLicenseTestRangeAPI,
Range<uint32_t>(10, kCurrentAPI + 2));
TEST_P(OEMCryptoLicenseTest, LoadKeysBadSignatureAPI16) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
license_messages_.response_signature()[0] ^= 42;
ASSERT_EQ(OEMCrypto_ERROR_SIGNATURE_FAILURE,
license_messages_.LoadResponse());
}
TEST_F(OEMCryptoLicenseTestAPI16, BadCoreHashAPI16) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
license_messages_.BreakRequestHash();
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_NE(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
}
// LoadKeys should fail if we try to load keys with no keys.
TEST_P(OEMCryptoLicenseTest, LoadKeyNoKeys) {
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
license_messages_.set_control(0);
license_messages_.set_num_keys(0);
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_NE(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
}
// Like the previous test, except we ask for a nonce first.
TEST_P(OEMCryptoLicenseTest, LoadKeyNoKeyWithNonce) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
license_messages_.set_num_keys(0);
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_NE(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
}
// SelectKey should fail if we attempt to select a key that has not been loaded.
// Also, the error should be NO_CONTENT_KEY.
// This test should pass for v15 devices, except that the exact error code was
// not specified until v16.
TEST_P(OEMCryptoLicenseTest, SelectKeyNotThereAPI16) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
const char* key_id = "no_key";
OEMCryptoResult sts = OEMCrypto_SelectKey(
session_.session_id(), reinterpret_cast<const uint8_t*>(key_id),
strlen(key_id), OEMCrypto_CipherMode_CTR);
if (sts != OEMCrypto_SUCCESS) {
EXPECT_EQ(OEMCrypto_ERROR_NO_CONTENT_KEY, sts);
} else {
// Delayed error code. If select key was a success, then we should
// eventually see the error when we decrypt.
vector<uint8_t> in_buffer(256);
vector<uint8_t> out_buffer(in_buffer.size());
OEMCrypto_SampleDescription sample_description;
OEMCrypto_SubSampleDescription subsample_description;
ASSERT_NO_FATAL_FAILURE(GenerateSimpleSampleDescription(
in_buffer, out_buffer, &sample_description, &subsample_description));
// Generate test data
for (size_t i = 0; i < in_buffer.size(); i++) in_buffer[i] = i % 256;
// Create the pattern description (always 0,0 for CTR)
OEMCrypto_CENCEncryptPatternDesc pattern = {0, 0};
// Try to decrypt the data
sts = OEMCrypto_DecryptCENC(session_.session_id(), &sample_description, 1,
&pattern);
EXPECT_EQ(sts, OEMCrypto_ERROR_NO_CONTENT_KEY);
}
}
// 'cens' mode is no longer supported in v16
TEST_P(OEMCryptoLicenseTest, RejectCensAPI16) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
OEMCryptoResult sts;
sts = OEMCrypto_SelectKey(
session_.session_id(), session_.license().keys[0].key_id,
session_.license().keys[0].key_id_length, OEMCrypto_CipherMode_CTR);
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
vector<uint8_t> in_buffer(256);
vector<uint8_t> out_buffer(in_buffer.size());
OEMCrypto_SampleDescription sample_description;
OEMCrypto_SubSampleDescription subsample_description;
ASSERT_NO_FATAL_FAILURE(GenerateSimpleSampleDescription(
in_buffer, out_buffer, &sample_description, &subsample_description));
// Create a non-zero pattern to indicate this is 'cens'
OEMCrypto_CENCEncryptPatternDesc pattern = {1, 9};
// Try to decrypt the data
sts = OEMCrypto_DecryptCENC(session_.session_id(), &sample_description, 1,
&pattern);
EXPECT_EQ(OEMCrypto_ERROR_INVALID_CONTEXT, sts);
}
// 'cbc1' mode is no longer supported in v16
TEST_P(OEMCryptoLicenseTest, RejectCbc1API16) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
OEMCryptoResult sts;
sts = OEMCrypto_SelectKey(
session_.session_id(), session_.license().keys[0].key_id,
session_.license().keys[0].key_id_length, OEMCrypto_CipherMode_CBC);
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
vector<uint8_t> in_buffer(256);
vector<uint8_t> out_buffer(in_buffer.size());
OEMCrypto_SampleDescription sample_description;
OEMCrypto_SubSampleDescription subsample_description;
ASSERT_NO_FATAL_FAILURE(GenerateSimpleSampleDescription(
in_buffer, out_buffer, &sample_description, &subsample_description));
// Create a zero pattern to indicate this is 'cbc1'
OEMCrypto_CENCEncryptPatternDesc pattern = {0, 0};
// Try to decrypt the data
sts = OEMCrypto_DecryptCENC(session_.session_id(), &sample_description, 1,
&pattern);
EXPECT_EQ(OEMCrypto_ERROR_INVALID_CONTEXT, sts);
}
TEST_P(OEMCryptoLicenseTest, RejectCbcsWithBlockOffset) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
OEMCryptoResult sts;
sts = OEMCrypto_SelectKey(
session_.session_id(), session_.license().keys[0].key_id,
session_.license().keys[0].key_id_length, OEMCrypto_CipherMode_CBC);
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
vector<uint8_t> in_buffer(256);
vector<uint8_t> out_buffer(in_buffer.size());
OEMCrypto_SampleDescription sample_description;
OEMCrypto_SubSampleDescription subsample_description;
ASSERT_NO_FATAL_FAILURE(GenerateSimpleSampleDescription(
in_buffer, out_buffer, &sample_description, &subsample_description));
subsample_description.block_offset = 5; // Any value 1-15 will do.
// Create a non-zero pattern to indicate this is 'cbcs'.
OEMCrypto_CENCEncryptPatternDesc pattern = {1, 9};
// Try to decrypt the data
sts = OEMCrypto_DecryptCENC(session_.session_id(), &sample_description, 1,
&pattern);
EXPECT_EQ(OEMCrypto_ERROR_INVALID_CONTEXT, sts);
}
// After loading keys, we should be able to query the key control block. If we
// attempt to query a key that has not been loaded, the error should be
// NO_CONTENT_KEY.
TEST_P(OEMCryptoLicenseTest, QueryKeyControl) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
// Note: successful cases are tested in VerifyTestKeys.
KeyControlBlock block;
size_t size = sizeof(block) - 1;
OEMCryptoResult sts = OEMCrypto_QueryKeyControl(
session_.session_id(), license_messages_.response_data().keys[0].key_id,
license_messages_.response_data().keys[0].key_id_length,
reinterpret_cast<uint8_t*>(&block), &size);
if (sts == OEMCrypto_ERROR_NOT_IMPLEMENTED) {
return;
}
ASSERT_EQ(OEMCrypto_ERROR_SHORT_BUFFER, sts);
const char* key_id = "no_key";
size = sizeof(block);
ASSERT_EQ(OEMCrypto_ERROR_NO_CONTENT_KEY,
OEMCrypto_QueryKeyControl(
session_.session_id(), reinterpret_cast<const uint8_t*>(key_id),
strlen(key_id), reinterpret_cast<uint8_t*>(&block), &size));
}
// If the device says it supports anti-rollback in the hardware, then it should
// accept a key control block with the anti-rollback hardware bit set.
// Otherwise, it should reject that key control block.
TEST_P(OEMCryptoLicenseTest, AntiRollbackHardwareRequired) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
license_messages_.set_control(wvoec::kControlRequireAntiRollbackHardware);
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
OEMCryptoResult sts = license_messages_.LoadResponse();
if (OEMCrypto_IsAntiRollbackHwPresent()) {
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
} else {
ASSERT_EQ(OEMCrypto_ERROR_UNKNOWN_FAILURE, sts);
}
}
// This test verifies that OEMCrypto can load the number of keys required for
// the reported resource level.
TEST_P(OEMCryptoLicenseTest, MinimumKeys) {
const size_t num_keys = GetResourceValue(kMaxKeysPerSession);
ASSERT_LE(num_keys, kMaxNumKeys) << "Test constants need updating.";
license_messages_.set_num_keys(num_keys);
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
constexpr bool kSelectKeyFirst = true;
for (size_t key_index = 0; key_index < num_keys; key_index++) {
ASSERT_NO_FATAL_FAILURE(
session_.TestDecryptCTR(kSelectKeyFirst, OEMCrypto_SUCCESS, key_index));
}
}
// This test verifies that OEMCrypto can load the total number of keys required
// for the reported resource level.
void TestMaxKeys(SessionUtil* util, size_t num_keys_per_session) {
const size_t max_total_keys = GetResourceValue(kMaxTotalKeys);
ASSERT_LE(num_keys_per_session, kMaxNumKeys) << "Update test constants.";
std::vector<std::unique_ptr<Session>> sessions;
std::vector<std::unique_ptr<LicenseRoundTrip>> licenses;
size_t total_keys = 0;
for (size_t i = 0; total_keys < max_total_keys; i++) {
sessions.push_back(std::unique_ptr<Session>(new Session()));
licenses.push_back(std::unique_ptr<LicenseRoundTrip>(
new LicenseRoundTrip(sessions[i].get())));
const size_t num_keys =
std::min(max_total_keys - total_keys, num_keys_per_session);
licenses[i]->set_num_keys(num_keys);
total_keys += num_keys;
ASSERT_NO_FATAL_FAILURE(sessions[i]->open());
ASSERT_NO_FATAL_FAILURE(util->InstallTestRSAKey(sessions[i].get()));
ASSERT_NO_FATAL_FAILURE(sessions[i]->GenerateNonce());
ASSERT_NO_FATAL_FAILURE(licenses[i]->SignAndVerifyRequest());
}
for (size_t i = 0; i < licenses.size(); i++) {
ASSERT_NO_FATAL_FAILURE(licenses[i]->CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(licenses[i]->EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_SUCCESS, licenses[i]->LoadResponse());
}
constexpr bool kSelectKeyFirst = true;
for (size_t i = 0; i < licenses.size(); i++) {
for (size_t key_index = 0; key_index < licenses[i]->num_keys();
key_index++) {
ASSERT_NO_FATAL_FAILURE(sessions[i]->TestDecryptCTR(
kSelectKeyFirst, OEMCrypto_SUCCESS, key_index));
}
}
// Second call to decrypt for each session.
for (size_t i = 0; i < licenses.size(); i++) {
for (size_t key_index = 0; key_index < licenses[i]->num_keys();
key_index++) {
ASSERT_NO_FATAL_FAILURE(sessions[i]->TestDecryptCTR(
kSelectKeyFirst, OEMCrypto_SUCCESS, key_index));
}
}
}
// This test verifies that OEMCrypto can load the total number of keys required
// for the reported resource level. This maximizes keys per session.
TEST_P(OEMCryptoLicenseTest, MaxTotalKeysPerSession) {
const size_t max_num_keys = GetResourceValue(kMaxKeysPerSession);
TestMaxKeys(this, max_num_keys);
}
// This test verifies that OEMCrypto can load the total number of keys required
// for the reported resource level. This maximizes number of sessions.
TEST_P(OEMCryptoLicenseTest, MaxTotalKeysManySessions) {
const size_t max_total_keys = GetResourceValue(kMaxTotalKeys);
const size_t max_sessions = GetResourceValue(kMaxConcurrentSession);
const size_t max_num_keys = max_total_keys / max_sessions + 1;
TestMaxKeys(this, max_num_keys);
}
// This test verifies that the minimum patch level can be required. The device
// should accept a key control block with the current patch level, and it should
// reject any key control blocks with a future patch level.
TEST_F(OEMCryptoSessionTests, CheckMinimumPatchLevel) {
uint8_t patch_level = OEMCrypto_Security_Patch_Level();
printf(" Current Patch Level: %u.\n", patch_level);
{
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
ASSERT_NO_FATAL_FAILURE(InstallTestRSAKey(&s));
LicenseRoundTrip license_messages(&s);
license_messages.set_control(patch_level
<< wvoec::kControlSecurityPatchLevelShift);
ASSERT_NO_FATAL_FAILURE(license_messages.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages.EncryptAndSignResponse());
EXPECT_EQ(global_features.api_version, license_messages.api_version());
ASSERT_EQ(OEMCrypto_SUCCESS, license_messages.LoadResponse());
}
// Reject any future patch levels.
if (patch_level < 0x3F) {
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
ASSERT_NO_FATAL_FAILURE(InstallTestRSAKey(&s));
LicenseRoundTrip license_messages(&s);
license_messages.set_control((patch_level + 1)
<< wvoec::kControlSecurityPatchLevelShift);
ASSERT_NO_FATAL_FAILURE(license_messages.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_ERROR_UNKNOWN_FAILURE, license_messages.LoadResponse());
}
// Accept an old patch level.
if (patch_level > 0) {
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
ASSERT_NO_FATAL_FAILURE(InstallTestRSAKey(&s));
LicenseRoundTrip license_messages(&s);
license_messages.set_control((patch_level - 1)
<< wvoec::kControlSecurityPatchLevelShift);
ASSERT_NO_FATAL_FAILURE(license_messages.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_SUCCESS, license_messages.LoadResponse());
}
}
// Used to test the different HDCP versions. This test is parameterized by the
// required HDCP version in the key control block.
class OEMCryptoSessionTestDecryptWithHDCP : public OEMCryptoSessionTests,
public WithParamInterface<int> {
protected:
void DecryptWithHDCP(OEMCrypto_HDCP_Capability version) {
OEMCryptoResult sts;
OEMCrypto_HDCP_Capability current, maximum;
sts = OEMCrypto_GetHDCPCapability(&current, &maximum);
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
ASSERT_NO_FATAL_FAILURE(InstallTestRSAKey(&s));
LicenseRoundTrip license_messages(&s);
license_messages.set_control((version << wvoec::kControlHDCPVersionShift) |
wvoec::kControlObserveHDCP |
wvoec::kControlHDCPRequired);
ASSERT_NO_FATAL_FAILURE(license_messages.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_SUCCESS, license_messages.LoadResponse());
if (version > current) {
if (global_features.api_version >= 16) {
// Can provide either OEMCrypto_WARNING_MIXED_OUTPUT_PROTECTION or
// OEMCrypto_ERROR_INSUFFICIENT_HDCP. TestDecryptCTR allows either to be
// reported if OEMCrypto_WARNING_MIXED_OUTPUT_PROTECTION is expected.
ASSERT_NO_FATAL_FAILURE(
s.TestDecryptCTR(true, OEMCrypto_WARNING_MIXED_OUTPUT_PROTECTION))
<< "Failed when current HDCP = " << HDCPCapabilityAsString(current)
<< ", maximum HDCP = " << HDCPCapabilityAsString(maximum)
<< ", license HDCP = " << HDCPCapabilityAsString(version);
} else {
ASSERT_NO_FATAL_FAILURE(
s.TestDecryptCTR(true, OEMCrypto_ERROR_INSUFFICIENT_HDCP))
<< "Failed when current HDCP = " << HDCPCapabilityAsString(current)
<< ", maximum HDCP = " << HDCPCapabilityAsString(maximum)
<< ", license HDCP = " << HDCPCapabilityAsString(version);
}
} else {
ASSERT_NO_FATAL_FAILURE(s.TestDecryptCTR(true, OEMCrypto_SUCCESS))
<< "Failed when current HDCP = " << HDCPCapabilityAsString(current)
<< ", maximum HDCP = " << HDCPCapabilityAsString(maximum)
<< ", license HDCP = " << HDCPCapabilityAsString(version);
}
}
};
TEST_P(OEMCryptoSessionTestDecryptWithHDCP, DecryptAPI09) {
// Test parameterized by HDCP version.
DecryptWithHDCP(static_cast<OEMCrypto_HDCP_Capability>(GetParam()));
}
INSTANTIATE_TEST_CASE_P(TestHDCP, OEMCryptoSessionTestDecryptWithHDCP,
Range(1, 6));
//
// Load, Refresh Keys Test
//
class OEMCryptoRefreshTest : public OEMCryptoLicenseTest {
protected:
void SetUp() override {
OEMCryptoLicenseTest::SetUp();
// These values allow us to run a few simple duration tests or just start
// playback right away. All times are in seconds since the license was
// signed.
// Soft expiry false means timers are strictly enforce.
timer_limits_.soft_enforce_rental_duration = true;
timer_limits_.soft_enforce_playback_duration = false;
// Playback may begin immediately.
timer_limits_.earliest_playback_start_seconds = 0;
// First playback may be within the first two seconds.
timer_limits_.rental_duration_seconds = kDuration;
// Once started, playback may last two seconds without a renewal.
timer_limits_.initial_renewal_duration_seconds = kDuration;
// Total playback is not limited.
timer_limits_.total_playback_duration_seconds = 0;
}
void LoadLicense() {
// If we require a nonce, then generate one.
if (license_messages_.control() &
(wvoec::kControlNonceEnabled | wvoec::kControlNonceOrEntry |
wvoec::kControlNonceRequired)) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
}
license_messages_.core_response().timer_limits = timer_limits_;
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
}
void MakeRenewalRequest(RenewalRoundTrip* renewal_messages) {
ASSERT_NO_FATAL_FAILURE(renewal_messages->SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(renewal_messages->CreateDefaultResponse());
}
void LoadRenewal(RenewalRoundTrip* renewal_messages,
OEMCryptoResult expected_result) {
ASSERT_NO_FATAL_FAILURE(renewal_messages->EncryptAndSignResponse());
ASSERT_EQ(expected_result, renewal_messages->LoadResponse());
}
ODK_TimerLimits timer_limits_;
};
// This class is for the refresh tests that should only be run on licenses with
// a core message.
class OEMCryptoRefreshTestAPI16 : public OEMCryptoRefreshTest {};
// Refresh keys should work if the license uses a nonce.
TEST_P(OEMCryptoRefreshTest, RefreshWithNonce) {
LoadLicense();
RenewalRoundTrip renewal_messages(&license_messages_);
MakeRenewalRequest(&renewal_messages);
LoadRenewal(&renewal_messages, OEMCrypto_SUCCESS);
}
// Refresh keys should work if the license does not use a nonce.
TEST_P(OEMCryptoRefreshTest, RefreshNoNonce) {
license_messages_.set_control(0);
LoadLicense();
RenewalRoundTrip renewal_messages(&license_messages_);
MakeRenewalRequest(&renewal_messages);
LoadRenewal(&renewal_messages, OEMCrypto_SUCCESS);
}
// Refresh keys should NOT work if a license has not been loaded.
TEST_P(OEMCryptoRefreshTestAPI16, RefreshNoLicense) {
Session s;
s.open();
constexpr size_t message_size = kMaxCoreMessage + 42;
std::vector<uint8_t> data(message_size);
for (size_t i = 0; i < data.size(); i++) data[i] = i & 0xFF;
size_t gen_signature_length = 0;
size_t core_message_length = 0;
OEMCryptoResult sts = OEMCrypto_PrepAndSignRenewalRequest(
s.session_id(), data.data(), data.size(), &core_message_length, nullptr,
&gen_signature_length);
ASSERT_LT(core_message_length, message_size);
if (sts == OEMCrypto_ERROR_SHORT_BUFFER) {
vector<uint8_t> gen_signature(gen_signature_length);
sts = OEMCrypto_PrepAndSignRenewalRequest(
s.session_id(), data.data(), data.size(), &core_message_length,
gen_signature.data(), &gen_signature_length);
}
ASSERT_NE(OEMCrypto_SUCCESS, sts);
}
// Refresh keys should fail if the nonce is not in the session.
TEST_P(OEMCryptoRefreshTestAPI16, RefreshBadNonce) {
LoadLicense();
RenewalRoundTrip renewal_messages(&license_messages_);
MakeRenewalRequest(&renewal_messages);
renewal_messages.core_request().nonce ^= 42;
LoadRenewal(&renewal_messages, OEMCrypto_ERROR_INVALID_NONCE);
}
// Refresh keys should fail if the session_id does not match the license.
TEST_P(OEMCryptoRefreshTestAPI16, RefreshBadSessionID) {
LoadLicense();
RenewalRoundTrip renewal_messages(&license_messages_);
MakeRenewalRequest(&renewal_messages);
renewal_messages.core_request().session_id += 1;
LoadRenewal(&renewal_messages, OEMCrypto_ERROR_INVALID_NONCE);
}
// Refresh keys should handle the maximum message size.
TEST_P(OEMCryptoRefreshTest, RefreshLargeBuffer) {
LoadLicense();
RenewalRoundTrip renewal_messages(&license_messages_);
const size_t max_size = GetResourceValue(kLargeMessageSize);
renewal_messages.set_message_size(max_size);
MakeRenewalRequest(&renewal_messages);
LoadRenewal(&renewal_messages, OEMCrypto_SUCCESS);
}
// This situation would occur if an app only uses one key in the license. When
// that happens, SelectKey would be called before the first decrypt, and then
// would not need to be called again, even if the license is refreshed.
TEST_P(OEMCryptoRefreshTest, RefreshWithNoSelectKey) {
LoadLicense();
// Call select key before the refresh. No calls below to TestDecryptCTR with
// select key set to true.
ASSERT_NO_FATAL_FAILURE(session_.TestDecryptCTR(true));
// This should still be valid key, even if the refresh failed, because this
// is before the original license duration.
wvcdm::TestSleep::Sleep(kShortSleep);
ASSERT_NO_FATAL_FAILURE(session_.TestDecryptCTR(false));
// This should be after duration of the original license, but before the
// expiration of the refresh message. This should fail until we have loaded
// the renewal.
wvcdm::TestSleep::Sleep(kShortSleep + kLongSleep);
ASSERT_NO_FATAL_FAILURE(
session_.TestDecryptCTR(false, OEMCrypto_ERROR_KEY_EXPIRED));
RenewalRoundTrip renewal_messages(&license_messages_);
MakeRenewalRequest(&renewal_messages);
LoadRenewal(&renewal_messages, OEMCrypto_SUCCESS);
// After we've loaded the renewal, decrypt should succeed again.
ASSERT_NO_FATAL_FAILURE(session_.TestDecryptCTR(false));
}
INSTANTIATE_TEST_CASE_P(TestAll, OEMCryptoRefreshTest,
Range<uint32_t>(kCurrentAPI - 1, kCurrentAPI + 1));
// These tests only work when the license has a core message.
INSTANTIATE_TEST_CASE_P(TestAPI16, OEMCryptoRefreshTestAPI16,
Range<uint32_t>(kCoreMessagesAPI, kCurrentAPI + 1));
// If the license does not allow a hash, then we should not compute one.
TEST_P(OEMCryptoLicenseTest, HashForbiddenAPI15) {
uint32_t hash_type = OEMCrypto_SupportsDecryptHash();
// If hash is not supported, or is vendor defined, don't try to test it.
if (hash_type != OEMCrypto_CRC_Clear_Buffer) return;
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
uint32_t frame_number = 1;
uint32_t hash = 42;
// It is OK to set the hash before loading the keys
ASSERT_EQ(OEMCrypto_SUCCESS,
OEMCrypto_SetDecryptHash(session_.session_id(), frame_number,
reinterpret_cast<const uint8_t*>(&hash),
sizeof(hash)));
// It is OK to select the key and decrypt.
ASSERT_NO_FATAL_FAILURE(session_.TestDecryptCTR());
// But the error code should be bad.
ASSERT_EQ(OEMCrypto_ERROR_UNKNOWN_FAILURE,
OEMCrypto_GetHashErrorCode(session_.session_id(), &frame_number));
}
//
// Decrypt Tests -- these test Decrypt CTR mode only.
//
TEST_P(OEMCryptoLicenseTest, Decrypt) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
license_messages_.core_response()
.timer_limits.total_playback_duration_seconds = kDuration;
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
ASSERT_NO_FATAL_FAILURE(session_.TestDecryptCTR());
}
// Verify that a zero duration means infinite license duration.
TEST_P(OEMCryptoLicenseTest, DecryptZeroDuration) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
license_messages_.core_response()
.timer_limits.total_playback_duration_seconds = 0;
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
ASSERT_NO_FATAL_FAILURE(session_.TestDecryptCTR());
}
struct SubsampleSize {
size_t clear_size;
size_t encrypted_size;
SubsampleSize(size_t clear, size_t encrypted)
: clear_size(clear), encrypted_size(encrypted) {}
};
// Struct for holding the data for one test sample in the decrypt tests.
struct TestSample {
// Encrypted data -- this is input to OEMCrypto, and output from EncryptData.
std::vector<uint8_t> encrypted_buffer;
std::vector<uint8_t> clear_buffer; // OEMCrypto store clear output here.
std::vector<uint8_t> truth_buffer; // Truth data for clear text.
OEMCrypto_SampleDescription description;
std::vector<OEMCrypto_SubSampleDescription> subsamples;
int secure_buffer_fid;
};
// A class of tests that test decryption for a variety of patterns and modes.
// This test is parameterized by three parameters:
// 1. The pattern used for pattern decryption.
// 2. The cipher mode for decryption: either CTR or CBC.
// 3. A boolean that determines if decrypt in place should be done. When the
// output buffer is clear, it should be possible for the input and output
// buffers to be the same.
class OEMCryptoSessionTestsDecryptTests
: public OEMCryptoLicenseTestAPI16,
public WithParamInterface<tuple<OEMCrypto_CENCEncryptPatternDesc,
OEMCryptoCipherMode, OutputType>> {
protected:
void SetUp() override {
OEMCryptoLicenseTestAPI16::SetUp();
pattern_ = ::testing::get<0>(GetParam());
cipher_mode_ = ::testing::get<1>(GetParam());
decrypt_inplace_ = ::testing::get<2>(GetParam()).decrypt_inplace;
output_buffer_type_ = ::testing::get<2>(GetParam()).type;
verify_crc_ = global_features.supports_crc;
// Pick a random key.
EXPECT_EQ(GetRandBytes(key_, sizeof(key_)), 1);
// Pick a random starting iv. Some tests override this before using it.
EXPECT_EQ(GetRandBytes(initial_iv_, sizeof(initial_iv_)), 1);
}
void TearDown() override {
FreeSecureBuffers();
OEMCryptoLicenseTestAPI16::TearDown();
}
void SetSubsampleSizes(std::vector<SubsampleSize> subsample_sizes) {
// This is just sugar for having one sample with the given subsamples in it.
SetSampleSizes({subsample_sizes});
}
void SetSampleSizes(std::vector<std::vector<SubsampleSize>> sample_sizes) {
ASSERT_GT(sample_sizes.size(), 0u);
samples_.clear();
samples_.reserve(sample_sizes.size());
// Convert all the size arrays to TestSample structs
for (const std::vector<SubsampleSize>& subsample_sizes : sample_sizes) {
// This could be one line if we had C++17
samples_.emplace_back();
TestSample& sample = samples_.back();
ASSERT_GT(subsample_sizes.size(), 0u);
sample.subsamples.reserve(subsample_sizes.size());
// Convert all the sizes to subsample descriptions and tally the total
// sample size
size_t sample_size = 0;
size_t current_block_offset = 0;
for (const SubsampleSize& size : subsample_sizes) {
sample.subsamples.push_back(OEMCrypto_SubSampleDescription{
size.clear_size, size.encrypted_size,
0, // Subsample Flags, to be filled in after the loop
current_block_offset});
// Update the rolling variables
sample_size += size.clear_size + size.encrypted_size;
if (cipher_mode_ == OEMCrypto_CipherMode_CTR) {
current_block_offset =
(current_block_offset + size.encrypted_size) % AES_BLOCK_SIZE;
}
}
// Set the subsample flags now that all the subsamples are processed
sample.subsamples.front().subsample_flags |= OEMCrypto_FirstSubsample;
sample.subsamples.back().subsample_flags |= OEMCrypto_LastSubsample;
// Set related information on the sample description
sample.description.subsamples = sample.subsamples.data();
sample.description.subsamples_length = sample.subsamples.size();
sample.description.buffers.input_data_length = sample_size;
}
}
// Set up the input buffer and either a clear or secure output buffer for each
// test sample. This should be called after SetSubsampleSizes().
void MakeBuffers() {
for (TestSample& sample : samples_) {
const size_t total_size = sample.description.buffers.input_data_length;
ASSERT_GT(total_size, 0u);
sample.encrypted_buffer.clear();
sample.truth_buffer.clear();
sample.clear_buffer.clear();
sample.encrypted_buffer.resize(total_size);
sample.truth_buffer.resize(total_size);
for (size_t i = 0; i < total_size; i++) sample.truth_buffer[i] = i % 256;
OEMCrypto_DestBufferDesc& output_descriptor =
sample.description.buffers.output_descriptor;
output_descriptor.type = output_buffer_type_;
switch (output_descriptor.type) {
case OEMCrypto_BufferType_Clear:
if (decrypt_inplace_) {
// Add some padding to verify there is no overrun.
sample.encrypted_buffer.resize(total_size + kBufferOverrunPadding,
0xaa);
output_descriptor.buffer.clear.address =
sample.encrypted_buffer.data();
} else {
// Add some padding to verify there is no overrun.
sample.clear_buffer.resize(total_size + kBufferOverrunPadding,
0xaa);
output_descriptor.buffer.clear.address = sample.clear_buffer.data();
}
output_descriptor.buffer.clear.address_length = total_size;
break;
case OEMCrypto_BufferType_Secure:
output_descriptor.buffer.secure.handle_length = total_size;
ASSERT_EQ(OEMCrypto_AllocateSecureBuffer(
session_.session_id(), total_size, &output_descriptor,
&sample.secure_buffer_fid),
OEMCrypto_SUCCESS);
ASSERT_NE(output_descriptor.buffer.secure.handle, nullptr);
// It is OK if OEMCrypto changes the maximum size, but there must
// still be enough room for our data.
ASSERT_GE(output_descriptor.buffer.secure.handle_length, total_size);
output_descriptor.buffer.secure.offset = 0;
break;
case OEMCrypto_BufferType_Direct:
output_descriptor.buffer.direct.is_video = false;
break;
} // switch (output_descriptor.type)
} // sample loop
}
void FreeSecureBuffers() {
for (TestSample& sample : samples_) {
OEMCrypto_DestBufferDesc& output_descriptor =
sample.description.buffers.output_descriptor;
if (output_descriptor.type == OEMCrypto_BufferType_Secure) {
ASSERT_EQ(OEMCrypto_FreeSecureBuffer(session_.session_id(),
&output_descriptor,
sample.secure_buffer_fid),
OEMCrypto_SUCCESS);
}
}
}
void EncryptData() {
AES_KEY aes_key;
AES_set_encrypt_key(key_, AES_BLOCK_SIZE * 8, &aes_key);
for (TestSample& sample : samples_) {
uint8_t iv[KEY_IV_SIZE]; // Current IV
memcpy(iv, initial_iv_, KEY_IV_SIZE);
memcpy(sample.description.iv, initial_iv_, KEY_IV_SIZE);
size_t buffer_index = 0; // byte index into in and out.
size_t block_offset = 0; // byte index into current block.
for (const OEMCrypto_SubSampleDescription& subsample :
sample.subsamples) {
// Copy clear content.
if (subsample.num_bytes_clear > 0) {
memcpy(&sample.encrypted_buffer[buffer_index],
&sample.truth_buffer[buffer_index], subsample.num_bytes_clear);
buffer_index += subsample.num_bytes_clear;
}
// The IV resets at the start of each subsample in the 'cbcs' schema.
if (cipher_mode_ == OEMCrypto_CipherMode_CBC) {
memcpy(iv, initial_iv_, KEY_IV_SIZE);
}
size_t pattern_offset = 0;
const size_t subsample_end =
buffer_index + subsample.num_bytes_encrypted;
while (buffer_index < subsample_end) {
const size_t size =
min(subsample_end - buffer_index, AES_BLOCK_SIZE - block_offset);
const size_t pattern_length = pattern_.encrypt + pattern_.skip;
const bool skip_block =
(pattern_offset >= pattern_.encrypt) && (pattern_length > 0);
if (pattern_length > 0) {
pattern_offset = (pattern_offset + 1) % pattern_length;
}
// CBC mode should just copy a partial block at the end. If there
// is a partial block at the beginning, an error is returned, so we
// can put whatever we want in the output buffer.
if (skip_block || ((cipher_mode_ == OEMCrypto_CipherMode_CBC) &&
(size < AES_BLOCK_SIZE))) {
memcpy(&sample.encrypted_buffer[buffer_index],
&sample.truth_buffer[buffer_index], size);
block_offset = 0; // Next block should be complete.
} else {
if (cipher_mode_ == OEMCrypto_CipherMode_CTR) {
uint8_t aes_output[AES_BLOCK_SIZE];
AES_encrypt(iv, aes_output, &aes_key);
for (size_t n = 0; n < size; n++) {
sample.encrypted_buffer[buffer_index + n] =
aes_output[n + block_offset] ^
sample.truth_buffer[buffer_index + n];
}
if (size + block_offset < AES_BLOCK_SIZE) {
// Partial block. Don't increment iv. Compute next block
// offset.
block_offset = block_offset + size;
} else {
EXPECT_EQ(block_offset + size,
static_cast<size_t>(AES_BLOCK_SIZE));
// Full block. Increment iv, and set offset to 0 for next
// block.
ctr128_inc64(1, iv);
block_offset = 0;
}
} else {
uint8_t aes_input[AES_BLOCK_SIZE];
for (size_t n = 0; n < size; n++) {
aes_input[n] = sample.truth_buffer[buffer_index + n] ^ iv[n];
}
AES_encrypt(aes_input, &sample.encrypted_buffer[buffer_index],
&aes_key);
memcpy(iv, &sample.encrypted_buffer[buffer_index],
AES_BLOCK_SIZE);
// CBC mode should always start on block boundary.
block_offset = 0;
}
}
buffer_index += size;
} // encryption loop
} // per-subsample loop
} // per-sample loop
}
void LoadLicense() {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
uint32_t control = wvoec::kControlNonceEnabled;
if (verify_crc_) control |= kControlAllowHashVerification;
if (output_buffer_type_ == OEMCrypto_BufferType_Secure)
control |= kControlObserveDataPath | kControlDataPathSecure;
license_messages_.set_control(control);
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
license_messages_.core_response()
.timer_limits.initial_renewal_duration_seconds = kDuration;
memcpy(license_messages_.response_data().keys[0].key_data, key_,
sizeof(key_));
license_messages_.response_data().keys[0].cipher_mode = cipher_mode_;
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
ASSERT_EQ(OEMCrypto_SelectKey(
session_.session_id(), session_.license().keys[0].key_id,
session_.license().keys[0].key_id_length, cipher_mode_),
OEMCrypto_SUCCESS);
}
void TestDecryptCENC() {
OEMCryptoResult sts;
// If supported, check the decrypt hashes.
if (verify_crc_) {
// OEMCrypto only supports providing a decrypt hash for the first sample
// in the sample array.
const TestSample& sample = samples_[0];
uint32_t hash =
wvcrc32(sample.truth_buffer.data(), sample.truth_buffer.size());
ASSERT_EQ(OEMCrypto_SetDecryptHash(
session_.session_id(), 1,
reinterpret_cast<const uint8_t*>(&hash), sizeof(hash)),
OEMCrypto_SUCCESS);
}
// Build an array of just the sample descriptions.
std::vector<OEMCrypto_SampleDescription> sample_descriptions;
sample_descriptions.reserve(samples_.size());
for (TestSample& sample : samples_) {
// This must be deferred until this point in case the test modifies the
// buffer before testing decrypt.
sample.description.buffers.input_data = sample.encrypted_buffer.data();
// Append to the description array.
sample_descriptions.push_back(sample.description);
}
// Perform decryption using the test data that was previously set up.
sts = DecryptFallbackChain::Decrypt(
session_.session_id(), sample_descriptions.data(),
sample_descriptions.size(), cipher_mode_, &pattern_);
ASSERT_EQ(sts, OEMCrypto_SUCCESS);
// Validate the decrypted data.
for (TestSample& sample : samples_) {
if (sample.description.buffers.output_descriptor.type ==
OEMCrypto_BufferType_Clear) {
const size_t total_size = sample.description.buffers.input_data_length;
// To verify there is no buffer overrun after decrypting, look at the
// padded bytes just after the data buffer that was written. It should
// not have changed from the original 0xaa that we set in MakeBuffer
// function.
if (decrypt_inplace_) {
EXPECT_EQ(std::count(sample.encrypted_buffer.begin() + total_size,
sample.encrypted_buffer.end(), 0xaa),
static_cast<int32_t>(kBufferOverrunPadding))
<< "Buffer overrun.";
sample.encrypted_buffer.resize(total_size); // Remove padding.
// We expect encrypted buffer to have been changed by OEMCrypto.
EXPECT_EQ(sample.encrypted_buffer, sample.truth_buffer);
} else {
EXPECT_EQ(std::count(sample.clear_buffer.begin() + total_size,
sample.clear_buffer.end(), 0xaa),
static_cast<int32_t>(kBufferOverrunPadding))
<< "Buffer overrun.";
sample.clear_buffer.resize(total_size); // Remove padding.
EXPECT_EQ(sample.clear_buffer, sample.truth_buffer);
}
}
}
if (global_features.supports_crc) {
uint32_t frame;
ASSERT_EQ(OEMCrypto_GetHashErrorCode(session_.session_id(), &frame),
OEMCrypto_SUCCESS);
}
}
// Parameters of test case
OEMCrypto_CENCEncryptPatternDesc pattern_;
OEMCryptoCipherMode cipher_mode_;
bool decrypt_inplace_; // If true, input and output buffers are the same.
OEMCryptoBufferType output_buffer_type_;
bool verify_crc_;
uint8_t key_[AES_BLOCK_SIZE]; // Encryption Key.
uint8_t initial_iv_[KEY_IV_SIZE]; // Starting IV for every sample.
std::vector<TestSample> samples_;
};
TEST_P(OEMCryptoSessionTestsDecryptTests, SingleLargeSubsample) {
// This subsample size is larger than a few encrypt/skip patterns. Most
// test cases use a pattern length of 160, so we'll run through at least two
// full patterns if we have more than 320 -- round up to 400.
ASSERT_NO_FATAL_FAILURE(SetSubsampleSizes({
{0, 400},
}));
ASSERT_NO_FATAL_FAILURE(LoadLicense());
ASSERT_NO_FATAL_FAILURE(MakeBuffers());
ASSERT_NO_FATAL_FAILURE(EncryptData());
ASSERT_NO_FATAL_FAILURE(TestDecryptCENC());
}
// When the pattern length is 10 blocks, there is a discrepancy between the
// HLS and the CENC standards for samples of size 160*N+16, for N = 1, 2, 3...
// We require the CENC standard for OEMCrypto, and let a layer above us break
// samples into pieces if they wish to use the HLS standard.
TEST_P(OEMCryptoSessionTestsDecryptTests, PatternPlusOneBlock) {
ASSERT_NO_FATAL_FAILURE(SetSubsampleSizes({
{0, 160 + 16},
}));
ASSERT_NO_FATAL_FAILURE(LoadLicense());
ASSERT_NO_FATAL_FAILURE(MakeBuffers());
ASSERT_NO_FATAL_FAILURE(EncryptData());
ASSERT_NO_FATAL_FAILURE(TestDecryptCENC());
}
// Test that a single block can be decrypted.
TEST_P(OEMCryptoSessionTestsDecryptTests, OneBlock) {
ASSERT_NO_FATAL_FAILURE(SetSubsampleSizes({
{0, 16},
}));
ASSERT_NO_FATAL_FAILURE(LoadLicense());
ASSERT_NO_FATAL_FAILURE(MakeBuffers());
ASSERT_NO_FATAL_FAILURE(EncryptData());
ASSERT_NO_FATAL_FAILURE(TestDecryptCENC());
}
// This tests the ability to decrypt multiple subsamples with no offset.
// There is no offset within the block, used by CTR mode.
TEST_P(OEMCryptoSessionTestsDecryptTests, NoOffset) {
ASSERT_NO_FATAL_FAILURE(SetSubsampleSizes({
{25, 160},
{50, 256},
{25, 160},
}));
ASSERT_NO_FATAL_FAILURE(LoadLicense());
ASSERT_NO_FATAL_FAILURE(MakeBuffers());
ASSERT_NO_FATAL_FAILURE(EncryptData());
ASSERT_NO_FATAL_FAILURE(TestDecryptCENC());
}
// This tests an offset into the block for the second encrypted subsample.
// This should only work for CTR mode, for CBC mode an error is expected in
// the decrypt step.
// If this test fails for CTR mode, then it is probably handling the
// block_offset incorrectly.
TEST_P(OEMCryptoSessionTestsDecryptTests, EvenOffset) {
ASSERT_NO_FATAL_FAILURE(SetSubsampleSizes({
{25, 8},
{25, 32},
{25, 50},
}));
ASSERT_NO_FATAL_FAILURE(LoadLicense());
ASSERT_NO_FATAL_FAILURE(MakeBuffers());
// CTR Mode is self-inverse -- i.e. We can pick the encrypted data and
// compute the unencrypted data. By picking the encrypted data to be all 0,
// it is easier to re-encrypt the data and debug problems. Similarly, we
// pick an iv = 0.
memset(initial_iv_, 0, KEY_IV_SIZE);
TestSample& sample = samples_[0]; // There is only one sample in this test
sample.truth_buffer.assign(sample.description.buffers.input_data_length, 0);
ASSERT_NO_FATAL_FAILURE(EncryptData());
if (decrypt_inplace_) {
const size_t total_size = sample.description.buffers.input_data_length;
// In case of decrypt_inplace_, encrypted_buffer contains padded bytes
// which is used for buffer overrun validation. Do not copy the padded
// bytes to truth_buffer.
sample.truth_buffer.assign(sample.encrypted_buffer.begin(),
sample.encrypted_buffer.begin() + total_size);
} else {
sample.truth_buffer =
sample.encrypted_buffer; // truth_buffer_ = encrypted zero buffer.
}
// Run EncryptData to re-encrypt this buffer. For CTR mode, we should get
// back to zeros.
ASSERT_NO_FATAL_FAILURE(EncryptData());
ASSERT_NO_FATAL_FAILURE(TestDecryptCENC());
}
// If the EvenOffset test passes, but this one doesn't, then DecryptCENC might
// be using the wrong definition of block offset. Adding the block offset to
// the block boundary should give you the beginning of the encrypted data.
// This should only work for CTR mode, for CBC mode, the block offset must be
// 0, so an error is expected in the decrypt step.
// Another way to view the block offset is with the formula:
// block_boundary + block_offset = beginning of subsample.
TEST_P(OEMCryptoSessionTestsDecryptTests, OddOffset) {
ASSERT_NO_FATAL_FAILURE(SetSubsampleSizes({
{10, 50},
{10, 75},
{10, 75},
}));
ASSERT_NO_FATAL_FAILURE(LoadLicense());
ASSERT_NO_FATAL_FAILURE(MakeBuffers());
ASSERT_NO_FATAL_FAILURE(EncryptData());
ASSERT_NO_FATAL_FAILURE(TestDecryptCENC());
}
// This tests that the algorithm used to increment the counter for
// AES-CTR mode is correct. There are two possible implementations:
// 1) increment the counter as if it were a 128 bit number,
// 2) increment the low 64 bits as a 64 bit number and leave the high bits
// alone.
// For CENC, the algorithm we should use is the second one. OpenSSL defaults to
// the first. If this test is not passing, you should look at the way you
// increment the counter. Look at the example code in ctr128_inc64 above.
// If you start with an IV of 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE, after you
// increment twice, you should get 0xFFFFFFFFFFFFFFFF0000000000000000.
TEST_P(OEMCryptoSessionTestsDecryptTests, DecryptWithNearWrap) {
memcpy(initial_iv_, wvcdm::a2b_hex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE").data(),
KEY_IV_SIZE);
ASSERT_NO_FATAL_FAILURE(SetSubsampleSizes({
{0, 256},
}));
ASSERT_NO_FATAL_FAILURE(LoadLicense());
ASSERT_NO_FATAL_FAILURE(MakeBuffers());
ASSERT_NO_FATAL_FAILURE(EncryptData());
ASSERT_NO_FATAL_FAILURE(TestDecryptCENC());
}
// This tests the case where an encrypted sample is not an even number of
// blocks. For CTR mode, the partial block is encrypted. For CBC mode the
// partial block should be a copy of the clear data.
TEST_P(OEMCryptoSessionTestsDecryptTests, PartialBlock) {
// Note: for more complete test coverage, we want a sample size that is in
// the encrypted range for some tests, e.g. (3,7), and in the skip range for
// other tests, e.g. (7, 3). 3*16 < 50 and 7*16 > 50.
ASSERT_NO_FATAL_FAILURE(SetSubsampleSizes({
{0, 50},
}));
ASSERT_NO_FATAL_FAILURE(LoadLicense());
ASSERT_NO_FATAL_FAILURE(MakeBuffers());
ASSERT_NO_FATAL_FAILURE(EncryptData());
ASSERT_NO_FATAL_FAILURE(TestDecryptCENC());
}
// Based on the resource rating, OEMCrypto should be able to handle the maximum
// amount of data that can be passed to it. This is the lesser of:
//
// 1) The maximum total sample size
// 2) The maximum number of subsamples multiplied by the maximum subsample size
TEST_P(OEMCryptoSessionTestsDecryptTests, DecryptMaxSampleAPI16) {
const size_t max_sample_size = GetResourceValue(kMaxSampleSize);
const size_t max_subsample_size = GetResourceValue(kMaxSubsampleSize);
const size_t max_num_subsamples = GetResourceValue(kMaxNumberSubsamples);
// The +1 on this line ensures that, even in cases where max_sample_size is
// not evenly divisible by max_num_subsamples and thus the division gets
// truncated, (max_num_subsamples * subsample_size) will be greater than
// max_sample_size.
const size_t subsample_size =
std::min(max_sample_size / max_num_subsamples + 1, max_subsample_size);
size_t bytes_remaining = max_sample_size;
std::vector<SubsampleSize> subsample_sizes;
while (bytes_remaining > 0 && subsample_sizes.size() < max_num_subsamples) {
const size_t this_subsample_size =
std::min(subsample_size, bytes_remaining);
const size_t clear_size = this_subsample_size / 2;
const size_t encrypted_size = this_subsample_size - clear_size;
subsample_sizes.push_back({clear_size, encrypted_size});
bytes_remaining -= this_subsample_size;
}
ASSERT_NO_FATAL_FAILURE(SetSubsampleSizes(subsample_sizes));
ASSERT_NO_FATAL_FAILURE(LoadLicense());
ASSERT_NO_FATAL_FAILURE(MakeBuffers());
ASSERT_NO_FATAL_FAILURE(EncryptData());
ASSERT_NO_FATAL_FAILURE(TestDecryptCENC());
}
// Based on the resource rating, OEMCrypto should be able to handle the maximum
// subsample size.
TEST_P(OEMCryptoSessionTestsDecryptTests, DecryptMaxSubsample) {
const size_t max = GetResourceValue(kMaxSubsampleSize);
const size_t half_max = max / 2;
// This test assumes that the maximum sample size is always more than three
// times the maximum subsample size.
ASSERT_NO_FATAL_FAILURE(SetSubsampleSizes({
{max, 0},
{0, max},
{half_max, max - half_max},
}));
ASSERT_NO_FATAL_FAILURE(LoadLicense());
ASSERT_NO_FATAL_FAILURE(MakeBuffers());
ASSERT_NO_FATAL_FAILURE(EncryptData());
ASSERT_NO_FATAL_FAILURE(TestDecryptCENC());
}
// There are probably no frames this small, but we should handle them anyway.
TEST_P(OEMCryptoSessionTestsDecryptTests, DecryptSmallBuffer) {
ASSERT_NO_FATAL_FAILURE(SetSubsampleSizes({
{5, 5},
}));
ASSERT_NO_FATAL_FAILURE(LoadLicense());
ASSERT_NO_FATAL_FAILURE(MakeBuffers());
ASSERT_NO_FATAL_FAILURE(EncryptData());
ASSERT_NO_FATAL_FAILURE(TestDecryptCENC());
}
// Test the case where there is only a clear subsample and no encrypted
// subsample.
TEST_P(OEMCryptoSessionTestsDecryptTests, DecryptUnencrypted) {
ASSERT_NO_FATAL_FAILURE(SetSubsampleSizes({
{256, 0},
}));
ASSERT_NO_FATAL_FAILURE(LoadLicense());
ASSERT_NO_FATAL_FAILURE(MakeBuffers());
ASSERT_NO_FATAL_FAILURE(EncryptData());
ASSERT_NO_FATAL_FAILURE(TestDecryptCENC());
}
TEST_P(OEMCryptoSessionTestsDecryptTests, DecryptUnencryptedNoKey) {
// Do not try to compute the CRC because we have not loaded a license.
verify_crc_ = false;
// Single clear subsample
ASSERT_NO_FATAL_FAILURE(SetSubsampleSizes({
{400, 0},
}));
ASSERT_NO_FATAL_FAILURE(MakeBuffers());
// Clear data should be copied even if there is no key selected, and no
// license loaded.
// ASSERT_NO_FATAL_FAILURE(LoadLicense());
ASSERT_NO_FATAL_FAILURE(EncryptData());
ASSERT_NO_FATAL_FAILURE(TestDecryptCENC());
}
// This tests the ability to decrypt multiple samples at once.
TEST_P(OEMCryptoSessionTestsDecryptTests, MultipleSamples) {
ASSERT_NO_FATAL_FAILURE(SetSampleSizes({
{
{52, 160},
{25, 256},
{25, 320},
},
{
{300, 64},
{50, 160},
{2, 160},
{24, 160},
{128, 256},
},
{
{70, 320},
{160, 160},
},
}));
ASSERT_NO_FATAL_FAILURE(LoadLicense());
ASSERT_NO_FATAL_FAILURE(MakeBuffers());
ASSERT_NO_FATAL_FAILURE(EncryptData());
ASSERT_NO_FATAL_FAILURE(TestDecryptCENC());
}
// Used to construct a specific pattern.
constexpr OEMCrypto_CENCEncryptPatternDesc MakePattern(size_t encrypt,
size_t skip) {
return {encrypt, skip};
}
INSTANTIATE_TEST_CASE_P(
CTRTests, OEMCryptoSessionTestsDecryptTests,
Combine(Values(MakePattern(0, 0)), Values(OEMCrypto_CipherMode_CTR),
::testing::ValuesIn(global_features.GetOutputTypes())));
// Decrypt in place for CBC tests was only required in v13.
INSTANTIATE_TEST_CASE_P(
CBCTestsAPI14, OEMCryptoSessionTestsDecryptTests,
Combine(
Values(MakePattern(3, 7), MakePattern(9, 1),
// HLS edge cases. We should follow the CENC spec, not HLS spec.
MakePattern(1, 9), MakePattern(1, 0),
// AV1 patterns not already covered above.
MakePattern(5, 5), MakePattern(10, 0)),
Values(OEMCrypto_CipherMode_CBC),
::testing::ValuesIn(global_features.GetOutputTypes())));
// A request to decrypt data to a clear buffer when the key control block
// requires a secure data path.
TEST_P(OEMCryptoLicenseTest, DecryptSecureToClear) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
license_messages_.set_control(wvoec::kControlObserveDataPath |
wvoec::kControlDataPathSecure);
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
ASSERT_NO_FATAL_FAILURE(
session_.TestDecryptCTR(true, OEMCrypto_ERROR_UNKNOWN_FAILURE));
}
// If analog is forbidden, then decrypt to a clear buffer should be forbidden.
TEST_P(OEMCryptoLicenseTest, DecryptNoAnalogToClearAPI13) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
license_messages_.set_control(wvoec::kControlDisableAnalogOutput);
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
ASSERT_NO_FATAL_FAILURE(
session_.TestDecryptCTR(true, OEMCrypto_ERROR_ANALOG_OUTPUT));
}
// Test that key duration is honored.
TEST_P(OEMCryptoLicenseTest, KeyDuration) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
license_messages_.core_response()
.timer_limits.total_playback_duration_seconds = kDuration;
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
ASSERT_NO_FATAL_FAILURE(session_.TestDecryptCTR(true, OEMCrypto_SUCCESS));
wvcdm::TestSleep::Sleep(kShortSleep); // Should still be valid key.
ASSERT_NO_FATAL_FAILURE(session_.TestDecryptCTR(false, OEMCrypto_SUCCESS));
wvcdm::TestSleep::Sleep(kLongSleep); // Should be expired key.
ASSERT_NO_FATAL_FAILURE(
session_.TestDecryptCTR(false, OEMCrypto_ERROR_KEY_EXPIRED));
ASSERT_NO_FATAL_FAILURE(session_.TestSelectExpired(0));
}
INSTANTIATE_TEST_CASE_P(TestAll, OEMCryptoLicenseTest,
Range<uint32_t>(kCurrentAPI - 1, kCurrentAPI + 1));
//
// Certificate Root of Trust Tests
//
class OEMCryptoLoadsCertificate : public OEMCryptoSessionTestKeyboxTest {};
// This test verifies that we can create a wrapped RSA key, and then reload it.
TEST_F(OEMCryptoLoadsCertificate, LoadRSASessionKey) {
CreateWrappedRSAKey();
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
ASSERT_NO_FATAL_FAILURE(s.InstallRSASessionTestKey(wrapped_rsa_key_));
}
TEST_F(OEMCryptoLoadsCertificate, SignProvisioningRequest) {
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
if (global_features.provisioning_method == OEMCrypto_OEMCertificate) {
s.LoadOEMCert(true);
} else {
EXPECT_EQ(global_features.provisioning_method, OEMCrypto_Keybox);
s.GenerateDerivedKeysFromKeybox(keybox_);
}
s.GenerateNonce();
ProvisioningRoundTrip provisioning_messages(&s, encoded_rsa_key_);
ASSERT_NO_FATAL_FAILURE(provisioning_messages.SignAndVerifyRequest());
}
// This tests a large message size. The size is larger than we required in v15.
TEST_F(OEMCryptoLoadsCertificate, SignLargeProvisioningRequestAPI16) {
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
if (global_features.provisioning_method == OEMCrypto_OEMCertificate) {
s.LoadOEMCert(true);
} else {
EXPECT_EQ(global_features.provisioning_method, OEMCrypto_Keybox);
s.GenerateDerivedKeysFromKeybox(keybox_);
}
s.GenerateNonce();
ProvisioningRoundTrip provisioning_messages(&s, encoded_rsa_key_);
const size_t max_size = GetResourceValue(kLargeMessageSize);
provisioning_messages.set_message_size(max_size);
ASSERT_NO_FATAL_FAILURE(provisioning_messages.SignAndVerifyRequest());
}
// This creates a wrapped RSA key, and then does the sanity check that the
// unencrypted key is not found in the wrapped key. The wrapped key should be
// encrypted.
TEST_F(OEMCryptoLoadsCertificate, CertificateProvision) {
Session s;
ProvisioningRoundTrip provisioning_messages(&s, encoded_rsa_key_);
provisioning_messages.PrepareSession(keybox_);
ASSERT_NO_FATAL_FAILURE(provisioning_messages.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(provisioning_messages.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(provisioning_messages.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_SUCCESS, provisioning_messages.LoadResponse());
// We should not be able to find the rsa key in the wrapped key. It should
// be encrypted.
EXPECT_EQ(nullptr, find(provisioning_messages.wrapped_rsa_key(),
provisioning_messages.encoded_rsa_key()));
}
// Verify that RewrapDeviceRSAKey checks pointers are within the provisioning
// message.
TEST_F(OEMCryptoLoadsCertificate, CertificateProvisionBadRange1_API16) {
Session s;
ProvisioningRoundTrip provisioning_messages(&s, encoded_rsa_key_);
provisioning_messages.PrepareSession(keybox_);
ASSERT_NO_FATAL_FAILURE(provisioning_messages.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(provisioning_messages.CreateDefaultResponse());
provisioning_messages.core_response().enc_private_key.offset =
provisioning_messages.encrypted_response_buffer().size() + 1;
ASSERT_NO_FATAL_FAILURE(provisioning_messages.EncryptAndSignResponse());
ASSERT_NE(OEMCrypto_SUCCESS, provisioning_messages.LoadResponse());
provisioning_messages.VerifyLoadFailed();
}
// Verify that RewrapDeviceRSAKey checks pointers are within the provisioning
// message.
TEST_F(OEMCryptoLoadsCertificate, CertificateProvisionBadRange2_API16) {
Session s;
ProvisioningRoundTrip provisioning_messages(&s, encoded_rsa_key_);
provisioning_messages.PrepareSession(keybox_);
ASSERT_NO_FATAL_FAILURE(provisioning_messages.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(provisioning_messages.CreateDefaultResponse());
provisioning_messages.core_response().enc_private_key_iv.offset =
provisioning_messages.encrypted_response_buffer().size() + 1;
ASSERT_NO_FATAL_FAILURE(provisioning_messages.EncryptAndSignResponse());
ASSERT_NE(OEMCrypto_SUCCESS, provisioning_messages.LoadResponse());
provisioning_messages.VerifyLoadFailed();
}
// Verify that RewrapDeviceRSAKey checks pointers are within the provisioning
// message.
TEST_F(OEMCryptoLoadsCertificate, CertificateProvisionBadRange3_API16) {
Session s;
ProvisioningRoundTrip provisioning_messages(&s, encoded_rsa_key_);
provisioning_messages.PrepareSession(keybox_);
ASSERT_NO_FATAL_FAILURE(provisioning_messages.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(provisioning_messages.CreateDefaultResponse());
// If the offset is before the end, but the offset+length is bigger, then
// the message should be rejected.
provisioning_messages.core_response().enc_private_key.offset =
provisioning_messages.encrypted_response_buffer().size() - 5;
ASSERT_NO_FATAL_FAILURE(provisioning_messages.EncryptAndSignResponse());
ASSERT_NE(OEMCrypto_SUCCESS, provisioning_messages.LoadResponse());
provisioning_messages.VerifyLoadFailed();
}
// Verify that RewrapDeviceRSAKey checks pointers are within the provisioning
// message.
TEST_F(OEMCryptoLoadsCertificate, CertificateProvisionBadRange4_API16) {
Session s;
ProvisioningRoundTrip provisioning_messages(&s, encoded_rsa_key_);
provisioning_messages.PrepareSession(keybox_);
ASSERT_NO_FATAL_FAILURE(provisioning_messages.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(provisioning_messages.CreateDefaultResponse());
// If the offset is before the end, but the offset+length is bigger, then
// the message should be rejected.
provisioning_messages.core_response().enc_private_key_iv.offset =
provisioning_messages.encrypted_response_buffer().size() - 5;
ASSERT_NO_FATAL_FAILURE(provisioning_messages.EncryptAndSignResponse());
ASSERT_NE(OEMCrypto_SUCCESS, provisioning_messages.LoadResponse());
provisioning_messages.VerifyLoadFailed();
}
// Verify that RewrapDeviceRSAKey checks pointers are within the provisioning
// message.
TEST_F(OEMCryptoLoadsCertificate, CertificateProvisionBadRange5Prov30_API16) {
Session s;
ProvisioningRoundTrip provisioning_messages(&s, encoded_rsa_key_);
provisioning_messages.PrepareSession(keybox_);
ASSERT_NO_FATAL_FAILURE(provisioning_messages.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(provisioning_messages.CreateDefaultResponse());
// If the offset is before the end, but the offset+length is bigger, then
// the message should be rejected.
provisioning_messages.core_response().encrypted_message_key.offset =
provisioning_messages.encrypted_response_buffer().size() + 1;
ASSERT_NO_FATAL_FAILURE(provisioning_messages.EncryptAndSignResponse());
ASSERT_NE(OEMCrypto_SUCCESS, provisioning_messages.LoadResponse());
provisioning_messages.VerifyLoadFailed();
}
// Test that RewrapDeviceRSAKey verifies the message signature.
// TODO(b/144186970): This test should also run on Prov 3.0 devices.
TEST_F(OEMCryptoLoadsCertificate,
CertificateProvisionBadSignatureKeyboxTestAPI16) {
Session s;
ProvisioningRoundTrip provisioning_messages(&s, encoded_rsa_key_);
provisioning_messages.PrepareSession(keybox_);
ASSERT_NO_FATAL_FAILURE(provisioning_messages.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(provisioning_messages.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(provisioning_messages.EncryptAndSignResponse());
provisioning_messages.response_signature()[4] ^= 42; // bad signature.
ASSERT_EQ(OEMCrypto_ERROR_SIGNATURE_FAILURE,
provisioning_messages.LoadResponse());
provisioning_messages.VerifyLoadFailed();
}
// Test that RewrapDeviceRSAKey verifies the nonce is current.
TEST_F(OEMCryptoLoadsCertificate, CertificateProvisionBadNonce_API16) {
Session s;
ProvisioningRoundTrip provisioning_messages(&s, encoded_rsa_key_);
provisioning_messages.PrepareSession(keybox_);
ASSERT_NO_FATAL_FAILURE(provisioning_messages.SignAndVerifyRequest());
provisioning_messages.core_request().nonce ^= 42; // bad nonce.
ASSERT_NO_FATAL_FAILURE(provisioning_messages.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(provisioning_messages.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_ERROR_INVALID_NONCE,
provisioning_messages.LoadResponse());
provisioning_messages.VerifyLoadFailed();
}
// Test that RewrapDeviceRSAKey verifies the RSA key is valid.
TEST_F(OEMCryptoLoadsCertificate, CertificateProvisionBadRSAKey) {
Session s;
ProvisioningRoundTrip provisioning_messages(&s, encoded_rsa_key_);
provisioning_messages.PrepareSession(keybox_);
ASSERT_NO_FATAL_FAILURE(provisioning_messages.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(provisioning_messages.CreateDefaultResponse());
provisioning_messages.response_data().rsa_key[4] ^= 42; // bad key.
ASSERT_NO_FATAL_FAILURE(provisioning_messages.EncryptAndSignResponse());
ASSERT_NE(OEMCrypto_SUCCESS, provisioning_messages.LoadResponse());
provisioning_messages.VerifyLoadFailed();
}
// Test that RewrapDeviceRSAKey verifies the RSA key is valid.
// TODO(b/144186970): This test should also run on Prov 3.0 devices.
TEST_F(OEMCryptoLoadsCertificate,
CertificateProvisionBadRSAKeyKeyboxTestAPI16) {
Session s;
ProvisioningRoundTrip provisioning_messages(&s, encoded_rsa_key_);
provisioning_messages.PrepareSession(keybox_);
ASSERT_NO_FATAL_FAILURE(provisioning_messages.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(provisioning_messages.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(provisioning_messages.EncryptAndSignResponse());
size_t rsa_offset =
provisioning_messages.core_response().enc_private_key.offset;
// Offsets are relative to the message body, after the core message.
rsa_offset += provisioning_messages.serialized_core_message().size();
rsa_offset += 4; // Change the middle of the key.
provisioning_messages.encrypted_response_buffer()[rsa_offset] ^= 42;
ASSERT_EQ(OEMCrypto_ERROR_SIGNATURE_FAILURE,
provisioning_messages.LoadResponse());
provisioning_messages.VerifyLoadFailed();
}
// Test that RewrapDeviceRSAKey accepts the maximum message size.
TEST_F(OEMCryptoLoadsCertificate, CertificateProvisionLargeBuffer) {
Session s;
ProvisioningRoundTrip provisioning_messages(&s, encoded_rsa_key_);
const size_t max_size = GetResourceValue(kLargeMessageSize);
provisioning_messages.set_message_size(max_size);
provisioning_messages.PrepareSession(keybox_);
ASSERT_NO_FATAL_FAILURE(provisioning_messages.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(provisioning_messages.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(provisioning_messages.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_SUCCESS, provisioning_messages.LoadResponse());
// We should not be able to find the rsa key in the wrapped key. It should
// be encrypted.
EXPECT_EQ(nullptr, find(provisioning_messages.wrapped_rsa_key(),
provisioning_messages.encoded_rsa_key()));
}
// Test that a wrapped RSA key can be loaded.
TEST_F(OEMCryptoLoadsCertificate, LoadWrappedRSAKey) {
OEMCryptoResult sts;
CreateWrappedRSAKey();
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
sts = OEMCrypto_LoadDRMPrivateKey(s.session_id(), OEMCrypto_RSA_Private_Key,
wrapped_rsa_key_.data(),
wrapped_rsa_key_.size());
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
}
// Test a 3072 bit RSA key certificate.
TEST_F(OEMCryptoLoadsCertificate, TestLargeRSAKey3072) {
encoded_rsa_key_.assign(kTestRSAPKCS8PrivateKeyInfo3_3072,
kTestRSAPKCS8PrivateKeyInfo3_3072 +
sizeof(kTestRSAPKCS8PrivateKeyInfo3_3072));
CreateWrappedRSAKey();
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
ASSERT_NO_FATAL_FAILURE(
s.PreparePublicKey(encoded_rsa_key_.data(), encoded_rsa_key_.size()));
ASSERT_NO_FATAL_FAILURE(s.InstallRSASessionTestKey(wrapped_rsa_key_));
LicenseRoundTrip license_messages(&s);
ASSERT_NO_FATAL_FAILURE(s.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_SUCCESS, license_messages.LoadResponse());
ASSERT_NO_FATAL_FAILURE(s.TestDecryptCTR());
}
// Test an RSA key certificate which has a private key generated using the
// Carmichael totient.
TEST_F(OEMCryptoLoadsCertificate, TestCarmichaelRSAKey) {
encoded_rsa_key_.assign(
kTestKeyRSACarmichael_2048,
kTestKeyRSACarmichael_2048 + sizeof(kTestKeyRSACarmichael_2048));
CreateWrappedRSAKey();
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
ASSERT_NO_FATAL_FAILURE(
s.PreparePublicKey(encoded_rsa_key_.data(), encoded_rsa_key_.size()));
ASSERT_NO_FATAL_FAILURE(s.InstallRSASessionTestKey(wrapped_rsa_key_));
LicenseRoundTrip license_messages(&s);
ASSERT_NO_FATAL_FAILURE(s.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_SUCCESS, license_messages.LoadResponse());
ASSERT_NO_FATAL_FAILURE(s.TestDecryptCTR());
}
// This tests that two sessions can use different RSA keys simultaneously.
TEST_F(OEMCryptoLoadsCertificate, TestMultipleRSAKeys) {
CreateWrappedRSAKey();
Session s1; // Session s1 loads the default rsa key, but doesn't use it
// until after s2 uses its key.
ASSERT_NO_FATAL_FAILURE(s1.open());
ASSERT_NO_FATAL_FAILURE(
s1.PreparePublicKey(encoded_rsa_key_.data(), encoded_rsa_key_.size()));
ASSERT_EQ(OEMCrypto_SUCCESS,
OEMCrypto_LoadDRMPrivateKey(
s1.session_id(), OEMCrypto_RSA_Private_Key,
wrapped_rsa_key_.data(), wrapped_rsa_key_.size()));
Session s2; // Session s2 uses a different rsa key.
encoded_rsa_key_.assign(kTestRSAPKCS8PrivateKeyInfo4_2048,
kTestRSAPKCS8PrivateKeyInfo4_2048 +
sizeof(kTestRSAPKCS8PrivateKeyInfo4_2048));
CreateWrappedRSAKey();
ASSERT_NO_FATAL_FAILURE(s2.open());
ASSERT_NO_FATAL_FAILURE(
s2.PreparePublicKey(encoded_rsa_key_.data(), encoded_rsa_key_.size()));
ASSERT_NO_FATAL_FAILURE(s2.InstallRSASessionTestKey(wrapped_rsa_key_));
LicenseRoundTrip license_messages2(&s2);
ASSERT_NO_FATAL_FAILURE(s2.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages2.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages2.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages2.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_SUCCESS, license_messages2.LoadResponse());
ASSERT_NO_FATAL_FAILURE(s2.TestDecryptCTR());
s2.close();
// After s2 has loaded its rsa key, we continue using s1's key.
LicenseRoundTrip license_messages1(&s1);
ASSERT_NO_FATAL_FAILURE(s1.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages1.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages1.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages1.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_SUCCESS, license_messages1.LoadResponse());
ASSERT_NO_FATAL_FAILURE(s1.TestDecryptCTR());
}
// Devices that load certificates, should at least support RSA 2048 keys.
TEST_F(OEMCryptoLoadsCertificate, SupportsCertificatesAPI13) {
ASSERT_NE(0u,
OEMCrypto_Supports_RSA_2048bit & OEMCrypto_SupportedCertificates())
<< "Supported certificates is only " << OEMCrypto_SupportedCertificates();
}
// These tests are run by all L1 devices that load and use certificates. It is
// also run by a few L3 devices that use a baked in certificate, but cannot load
// a certificate.
class OEMCryptoUsesCertificate : public OEMCryptoLoadsCertificate {
protected:
void SetUp() override {
OEMCryptoLoadsCertificate::SetUp();
ASSERT_NO_FATAL_FAILURE(session_.open());
if (global_features.derive_key_method !=
DeviceFeatures::LOAD_TEST_RSA_KEY) {
InstallTestRSAKey(&session_);
}
}
void TearDown() override {
ASSERT_NO_FATAL_FAILURE(session_.close());
OEMCryptoLoadsCertificate::TearDown();
}
Session session_;
};
// This test is not run by default, because it takes a long time and
// is used to measure RSA performance, not test functionality.
TEST_F(OEMCryptoLoadsCertificate, RSAPerformance) {
const std::chrono::milliseconds kTestDuration(5000);
OEMCryptoResult sts;
std::chrono::steady_clock clock;
wvcdm::TestSleep::Sleep(kShortSleep); // Make sure we are not nonce limited.
auto start_time = clock.now();
int count = 15;
for (int i = 0; i < count; i++) { // Only 20 nonce available.
CreateWrappedRSAKey();
}
auto delta_time = clock.now() - start_time;
const double provision_time =
delta_time / std::chrono::milliseconds(1) / count;
Session session;
CreateWrappedRSAKey();
start_time = clock.now();
count = 0;
while (clock.now() - start_time < kTestDuration) {
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
sts = OEMCrypto_LoadDRMPrivateKey(s.session_id(), OEMCrypto_RSA_Private_Key,
wrapped_rsa_key_.data(),
wrapped_rsa_key_.size());
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
const size_t size = 50;
vector<uint8_t> licenseRequest(size);
GetRandBytes(licenseRequest.data(), licenseRequest.size());
size_t signature_length = 0;
sts = OEMCrypto_GenerateRSASignature(s.session_id(), licenseRequest.data(),
licenseRequest.size(), nullptr,
&signature_length, kSign_RSASSA_PSS);
ASSERT_EQ(OEMCrypto_ERROR_SHORT_BUFFER, sts);
ASSERT_NE(static_cast<size_t>(0), signature_length);
uint8_t* signature = new uint8_t[signature_length];
sts = OEMCrypto_GenerateRSASignature(s.session_id(), licenseRequest.data(),
licenseRequest.size(), signature,
&signature_length, kSign_RSASSA_PSS);
delete[] signature;
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
count++;
}
delta_time = clock.now() - start_time;
const double license_request_time =
delta_time / std::chrono::milliseconds(1) / count;
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
ASSERT_EQ(OEMCrypto_SUCCESS,
OEMCrypto_LoadDRMPrivateKey(
s.session_id(), OEMCrypto_RSA_Private_Key,
wrapped_rsa_key_.data(), wrapped_rsa_key_.size()));
vector<uint8_t> session_key;
vector<uint8_t> enc_session_key;
ASSERT_NO_FATAL_FAILURE(
s.PreparePublicKey(encoded_rsa_key_.data(), encoded_rsa_key_.size()));
ASSERT_TRUE(s.GenerateRSASessionKey(&session_key, &enc_session_key));
vector<uint8_t> mac_context;
vector<uint8_t> enc_context;
s.FillDefaultContext(&mac_context, &enc_context);
enc_session_key = wvcdm::a2b_hex(
"7789c619aa3b9fa3c0a53f57a4abc6"
"02157c8aa57e3c6fb450b0bea22667fb"
"0c3200f9d9d618e397837c720dc2dadf"
"486f33590744b2a4e54ca134ae7dbf74"
"434c2fcf6b525f3e132262f05ea3b3c1"
"198595c0e52b573335b2e8a3debd0d0d"
"d0306f8fcdde4e76476be71342957251"
"e1688c9ca6c1c34ed056d3b989394160"
"cf6937e5ce4d39cc73d11a2e93da21a2"
"fa019d246c852fe960095b32f120c3c2"
"7085f7b64aac344a68d607c0768676ce"
"d4c5b2d057f7601921b453a451e1dea0"
"843ebfef628d9af2784d68e86b730476"
"e136dfe19989de4be30a4e7878efcde5"
"ad2b1254f80c0c5dd3cf111b56572217"
"b9f58fc1dacbf74b59d354a1e62cfa0e"
"bf");
start_time = clock.now();
while (clock.now() - start_time < kTestDuration) {
ASSERT_EQ(OEMCrypto_SUCCESS,
OEMCrypto_DeriveKeysFromSessionKey(
s.session_id(), enc_session_key.data(),
enc_session_key.size(), mac_context.data(),
mac_context.size(), enc_context.data(), enc_context.size()));
count++;
}
delta_time = clock.now() - start_time;
const double derive_keys_time =
delta_time / std::chrono::milliseconds(1) / count;
const char* level = OEMCrypto_SecurityLevel();
printf("PERF:head, security, provision (ms), lic req(ms), derive keys(ms)\n");
printf("PERF:stat, %s, %8.3f, %8.3f, %8.3f\n", level, provision_time,
license_request_time, derive_keys_time);
}
// Test DeriveKeysFromSessionKey using the maximum size for the HMAC context.
TEST_F(OEMCryptoUsesCertificate, GenerateDerivedKeysLargeBuffer) {
vector<uint8_t> session_key;
vector<uint8_t> enc_session_key;
ASSERT_NO_FATAL_FAILURE(session_.PreparePublicKey(encoded_rsa_key_.data(),
encoded_rsa_key_.size()));
ASSERT_TRUE(session_.GenerateRSASessionKey(&session_key, &enc_session_key));
const size_t max_size = GetResourceValue(kLargeMessageSize);
vector<uint8_t> mac_context(max_size);
vector<uint8_t> enc_context(max_size);
// Stripe the data so the two vectors are not identical, and not all zeroes.
for (size_t i = 0; i < max_size; i++) {
mac_context[i] = i % 0x100;
enc_context[i] = (3 * i) % 0x100;
}
ASSERT_EQ(OEMCrypto_SUCCESS,
OEMCrypto_DeriveKeysFromSessionKey(
session_.session_id(), enc_session_key.data(),
enc_session_key.size(), mac_context.data(), mac_context.size(),
enc_context.data(), enc_context.size()));
}
// This test attempts to use alternate algorithms for loaded device certs.
class OEMCryptoLoadsCertificateAlternates : public OEMCryptoLoadsCertificate {
protected:
void DisallowForbiddenPadding(RSA_Padding_Scheme scheme, size_t size) {
OEMCryptoResult sts;
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
sts = OEMCrypto_LoadDRMPrivateKey(s.session_id(), OEMCrypto_RSA_Private_Key,
wrapped_rsa_key_.data(),
wrapped_rsa_key_.size());
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
// Sign a Message
vector<uint8_t> licenseRequest(size);
GetRandBytes(licenseRequest.data(), licenseRequest.size());
size_t signature_length = 256;
vector<uint8_t> signature(signature_length);
sts = OEMCrypto_GenerateRSASignature(
s.session_id(), licenseRequest.data(), licenseRequest.size(),
signature.data(), &signature_length, scheme);
// Allow OEMCrypto to request a full buffer.
if (sts == OEMCrypto_ERROR_SHORT_BUFFER) {
ASSERT_NE(static_cast<size_t>(0), signature_length);
signature.assign(signature_length, 0);
sts = OEMCrypto_GenerateRSASignature(
s.session_id(), licenseRequest.data(), licenseRequest.size(),
signature.data(), &signature_length, scheme);
}
EXPECT_NE(OEMCrypto_SUCCESS, sts)
<< "Signed with forbidden padding scheme=" << (int)scheme
<< ", size=" << (int)size;
vector<uint8_t> zero(signature_length, 0);
ASSERT_EQ(zero, signature); // signature should not be computed.
}
void TestSignature(RSA_Padding_Scheme scheme, size_t size) {
OEMCryptoResult sts;
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
sts = OEMCrypto_LoadDRMPrivateKey(s.session_id(), OEMCrypto_RSA_Private_Key,
wrapped_rsa_key_.data(),
wrapped_rsa_key_.size());
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
vector<uint8_t> licenseRequest(size);
GetRandBytes(licenseRequest.data(), licenseRequest.size());
size_t signature_length = 0;
sts = OEMCrypto_GenerateRSASignature(s.session_id(), licenseRequest.data(),
licenseRequest.size(), nullptr,
&signature_length, scheme);
ASSERT_EQ(OEMCrypto_ERROR_SHORT_BUFFER, sts);
ASSERT_NE(static_cast<size_t>(0), signature_length);
uint8_t* signature = new uint8_t[signature_length];
sts = OEMCrypto_GenerateRSASignature(s.session_id(), licenseRequest.data(),
licenseRequest.size(), signature,
&signature_length, scheme);
ASSERT_EQ(OEMCrypto_SUCCESS, sts)
<< "Failed to sign with padding scheme=" << (int)scheme
<< ", size=" << (int)size;
ASSERT_NO_FATAL_FAILURE(
s.PreparePublicKey(encoded_rsa_key_.data(), encoded_rsa_key_.size()));
ASSERT_NO_FATAL_FAILURE(s.VerifyRSASignature(licenseRequest, signature,
signature_length, scheme));
delete[] signature;
}
void DisallowDeriveKeys() {
OEMCryptoResult sts;
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
sts = OEMCrypto_LoadDRMPrivateKey(s.session_id(), OEMCrypto_RSA_Private_Key,
wrapped_rsa_key_.data(),
wrapped_rsa_key_.size());
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
s.GenerateNonce();
vector<uint8_t> session_key;
vector<uint8_t> enc_session_key;
ASSERT_NO_FATAL_FAILURE(
s.PreparePublicKey(encoded_rsa_key_.data(), encoded_rsa_key_.size()));
ASSERT_TRUE(s.GenerateRSASessionKey(&session_key, &enc_session_key));
vector<uint8_t> mac_context;
vector<uint8_t> enc_context;
s.FillDefaultContext(&mac_context, &enc_context);
ASSERT_NE(OEMCrypto_SUCCESS,
OEMCrypto_DeriveKeysFromSessionKey(
s.session_id(), enc_session_key.data(),
enc_session_key.size(), mac_context.data(),
mac_context.size(), enc_context.data(), enc_context.size()));
}
// If force is true, we assert that the key loads successfully.
void LoadWithAllowedSchemes(uint32_t schemes, bool force) {
Session s;
ProvisioningRoundTrip provisioning_messages(&s, encoded_rsa_key_);
provisioning_messages.set_allowed_schemes(schemes);
provisioning_messages.PrepareSession(keybox_);
ASSERT_NO_FATAL_FAILURE(provisioning_messages.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(provisioning_messages.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(provisioning_messages.EncryptAndSignResponse());
OEMCryptoResult sts = provisioning_messages.LoadResponse();
encoded_rsa_key_ = provisioning_messages.encoded_rsa_key();
wrapped_rsa_key_ = provisioning_messages.wrapped_rsa_key();
key_loaded_ = (wrapped_rsa_key_.size() > 0);
if (force) {
EXPECT_EQ(OEMCrypto_SUCCESS, sts);
EXPECT_EQ(nullptr, find(wrapped_rsa_key_, encoded_rsa_key_));
ASSERT_TRUE(key_loaded_);
}
}
bool key_loaded_;
};
// The alternate padding is only required for cast receivers, but all devices
// should forbid the alternate padding for regular certificates.
TEST_F(OEMCryptoLoadsCertificateAlternates, DisallowForbiddenPaddingAPI09) {
LoadWithAllowedSchemes(kSign_RSASSA_PSS, true); // Use default padding scheme
DisallowForbiddenPadding(kSign_PKCS1_Block1, 50);
}
// The alternate padding is only required for cast receivers, but if a device
// does load an alternate certificate, it should NOT use it for generating
// a license request signature.
TEST_F(OEMCryptoLoadsCertificateAlternates, TestSignaturePKCS1_API16) {
// Try to load an RSA key with alternative padding schemes. This signing
// scheme is used by cast receivers.
LoadWithAllowedSchemes(kSign_PKCS1_Block1, false);
// If the device is a cast receiver, then this scheme is required.
if (global_features.cast_receiver) ASSERT_TRUE(key_loaded_);
// If the key loaded with no error, then we will verify that it is not used
// for forbidden padding schemes.
if (key_loaded_) {
// The other padding scheme should fail.
DisallowForbiddenPadding(kSign_RSASSA_PSS, 83);
DisallowDeriveKeys();
if (global_features.cast_receiver) {
// A signature with a valid size should succeed.
TestSignature(kSign_PKCS1_Block1, 83);
TestSignature(kSign_PKCS1_Block1, 50);
}
// A signature with padding that is too big should fail.
DisallowForbiddenPadding(kSign_PKCS1_Block1, 84); // too big.
}
}
// This test verifies RSA signing with the alternate padding scheme used by
// Android cast receivers, PKCS1 Block 1. These tests are not required for
// other devices, and should be filtered out by DeviceFeatures::Initialize for
// those devices.
class OEMCryptoCastReceiverTest : public OEMCryptoLoadsCertificateAlternates {
protected:
vector<uint8_t> encode(uint8_t type, const vector<uint8_t>& substring) {
vector<uint8_t> result;
result.push_back(type);
if (substring.size() < 0x80) {
uint8_t length = substring.size();
result.push_back(length);
} else if (substring.size() < 0x100) {
result.push_back(0x81);
uint8_t length = substring.size();
result.push_back(length);
} else {
result.push_back(0x82);
uint16_t length = substring.size();
result.push_back(length >> 8);
result.push_back(length & 0xFF);
}
result.insert(result.end(), substring.begin(), substring.end());
return result;
}
vector<uint8_t> concat(const vector<uint8_t>& a, const vector<uint8_t>& b) {
vector<uint8_t> result = a;
result.insert(result.end(), b.begin(), b.end());
return result;
}
// This encodes the RSA key used in the PKCS#1 signing tests below.
void BuildRSAKey() {
vector<uint8_t> field_n =
encode(0x02, wvcdm::a2b_hex("00"
"df271fd25f8644496b0c81be4bd50297"
"ef099b002a6fd67727eb449cea566ed6"
"a3981a71312a141cabc9815c1209e320"
"a25b32464e9999f18ca13a9fd3892558"
"f9e0adefdd3650dd23a3f036d60fe398"
"843706a40b0b8462c8bee3bce12f1f28"
"60c2444cdc6a44476a75ff4aa24273cc"
"be3bf80248465f8ff8c3a7f3367dfc0d"
"f5b6509a4f82811cedd81cdaaa73c491"
"da412170d544d4ba96b97f0afc806549"
"8d3a49fd910992a1f0725be24f465cfe"
"7e0eabf678996c50bc5e7524abf73f15"
"e5bef7d518394e3138ce4944506aaaaf"
"3f9b236dcab8fc00f87af596fdc3d9d6"
"c75cd508362fae2cbeddcc4c7450b17b"
"776c079ecca1f256351a43b97dbe2153"));
vector<uint8_t> field_e = encode(0x02, wvcdm::a2b_hex("010001"));
vector<uint8_t> field_d =
encode(0x02, wvcdm::a2b_hex("5bd910257830dce17520b03441a51a8c"
"ab94020ac6ecc252c808f3743c95b7c8"
"3b8c8af1a5014346ebc4242cdfb5d718"
"e30a733e71f291e4d473b61bfba6daca"
"ed0a77bd1f0950ae3c91a8f901118825"
"89e1d62765ee671e7baeea309f64d447"
"bbcfa9ea12dce05e9ea8939bc5fe6108"
"581279c982b308794b3448e7f7b95229"
"2df88c80cb40142c4b5cf5f8ddaa0891"
"678d610e582fcb880f0d707caf47d09a"
"84e14ca65841e5a3abc5e9dba94075a9"
"084341f0edad9b68e3b8e082b80b6e6e"
"8a0547b44fb5061b6a9131603a5537dd"
"abd01d8e863d8922e9aa3e4bfaea0b39"
"d79283ad2cbc8a59cce7a6ecf4e4c81e"
"d4c6591c807defd71ab06866bb5e7745"));
vector<uint8_t> field_p =
encode(0x02, wvcdm::a2b_hex("00"
"f44f5e4246391f482b2f5296e3602eb3"
"4aa136427710f7c0416d403fd69d4b29"
"130cfebef34e885abdb1a8a0a5f0e9b5"
"c33e1fc3bfc285b1ae17e40cc67a1913"
"dd563719815ebaf8514c2a7aa0018e63"
"b6c631dc315a46235716423d11ff5803"
"4e610645703606919f5c7ce2660cd148"
"bd9efc123d9c54b6705590d006cfcf3f"));
vector<uint8_t> field_q =
encode(0x02, wvcdm::a2b_hex("00"
"e9d49841e0e0a6ad0d517857133e36dc"
"72c1bdd90f9174b52e26570f373640f1"
"c185e7ea8e2ed7f1e4ebb951f70a5802"
"3633b0097aec67c6dcb800fc1a67f9bb"
"0563610f08ebc8746ad129772136eb1d"
"daf46436450d318332a84982fe5d28db"
"e5b3e912407c3e0e03100d87d436ee40"
"9eec1cf85e80aba079b2e6106b97bced"));
vector<uint8_t> field_exp1 =
encode(0x02, wvcdm::a2b_hex("00"
"ed102acdb26871534d1c414ecad9a4d7"
"32fe95b10eea370da62f05de2c393b1a"
"633303ea741b6b3269c97f704b352702"
"c9ae79922f7be8d10db67f026a8145de"
"41b30c0a42bf923bac5f7504c248604b"
"9faa57ed6b3246c6ba158e36c644f8b9"
"548fcf4f07e054a56f768674054440bc"
"0dcbbc9b528f64a01706e05b0b91106f"));
vector<uint8_t> field_exp2 =
encode(0x02, wvcdm::a2b_hex("6827924a85e88b55ba00f8219128bd37"
"24c6b7d1dfe5629ef197925fecaff5ed"
"b9cdf3a7befd8ea2e8dd3707138b3ff8"
"7c3c39c57f439e562e2aa805a39d7cd7"
"9966d2ece7845f1dbc16bee99999e4d0"
"bf9eeca45fcda8a8500035fe6b5f03bc"
"2f6d1bfc4d4d0a3723961af0cdce4a01"
"eec82d7f5458ec19e71b90eeef7dff61"));
vector<uint8_t> field_invq =
encode(0x02, wvcdm::a2b_hex("57b73888d183a99a6307422277551a3d"
"9e18adf06a91e8b55ceffef9077c8496"
"948ecb3b16b78155cb2a3a57c119d379"
"951c010aa635edcf62d84c5a122a8d67"
"ab5fa9e5a4a8772a1e943bafc70ae3a4"
"c1f0f3a4ddffaefd1892c8cb33bb0d0b"
"9590e963a69110fb34db7b906fc4ba28"
"36995aac7e527490ac952a02268a4f18"));
// Header of rsa key is constant.
encoded_rsa_key_ = wvcdm::a2b_hex(
// 0x02 0x01 0x00 == integer, size 1 byte, value = 0 (field=version)
"020100"
// 0x30, sequence, size = d = 13 (field=pkeyalg) AlgorithmIdentifier
"300d"
// 0x06 = object identifier. length = 9
// (this should be 1.2.840.113549.1.1.1) (field=algorithm)
"0609"
"2a" // 1*0x40 + 2 = 42 = 0x2a.
"8648" // 840 = 0x348, 0x03 *2 + 0x80 + (0x48>>15) = 0x86.
// 0x48 -> 0x48
"86f70d" // 113549 = 0x1668d -> (110 , 1110111, 0001101)
// -> (0x80+0x06, 0x80+0x77, 0x0d)
"01" // 1
"01" // 1
"01" // 1
"05" // null object. (field=parameter?)
"00" // size of null object
);
vector<uint8_t> pkey = wvcdm::a2b_hex("020100"); // integer, version = 0.
pkey = concat(pkey, field_n);
pkey = concat(pkey, field_e);
pkey = concat(pkey, field_d);
pkey = concat(pkey, field_p);
pkey = concat(pkey, field_q);
pkey = concat(pkey, field_exp1);
pkey = concat(pkey, field_exp2);
pkey = concat(pkey, field_invq);
pkey = encode(0x30, pkey);
pkey = encode(0x04, pkey);
encoded_rsa_key_ = concat(encoded_rsa_key_, pkey);
encoded_rsa_key_ = encode(0x30, encoded_rsa_key_); // 0x30=sequence
}
// This is used to test a signature from the file pkcs1v15sign-vectors.txt.
void TestSignature(RSA_Padding_Scheme scheme, const vector<uint8_t>& message,
const vector<uint8_t>& correct_signature) {
OEMCryptoResult sts;
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
sts = OEMCrypto_LoadDRMPrivateKey(s.session_id(), OEMCrypto_RSA_Private_Key,
wrapped_rsa_key_.data(),
wrapped_rsa_key_.size());
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
// The application will compute the SHA-1 Hash of the message, so this
// test must do that also.
uint8_t hash[SHA_DIGEST_LENGTH];
if (!SHA1(message.data(), message.size(), hash)) {
dump_boringssl_error();
FAIL() << "boringssl error creating SHA1 hash.";
}
// The application will prepend the digest info to the hash.
// SHA-1 digest info prefix = 0x30 0x21 0x30 ...
vector<uint8_t> digest = wvcdm::a2b_hex("3021300906052b0e03021a05000414");
digest.insert(digest.end(), hash, hash + SHA_DIGEST_LENGTH);
// OEMCrypto will apply the padding, and encrypt to generate the signature.
size_t signature_length = 0;
sts = OEMCrypto_GenerateRSASignature(s.session_id(), digest.data(),
digest.size(), nullptr,
&signature_length, scheme);
ASSERT_EQ(OEMCrypto_ERROR_SHORT_BUFFER, sts);
ASSERT_NE(static_cast<size_t>(0), signature_length);
vector<uint8_t> signature(signature_length);
sts = OEMCrypto_GenerateRSASignature(s.session_id(), digest.data(),
digest.size(), signature.data(),
&signature_length, scheme);
ASSERT_EQ(OEMCrypto_SUCCESS, sts)
<< "Failed to sign with padding scheme=" << (int)scheme
<< ", size=" << (int)message.size();
ASSERT_NO_FATAL_FAILURE(
s.PreparePublicKey(encoded_rsa_key_.data(), encoded_rsa_key_.size()));
// Verify that the signature matches the official test vector.
ASSERT_EQ(correct_signature.size(), signature_length);
signature.resize(signature_length);
ASSERT_EQ(correct_signature, signature);
// Also verify that our verification algorithm agrees. This is not needed
// to test OEMCrypto, but it does verify that this test is valid.
ASSERT_NO_FATAL_FAILURE(s.VerifyRSASignature(digest, signature.data(),
signature_length, scheme));
ASSERT_NO_FATAL_FAILURE(s.VerifyRSASignature(
digest, correct_signature.data(), correct_signature.size(), scheme));
}
};
// CAST Receivers should report that they support cast certificates.
TEST_F(OEMCryptoCastReceiverTest, SupportsCertificatesAPI13) {
ASSERT_NE(0u,
OEMCrypto_Supports_RSA_CAST & OEMCrypto_SupportedCertificates());
}
// # PKCS#1 v1.5 Signature Example 15.1
TEST_F(OEMCryptoCastReceiverTest, TestSignaturePKCS1_15_1) {
BuildRSAKey();
LoadWithAllowedSchemes(kSign_PKCS1_Block1, true);
vector<uint8_t> message = wvcdm::a2b_hex(
"f45d55f35551e975d6a8dc7ea9f48859"
"3940cc75694a278f27e578a163d839b3"
"4040841808cf9c58c9b8728bf5f9ce8e"
"e811ea91714f47bab92d0f6d5a26fcfe"
"ea6cd93b910c0a2c963e64eb1823f102"
"753d41f0335910ad3a977104f1aaf6c3"
"742716a9755d11b8eed690477f445c5d"
"27208b2e284330fa3d301423fa7f2d08"
"6e0ad0b892b9db544e456d3f0dab85d9"
"53c12d340aa873eda727c8a649db7fa6"
"3740e25e9af1533b307e61329993110e"
"95194e039399c3824d24c51f22b26bde"
"1024cd395958a2dfeb4816a6e8adedb5"
"0b1f6b56d0b3060ff0f1c4cb0d0e001d"
"d59d73be12");
vector<uint8_t> signature = wvcdm::a2b_hex(
"b75a5466b65d0f300ef53833f2175c8a"
"347a3804fc63451dc902f0b71f908345"
"9ed37a5179a3b723a53f1051642d7737"
"4c4c6c8dbb1ca20525f5c9f32db77695"
"3556da31290e22197482ceb69906c46a"
"758fb0e7409ba801077d2a0a20eae7d1"
"d6d392ab4957e86b76f0652d68b83988"
"a78f26e11172ea609bf849fbbd78ad7e"
"dce21de662a081368c040607cee29db0"
"627227f44963ad171d2293b633a392e3"
"31dca54fe3082752f43f63c161b447a4"
"c65a6875670d5f6600fcc860a1caeb0a"
"88f8fdec4e564398a5c46c87f68ce070"
"01f6213abe0ab5625f87d19025f08d81"
"dac7bd4586bc9382191f6d2880f6227e"
"5df3eed21e7792d249480487f3655261");
TestSignature(kSign_PKCS1_Block1, message, signature);
}
// # PKCS#1 v1.5 Signature Example 15.2
TEST_F(OEMCryptoCastReceiverTest, TestSignaturePKCS1_15_2) {
BuildRSAKey();
LoadWithAllowedSchemes(kSign_PKCS1_Block1, true);
vector<uint8_t> message = wvcdm::a2b_hex(
"c14b4c6075b2f9aad661def4ecfd3cb9"
"33c623f4e63bf53410d2f016d1ab98e2"
"729eccf8006cd8e08050737d95fdbf29"
"6b66f5b9792a902936c4f7ac69f51453"
"ce4369452dc22d96f037748114662000"
"dd9cd3a5e179f4e0f81fa6a0311ca1ae"
"e6519a0f63cec78d27bb726393fb7f1f"
"88cde7c97f8a66cd66301281dac3f3a4"
"33248c75d6c2dcd708b6a97b0a3f325e"
"0b2964f8a5819e479b");
vector<uint8_t> signature = wvcdm::a2b_hex(
"afa7343462bea122cc149fca70abdae7"
"9446677db5373666af7dc313015f4de7"
"86e6e394946fad3cc0e2b02bedba5047"
"fe9e2d7d099705e4a39f28683279cf0a"
"c85c1530412242c0e918953be000e939"
"cf3bf182525e199370fa7907eba69d5d"
"b4631017c0e36df70379b5db8d4c695a"
"979a8e6173224065d7dc15132ef28cd8"
"22795163063b54c651141be86d36e367"
"35bc61f31fca574e5309f3a3bbdf91ef"
"f12b99e9cc1744f1ee9a1bd22c5bad96"
"ad481929251f0343fd36bcf0acde7f11"
"e5ad60977721202796fe061f9ada1fc4"
"c8e00d6022a8357585ffe9fdd59331a2"
"8c4aa3121588fb6cf68396d8ac054659"
"9500c9708500a5972bd54f72cf8db0c8");
TestSignature(kSign_PKCS1_Block1, message, signature);
}
// # PKCS#1 v1.5 Signature Example 15.3
TEST_F(OEMCryptoCastReceiverTest, TestSignaturePKCS1_15_3) {
BuildRSAKey();
LoadWithAllowedSchemes(kSign_PKCS1_Block1, true);
vector<uint8_t> message = wvcdm::a2b_hex(
"d02371ad7ee48bbfdb2763de7a843b94"
"08ce5eb5abf847ca3d735986df84e906"
"0bdbcdd3a55ba55dde20d4761e1a21d2"
"25c1a186f4ac4b3019d3adf78fe63346"
"67f56f70c901a0a2700c6f0d56add719"
"592dc88f6d2306c7009f6e7a635b4cb3"
"a502dfe68ddc58d03be10a1170004fe7"
"4dd3e46b82591ff75414f0c4a03e605e"
"20524f2416f12eca589f111b75d639c6"
"1baa80cafd05cf3500244a219ed9ced9"
"f0b10297182b653b526f400f2953ba21"
"4d5bcd47884132872ae90d4d6b1f4215"
"39f9f34662a56dc0e7b4b923b6231e30"
"d2676797817f7c337b5ac824ba93143b"
"3381fa3dce0e6aebd38e67735187b1eb"
"d95c02");
vector<uint8_t> signature = wvcdm::a2b_hex(
"3bac63f86e3b70271203106b9c79aabd"
"9f477c56e4ee58a4fce5baf2cab4960f"
"88391c9c23698be75c99aedf9e1abf17"
"05be1dac33140adb48eb31f450bb9efe"
"83b7b90db7f1576d33f40c1cba4b8d6b"
"1d3323564b0f1774114fa7c08e6d1e20"
"dd8fbba9b6ac7ad41e26b4568f4a8aac"
"bfd178a8f8d2c9d5f5b88112935a8bc9"
"ae32cda40b8d20375510735096536818"
"ce2b2db71a9772c9b0dda09ae10152fa"
"11466218d091b53d92543061b7294a55"
"be82ff35d5c32fa233f05aaac7585030"
"7ecf81383c111674397b1a1b9d3bf761"
"2ccbe5bacd2b38f0a98397b24c83658f"
"b6c0b4140ef11970c4630d44344e76ea"
"ed74dcbee811dbf6575941f08a6523b8");
TestSignature(kSign_PKCS1_Block1, message, signature);
};
// # PKCS#1 v1.5 Signature Example 15.4
TEST_F(OEMCryptoCastReceiverTest, TestSignaturePKCS1_15_4) {
BuildRSAKey();
LoadWithAllowedSchemes(kSign_PKCS1_Block1, true);
vector<uint8_t> message = wvcdm::a2b_hex(
"29035584ab7e0226a9ec4b02e8dcf127"
"2dc9a41d73e2820007b0f6e21feccd5b"
"d9dbb9ef88cd6758769ee1f956da7ad1"
"8441de6fab8386dbc693");
vector<uint8_t> signature = wvcdm::a2b_hex(
"28d8e3fcd5dddb21ffbd8df1630d7377"
"aa2651e14cad1c0e43ccc52f907f946d"
"66de7254e27a6c190eb022ee89ecf622"
"4b097b71068cd60728a1aed64b80e545"
"7bd3106dd91706c937c9795f2b36367f"
"f153dc2519a8db9bdf2c807430c451de"
"17bbcd0ce782b3e8f1024d90624dea7f"
"1eedc7420b7e7caa6577cef43141a726"
"4206580e44a167df5e41eea0e69a8054"
"54c40eefc13f48e423d7a32d02ed42c0"
"ab03d0a7cf70c5860ac92e03ee005b60"
"ff3503424b98cc894568c7c56a023355"
"1cebe588cf8b0167b7df13adcad82867"
"6810499c704da7ae23414d69e3c0d2db"
"5dcbc2613bc120421f9e3653c5a87672"
"97643c7e0740de016355453d6c95ae72");
TestSignature(kSign_PKCS1_Block1, message, signature);
}
// # PKCS#1 v1.5 Signature Example 15.5
TEST_F(OEMCryptoCastReceiverTest, TestSignaturePKCS1_15_5) {
BuildRSAKey();
LoadWithAllowedSchemes(kSign_PKCS1_Block1, true);
vector<uint8_t> message = wvcdm::a2b_hex("bda3a1c79059eae598308d3df609");
vector<uint8_t> signature = wvcdm::a2b_hex(
"a156176cb96777c7fb96105dbd913bc4"
"f74054f6807c6008a1a956ea92c1f81c"
"b897dc4b92ef9f4e40668dc7c556901a"
"cb6cf269fe615b0fb72b30a513386923"
"14b0e5878a88c2c7774bd16939b5abd8"
"2b4429d67bd7ac8e5ea7fe924e20a6ec"
"662291f2548d734f6634868b039aa5f9"
"d4d906b2d0cb8585bf428547afc91c6e"
"2052ddcd001c3ef8c8eefc3b6b2a82b6"
"f9c88c56f2e2c3cb0be4b80da95eba37"
"1d8b5f60f92538743ddbb5da2972c71f"
"e7b9f1b790268a0e770fc5eb4d5dd852"
"47d48ae2ec3f26255a3985520206a1f2"
"68e483e9dbb1d5cab190917606de31e7"
"c5182d8f151bf41dfeccaed7cde690b2"
"1647106b490c729d54a8fe2802a6d126");
TestSignature(kSign_PKCS1_Block1, message, signature);
}
// # PKCS#1 v1.5 Signature Example 15.6
TEST_F(OEMCryptoCastReceiverTest, TestSignaturePKCS1_15_6) {
BuildRSAKey();
LoadWithAllowedSchemes(kSign_PKCS1_Block1, true);
vector<uint8_t> message = wvcdm::a2b_hex(
"c187915e4e87da81c08ed4356a0cceac"
"1c4fb5c046b45281b387ec28f1abfd56"
"7e546b236b37d01ae71d3b2834365d3d"
"f380b75061b736b0130b070be58ae8a4"
"6d12166361b613dbc47dfaeb4ca74645"
"6c2e888385525cca9dd1c3c7a9ada76d"
"6c");
vector<uint8_t> signature = wvcdm::a2b_hex(
"9cab74163608669f7555a333cf196fe3"
"a0e9e5eb1a32d34bb5c85ff689aaab0e"
"3e65668ed3b1153f94eb3d8be379b8ee"
"f007c4a02c7071ce30d8bb341e58c620"
"f73d37b4ecbf48be294f6c9e0ecb5e63"
"fec41f120e5553dfa0ebebbb72640a95"
"37badcb451330229d9f710f62e3ed8ec"
"784e50ee1d9262b42671340011d7d098"
"c6f2557b2131fa9bd0254636597e88ec"
"b35a240ef0fd85957124df8080fee1e1"
"49af939989e86b26c85a5881fae8673d"
"9fd40800dd134eb9bdb6410f420b0aa9"
"7b20efcf2eb0c807faeb83a3ccd9b51d"
"4553e41dfc0df6ca80a1e81dc234bb83"
"89dd195a38b42de4edc49d346478b9f1"
"1f0557205f5b0bd7ffe9c850f396d7c4");
TestSignature(kSign_PKCS1_Block1, message, signature);
}
// # PKCS#1 v1.5 Signature Example 15.7
TEST_F(OEMCryptoCastReceiverTest, TestSignaturePKCS1_15_7) {
BuildRSAKey();
LoadWithAllowedSchemes(kSign_PKCS1_Block1, true);
vector<uint8_t> message = wvcdm::a2b_hex(
"abfa2ecb7d29bd5bcb9931ce2bad2f74"
"383e95683cee11022f08e8e7d0b8fa05"
"8bf9eb7eb5f98868b5bb1fb5c31ceda3"
"a64f1a12cdf20fcd0e5a246d7a1773d8"
"dba0e3b277545babe58f2b96e3f4edc1"
"8eabf5cd2a560fca75fe96e07d859def"
"b2564f3a34f16f11e91b3a717b41af53"
"f6605323001aa406c6");
vector<uint8_t> signature = wvcdm::a2b_hex(
"c4b437bcf703f352e1faf74eb9622039"
"426b5672caf2a7b381c6c4f0191e7e4a"
"98f0eebcd6f41784c2537ff0f99e7498"
"2c87201bfbc65eae832db71d16dacadb"
"0977e5c504679e40be0f9db06ffd848d"
"d2e5c38a7ec021e7f68c47dfd38cc354"
"493d5339b4595a5bf31e3f8f13816807"
"373df6ad0dc7e731e51ad19eb4754b13"
"4485842fe709d378444d8e36b1724a4f"
"da21cafee653ab80747f7952ee804dea"
"b1039d84139945bbf4be82008753f3c5"
"4c7821a1d241f42179c794ef7042bbf9"
"955656222e45c34369a384697b6ae742"
"e18fa5ca7abad27d9fe71052e3310d0f"
"52c8d12ea33bf053a300f4afc4f098df"
"4e6d886779d64594d369158fdbc1f694");
TestSignature(kSign_PKCS1_Block1, message, signature);
}
// # PKCS#1 v1.5 Signature Example 15.8
TEST_F(OEMCryptoCastReceiverTest, TestSignaturePKCS1_15_8) {
BuildRSAKey();
LoadWithAllowedSchemes(kSign_PKCS1_Block1, true);
vector<uint8_t> message = wvcdm::a2b_hex(
"df4044a89a83e9fcbf1262540ae3038b"
"bc90f2b2628bf2a4467ac67722d8546b"
"3a71cb0ea41669d5b4d61859c1b4e47c"
"ecc5933f757ec86db0644e311812d00f"
"b802f03400639c0e364dae5aebc5791b"
"c655762361bc43c53d3c7886768f7968"
"c1c544c6f79f7be820c7e2bd2f9d73e6"
"2ded6d2e937e6a6daef90ee37a1a52a5"
"4f00e31addd64894cf4c02e16099e29f"
"9eb7f1a7bb7f84c47a2b594813be02a1"
"7b7fc43b34c22c91925264126c89f86b"
"b4d87f3ef131296c53a308e0331dac8b"
"af3b63422266ecef2b90781535dbda41"
"cbd0cf22a8cbfb532ec68fc6afb2ac06");
vector<uint8_t> signature = wvcdm::a2b_hex(
"1414b38567ae6d973ede4a06842dcc0e"
"0559b19e65a4889bdbabd0fd02806829"
"13bacd5dc2f01b30bb19eb810b7d9ded"
"32b284f147bbe771c930c6052aa73413"
"90a849f81da9cd11e5eccf246dbae95f"
"a95828e9ae0ca3550325326deef9f495"
"30ba441bed4ac29c029c9a2736b1a419"
"0b85084ad150426b46d7f85bd702f48d"
"ac5f71330bc423a766c65cc1dcab20d3"
"d3bba72b63b3ef8244d42f157cb7e3a8"
"ba5c05272c64cc1ad21a13493c3911f6"
"0b4e9f4ecc9900eb056ee59d6fe4b8ff"
"6e8048ccc0f38f2836fd3dfe91bf4a38"
"6e1ecc2c32839f0ca4d1b27a568fa940"
"dd64ad16bd0125d0348e383085f08894"
"861ca18987227d37b42b584a8357cb04");
TestSignature(kSign_PKCS1_Block1, message, signature);
}
// # PKCS#1 v1.5 Signature Example 15.9
TEST_F(OEMCryptoCastReceiverTest, TestSignaturePKCS1_15_9) {
BuildRSAKey();
LoadWithAllowedSchemes(kSign_PKCS1_Block1, true);
vector<uint8_t> message = wvcdm::a2b_hex(
"ea941ff06f86c226927fcf0e3b11b087"
"2676170c1bfc33bda8e265c77771f9d0"
"850164a5eecbcc5ce827fbfa07c85214"
"796d8127e8caa81894ea61ceb1449e72"
"fea0a4c943b2da6d9b105fe053b9039a"
"9cc53d420b7539fab2239c6b51d17e69"
"4c957d4b0f0984461879a0759c4401be"
"ecd4c606a0afbd7a076f50a2dfc2807f"
"24f1919baa7746d3a64e268ed3f5f8e6"
"da83a2a5c9152f837cb07812bd5ba7d3"
"a07985de88113c1796e9b466ec299c5a"
"c1059e27f09415");
vector<uint8_t> signature = wvcdm::a2b_hex(
"ceeb84ccb4e9099265650721eea0e8ec"
"89ca25bd354d4f64564967be9d4b08b3"
"f1c018539c9d371cf8961f2291fbe0dc"
"2f2f95fea47b639f1e12f4bc381cef0c"
"2b7a7b95c3adf27605b7f63998c3cbad"
"542808c3822e064d4ad14093679e6e01"
"418a6d5c059684cd56e34ed65ab605b8"
"de4fcfa640474a54a8251bbb7326a42d"
"08585cfcfc956769b15b6d7fdf7da84f"
"81976eaa41d692380ff10eaecfe0a579"
"682909b5521fade854d797b8a0345b9a"
"864e0588f6caddbf65f177998e180d1f"
"102443e6dca53a94823caa9c3b35f322"
"583c703af67476159ec7ec93d1769b30"
"0af0e7157dc298c6cd2dee2262f8cddc"
"10f11e01741471bbfd6518a175734575");
TestSignature(kSign_PKCS1_Block1, message, signature);
}
// # PKCS#1 v1.5 Signature Example 15.10
TEST_F(OEMCryptoCastReceiverTest, TestSignaturePKCS1_15_10) {
BuildRSAKey();
LoadWithAllowedSchemes(kSign_PKCS1_Block1, true);
vector<uint8_t> message = wvcdm::a2b_hex(
"d8b81645c13cd7ecf5d00ed2c91b9acd"
"46c15568e5303c4a9775ede76b48403d"
"6be56c05b6b1cf77c6e75de096c5cb35"
"51cb6fa964f3c879cf589d28e1da2f9d"
"ec");
vector<uint8_t> signature = wvcdm::a2b_hex(
"2745074ca97175d992e2b44791c323c5"
"7167165cdd8da579cdef4686b9bb404b"
"d36a56504eb1fd770f60bfa188a7b24b"
"0c91e881c24e35b04dc4dd4ce38566bc"
"c9ce54f49a175fc9d0b22522d9579047"
"f9ed42eca83f764a10163997947e7d2b"
"52ff08980e7e7c2257937b23f3d279d4"
"cd17d6f495546373d983d536efd7d1b6"
"7181ca2cb50ac616c5c7abfbb9260b91"
"b1a38e47242001ff452f8de10ca6eaea"
"dcaf9edc28956f28a711291fc9a80878"
"b8ba4cfe25b8281cb80bc9cd6d2bd182"
"5246eebe252d9957ef93707352084e6d"
"36d423551bf266a85340fb4a6af37088"
"0aab07153d01f48d086df0bfbec05e7b"
"443b97e71718970e2f4bf62023e95b67");
TestSignature(kSign_PKCS1_Block1, message, signature);
}
// # PKCS#1 v1.5 Signature Example 15.11
TEST_F(OEMCryptoCastReceiverTest, TestSignaturePKCS1_15_11) {
BuildRSAKey();
LoadWithAllowedSchemes(kSign_PKCS1_Block1, true);
vector<uint8_t> message = wvcdm::a2b_hex(
"e5739b6c14c92d510d95b826933337ff"
"0d24ef721ac4ef64c2bad264be8b44ef"
"a1516e08a27eb6b611d3301df0062dae"
"fc73a8c0d92e2c521facbc7b26473876"
"7ea6fc97d588a0baf6ce50adf79e600b"
"d29e345fcb1dba71ac5c0289023fe4a8"
"2b46a5407719197d2e958e3531fd54ae"
"f903aabb4355f88318994ed3c3dd62f4"
"20a7");
vector<uint8_t> signature = wvcdm::a2b_hex(
"be40a5fb94f113e1b3eff6b6a33986f2"
"02e363f07483b792e68dfa5554df0466"
"cc32150950783b4d968b639a04fd2fb9"
"7f6eb967021f5adccb9fca95acc8f2cd"
"885a380b0a4e82bc760764dbab88c1e6"
"c0255caa94f232199d6f597cc9145b00"
"e3d4ba346b559a8833ad1516ad5163f0"
"16af6a59831c82ea13c8224d84d0765a"
"9d12384da460a8531b4c407e04f4f350"
"709eb9f08f5b220ffb45abf6b75d1579"
"fd3f1eb55fc75b00af8ba3b087827fe9"
"ae9fb4f6c5fa63031fe582852fe2834f"
"9c89bff53e2552216bc7c1d4a3d5dc2b"
"a6955cd9b17d1363e7fee8ed7629753f"
"f3125edd48521ae3b9b03217f4496d0d"
"8ede57acbc5bd4deae74a56f86671de2");
TestSignature(kSign_PKCS1_Block1, message, signature);
}
// # PKCS#1 v1.5 Signature Example 15.12
TEST_F(OEMCryptoCastReceiverTest, TestSignaturePKCS1_15_12) {
BuildRSAKey();
LoadWithAllowedSchemes(kSign_PKCS1_Block1, true);
vector<uint8_t> message = wvcdm::a2b_hex(
"7af42835917a88d6b3c6716ba2f5b0d5"
"b20bd4e2e6e574e06af1eef7c81131be"
"22bf8128b9cbc6ec00275ba80294a5d1"
"172d0824a79e8fdd830183e4c00b9678"
"2867b1227fea249aad32ffc5fe007bc5"
"1f21792f728deda8b5708aa99cabab20"
"a4aa783ed86f0f27b5d563f42e07158c"
"ea72d097aa6887ec411dd012912a5e03"
"2bbfa678507144bcc95f39b58be7bfd1"
"759adb9a91fa1d6d8226a8343a8b849d"
"ae76f7b98224d59e28f781f13ece605f"
"84f6c90bae5f8cf378816f4020a7dda1"
"bed90c92a23634d203fac3fcd86d68d3"
"182a7d9ccabe7b0795f5c655e9acc4e3"
"ec185140d10cef053464ab175c83bd83"
"935e3dabaf3462eebe63d15f573d269a");
vector<uint8_t> signature = wvcdm::a2b_hex(
"4e78c5902b807914d12fa537ae6871c8"
"6db8021e55d1adb8eb0ccf1b8f36ab7d"
"ad1f682e947a627072f03e627371781d"
"33221d174abe460dbd88560c22f69011"
"6e2fbbe6e964363a3e5283bb5d946ef1"
"c0047eba038c756c40be7923055809b0"
"e9f34a03a58815ebdde767931f018f6f"
"1878f2ef4f47dd374051dd48685ded6e"
"fb3ea8021f44be1d7d149398f98ea9c0"
"8d62888ebb56192d17747b6b8e170954"
"31f125a8a8e9962aa31c285264e08fb2"
"1aac336ce6c38aa375e42bc92ab0ab91"
"038431e1f92c39d2af5ded7e43bc151e"
"6ebea4c3e2583af3437e82c43c5e3b5b"
"07cf0359683d2298e35948ed806c063c"
"606ea178150b1efc15856934c7255cfe");
TestSignature(kSign_PKCS1_Block1, message, signature);
}
// # PKCS#1 v1.5 Signature Example 15.13
TEST_F(OEMCryptoCastReceiverTest, TestSignaturePKCS1_15_13) {
BuildRSAKey();
LoadWithAllowedSchemes(kSign_PKCS1_Block1, true);
vector<uint8_t> message = wvcdm::a2b_hex(
"ebaef3f9f23bdfe5fa6b8af4c208c189"
"f2251bf32f5f137b9de4406378686b3f"
"0721f62d24cb8688d6fc41a27cbae21d"
"30e429feacc7111941c277");
vector<uint8_t> signature = wvcdm::a2b_hex(
"c48dbef507114f03c95fafbeb4df1bfa"
"88e0184a33cc4f8a9a1035ff7f822a5e"
"38cda18723915ff078244429e0f6081c"
"14fd83331fa65c6ba7bb9a12dbf66223"
"74cd0ca57de3774e2bd7ae823677d061"
"d53ae9c4040d2da7ef7014f3bbdc95a3"
"61a43855c8ce9b97ecabce174d926285"
"142b534a3087f9f4ef74511ec742b0d5"
"685603faf403b5072b985df46adf2d25"
"29a02d40711e2190917052371b79b749"
"b83abf0ae29486c3f2f62477b2bd362b"
"039c013c0c5076ef520dbb405f42cee9"
"5425c373a975e1cdd032c49622c85079"
"b09e88dab2b13969ef7a723973781040"
"459f57d5013638483de2d91cb3c490da"
"81c46de6cd76ea8a0c8f6fe331712d24");
TestSignature(kSign_PKCS1_Block1, message, signature);
}
// # PKCS#1 v1.5 Signature Example 15.14
TEST_F(OEMCryptoCastReceiverTest, TestSignaturePKCS1_15_14) {
BuildRSAKey();
LoadWithAllowedSchemes(kSign_PKCS1_Block1, true);
vector<uint8_t> message = wvcdm::a2b_hex(
"c5a2711278761dfcdd4f0c99e6f5619d"
"6c48b5d4c1a80982faa6b4cf1cf7a60f"
"f327abef93c801429efde08640858146"
"1056acc33f3d04f5ada21216cacd5fd1"
"f9ed83203e0e2fe6138e3eae8424e591"
"5a083f3f7ab76052c8be55ae882d6ec1"
"482b1e45c5dae9f41015405327022ec3"
"2f0ea2429763b255043b1958ee3cf6d6"
"3983596eb385844f8528cc9a9865835d"
"c5113c02b80d0fca68aa25e72bcaaeb3"
"cf9d79d84f984fd417");
vector<uint8_t> signature = wvcdm::a2b_hex(
"6bd5257aa06611fb4660087cb4bc4a9e"
"449159d31652bd980844daf3b1c7b353"
"f8e56142f7ea9857433b18573b4deede"
"818a93b0290297783f1a2f23cbc72797"
"a672537f01f62484cd4162c3214b9ac6"
"28224c5de01f32bb9b76b27354f2b151"
"d0e8c4213e4615ad0bc71f515e300d6a"
"64c6743411fffde8e5ff190e54923043"
"126ecfc4c4539022668fb675f25c07e2"
"0099ee315b98d6afec4b1a9a93dc3349"
"6a15bd6fde1663a7d49b9f1e639d3866"
"4b37a010b1f35e658682d9cd63e57de0"
"f15e8bdd096558f07ec0caa218a8c06f"
"4788453940287c9d34b6d40a3f09bf77"
"99fe98ae4eb49f3ff41c5040a50cefc9"
"bdf2394b749cf164480df1ab6880273b");
TestSignature(kSign_PKCS1_Block1, message, signature);
}
// # PKCS#1 v1.5 Signature Example 15.15
TEST_F(OEMCryptoCastReceiverTest, TestSignaturePKCS1_15_15) {
BuildRSAKey();
LoadWithAllowedSchemes(kSign_PKCS1_Block1, true);
vector<uint8_t> message = wvcdm::a2b_hex(
"9bf8aa253b872ea77a7e23476be26b23"
"29578cf6ac9ea2805b357f6fc3ad130d"
"baeb3d869a13cce7a808bbbbc969857e"
"03945c7bb61df1b5c2589b8e046c2a5d"
"7e4057b1a74f24c711216364288529ec"
"9570f25197213be1f5c2e596f8bf8b2c"
"f3cb38aa56ffe5e31df7395820e94ecf"
"3b1189a965dcf9a9cb4298d3c88b2923"
"c19fc6bc34aacecad4e0931a7c4e5d73"
"dc86dfa798a8476d82463eefaa90a8a9"
"192ab08b23088dd58e1280f7d72e4548"
"396baac112252dd5c5346adb2004a2f7"
"101ccc899cc7fafae8bbe295738896a5"
"b2012285014ef6");
vector<uint8_t> signature = wvcdm::a2b_hex(
"27f7f4da9bd610106ef57d32383a448a"
"8a6245c83dc1309c6d770d357ba89e73"
"f2ad0832062eb0fe0ac915575bcd6b8b"
"cadb4e2ba6fa9da73a59175152b2d4fe"
"72b070c9b7379e50000e55e6c269f665"
"8c937972797d3add69f130e34b85bdec"
"9f3a9b392202d6f3e430d09caca82277"
"59ab825f7012d2ff4b5b62c8504dbad8"
"55c05edd5cab5a4cccdc67f01dd6517c"
"7d41c43e2a4957aff19db6f18b17859a"
"f0bc84ab67146ec1a4a60a17d7e05f8b"
"4f9ced6ad10908d8d78f7fc88b76adc8"
"290f87daf2a7be10ae408521395d54ed"
"2556fb7661854a730ce3d82c71a8d493"
"ec49a378ac8a3c74439f7cc555ba13f8"
"59070890ee18ff658fa4d741969d70a5");
TestSignature(kSign_PKCS1_Block1, message, signature);
}
// # PKCS#1 v1.5 Signature Example 15.16
TEST_F(OEMCryptoCastReceiverTest, TestSignaturePKCS1_15_16) {
BuildRSAKey();
LoadWithAllowedSchemes(kSign_PKCS1_Block1, true);
vector<uint8_t> message = wvcdm::a2b_hex(
"32474830e2203754c8bf0681dc4f842a"
"fe360930378616c108e833656e5640c8"
"6856885bb05d1eb9438efede679263de"
"07cb39553f6a25e006b0a52311a063ca"
"088266d2564ff6490c46b5609818548f"
"88764dad34a25e3a85d575023f0b9e66"
"5048a03c350579a9d32446c7bb96cc92"
"e065ab94d3c8952e8df68ef0d9fa456b"
"3a06bb80e3bbc4b28e6a94b6d0ff7696"
"a64efe05e735fea025d7bdbc4139f3a3"
"b546075cba7efa947374d3f0ac80a68d"
"765f5df6210bca069a2d88647af7ea04"
"2dac690cb57378ec0777614fb8b65ff4"
"53ca6b7dce6098451a2f8c0da9bfecf1"
"fdf391bbaa4e2a91ca18a1121a7523a2"
"abd42514f489e8");
vector<uint8_t> signature = wvcdm::a2b_hex(
"6917437257c22ccb5403290c3dee82d9"
"cf7550b31bd31c51bd57bfd35d452ab4"
"db7c4be6b2e25ac9a59a1d2a7feb627f"
"0afd4976b3003cc9cffd8896505ec382"
"f265104d4cf8c932fa9fe86e00870795"
"9912389da4b2d6b369b36a5e72e29d24"
"c9a98c9d31a3ab44e643e6941266a47a"
"45e3446ce8776abe241a8f5fc6423b24"
"b1ff250dc2c3a8172353561077e850a7"
"69b25f0325dac88965a3b9b472c494e9"
"5f719b4eac332caa7a65c7dfe46d9aa7"
"e6e00f525f303dd63ab7919218901868"
"f9337f8cd26aafe6f33b7fb2c98810af"
"19f7fcb282ba1577912c1d368975fd5d"
"440b86e10c199715fa0b6f4250b53373"
"2d0befe1545150fc47b876de09b00a94");
TestSignature(kSign_PKCS1_Block1, message, signature);
}
// # PKCS#1 v1.5 Signature Example 15.17
TEST_F(OEMCryptoCastReceiverTest, TestSignaturePKCS1_15_17) {
BuildRSAKey();
LoadWithAllowedSchemes(kSign_PKCS1_Block1, true);
vector<uint8_t> message = wvcdm::a2b_hex(
"008e59505eafb550aae5e845584cebb0"
"0b6de1733e9f95d42c882a5bbeb5ce1c"
"57e119e7c0d4daca9f1ff7870217f7cf"
"d8a6b373977cac9cab8e71e420");
vector<uint8_t> signature = wvcdm::a2b_hex(
"922503b673ee5f3e691e1ca85e9ff417"
"3cf72b05ac2c131da5603593e3bc259c"
"94c1f7d3a06a5b9891bf113fa39e59ff"
"7c1ed6465e908049cb89e4e125cd37d2"
"ffd9227a41b4a0a19c0a44fbbf3de55b"
"ab802087a3bb8d4ff668ee6bbb8ad89e"
"6857a79a9c72781990dfcf92cd519404"
"c950f13d1143c3184f1d250c90e17ac6"
"ce36163b9895627ad6ffec1422441f55"
"e4499dba9be89546ae8bc63cca01dd08"
"463ae7f1fce3d893996938778c1812e6"
"74ad9c309c5acca3fde44e7dd8695993"
"e9c1fa87acda99ece5c8499e468957ad"
"66359bf12a51adbe78d3a213b449bf0b"
"5f8d4d496acf03d3033b7ccd196bc22f"
"68fb7bef4f697c5ea2b35062f48a36dd");
TestSignature(kSign_PKCS1_Block1, message, signature);
}
// # PKCS#1 v1.5 Signature Example 15.18
TEST_F(OEMCryptoCastReceiverTest, TestSignaturePKCS1_15_18) {
BuildRSAKey();
LoadWithAllowedSchemes(kSign_PKCS1_Block1, true);
vector<uint8_t> message = wvcdm::a2b_hex(
"6abc54cf8d1dff1f53b17d8160368878"
"a8788cc6d22fa5c2258c88e660b09a89"
"33f9f2c0504ddadc21f6e75e0b833beb"
"555229dee656b9047b92f62e76b8ffcc"
"60dab06b80");
vector<uint8_t> signature = wvcdm::a2b_hex(
"0b6daf42f7a862147e417493c2c401ef"
"ae32636ab4cbd44192bbf5f195b50ae0"
"96a475a1614f0a9fa8f7a026cb46c650"
"6e518e33d83e56477a875aca8c7e714c"
"e1bdbd61ef5d535239b33f2bfdd61771"
"bab62776d78171a1423cea8731f82e60"
"766d6454265620b15f5c5a584f55f95b"
"802fe78c574ed5dacfc831f3cf2b0502"
"c0b298f25ccf11f973b31f85e4744219"
"85f3cff702df3946ef0a6605682111b2"
"f55b1f8ab0d2ea3a683c69985ead93ed"
"449ea48f0358ddf70802cb41de2fd83f"
"3c808082d84936948e0c84a131b49278"
"27460527bb5cd24bfab7b48e071b2417"
"1930f99763272f9797bcb76f1d248157"
"5558fcf260b1f0e554ebb3df3cfcb958");
TestSignature(kSign_PKCS1_Block1, message, signature);
}
// # PKCS#1 v1.5 Signature Example 15.19
TEST_F(OEMCryptoCastReceiverTest, TestSignaturePKCS1_15_19) {
BuildRSAKey();
LoadWithAllowedSchemes(kSign_PKCS1_Block1, true);
vector<uint8_t> message = wvcdm::a2b_hex(
"af2d78152cf10efe01d274f217b177f6"
"b01b5e749f1567715da324859cd3dd88"
"db848ec79f48dbba7b6f1d33111ef31b"
"64899e7391c2bffd69f49025cf201fc5"
"85dbd1542c1c778a2ce7a7ee108a309f"
"eca26d133a5ffedc4e869dcd7656596a"
"c8427ea3ef6e3fd78fe99d8ddc71d839"
"f6786e0da6e786bd62b3a4f19b891a56"
"157a554ec2a2b39e25a1d7c7d37321c7"
"a1d946cf4fbe758d9276f08563449d67"
"414a2c030f4251cfe2213d04a5410637"
"87");
vector<uint8_t> signature = wvcdm::a2b_hex(
"209c61157857387b71e24bf3dd564145"
"50503bec180ff53bdd9bac062a2d4995"
"09bf991281b79527df9136615b7a6d9d"
"b3a103b535e0202a2caca197a7b74e53"
"56f3dd595b49acfd9d30049a98ca88f6"
"25bca1d5f22a392d8a749efb6eed9b78"
"21d3110ac0d244199ecb4aa3d735a83a"
"2e8893c6bf8581383ccaee834635b7fa"
"1faffa45b13d15c1da33af71e89303d6"
"8090ff62ee615fdf5a84d120711da53c"
"2889198ab38317a9734ab27d67924cea"
"74156ff99bef9876bb5c339e93745283"
"e1b34e072226b88045e017e9f05b2a8c"
"416740258e223b2690027491732273f3"
"229d9ef2b1b3807e321018920ad3e53d"
"ae47e6d9395c184b93a374c671faa2ce");
TestSignature(kSign_PKCS1_Block1, message, signature);
}
// # PKCS#1 v1.5 Signature Example 15.20
TEST_F(OEMCryptoCastReceiverTest, TestSignaturePKCS1_15_20) {
BuildRSAKey();
LoadWithAllowedSchemes(kSign_PKCS1_Block1, true);
vector<uint8_t> message = wvcdm::a2b_hex(
"40ee992458d6f61486d25676a96dd2cb"
"93a37f04b178482f2b186cf88215270d"
"ba29d786d774b0c5e78c7f6e56a956e7"
"f73950a2b0c0c10a08dbcd67e5b210bb"
"21c58e2767d44f7dd4014e3966143bf7"
"e3d66ff0c09be4c55f93b39994b8518d"
"9c1d76d5b47374dea08f157d57d70634"
"978f3856e0e5b481afbbdb5a3ac48d48"
"4be92c93de229178354c2de526e9c65a"
"31ede1ef68cb6398d7911684fec0babc"
"3a781a66660783506974d0e14825101c"
"3bfaea");
vector<uint8_t> signature = wvcdm::a2b_hex(
"927502b824afc42513ca6570de338b8a"
"64c3a85eb828d3193624f27e8b1029c5"
"5c119c9733b18f5849b3500918bcc005"
"51d9a8fdf53a97749fa8dc480d6fe974"
"2a5871f973926528972a1af49e3925b0"
"adf14a842719b4a5a2d89fa9c0b6605d"
"212bed1e6723b93406ad30e86829a5c7"
"19b890b389306dc5506486ee2f36a8df"
"e0a96af678c9cbd6aff397ca200e3edc"
"1e36bd2f08b31d540c0cb282a9559e4a"
"dd4fc9e6492eed0ccbd3a6982e5faa2d"
"dd17be47417c80b4e5452d31f72401a0"
"42325109544d954c01939079d409a5c3"
"78d7512dfc2d2a71efcc3432a765d1c6"
"a52cfce899cd79b15b4fc3723641ef6b"
"d00acc10407e5df58dd1c3c5c559a506");
TestSignature(kSign_PKCS1_Block1, message, signature);
}
// This class is for testing the generic crypto functionality.
class OEMCryptoGenericCryptoTest : public OEMCryptoRefreshTest {
protected:
// buffer_size_ must be a multiple of encryption block size, 16. We'll use a
// reasonable number of blocks for most of the tests.
OEMCryptoGenericCryptoTest() : buffer_size_(160) {}
void SetUp() override {
OEMCryptoRefreshTest::SetUp();
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(
license_messages_.CreateResponseWithGenericCryptoKeys());
InitializeClearBuffer();
}
void InitializeClearBuffer() {
clear_buffer_.assign(buffer_size_, 0);
for (size_t i = 0; i < clear_buffer_.size(); i++) {
clear_buffer_[i] = 1 + i % 250;
}
for (size_t i = 0; i < wvoec::KEY_IV_SIZE; i++) {
iv_[i] = i;
}
}
void ResizeBuffer(size_t new_size) {
buffer_size_ = new_size;
InitializeClearBuffer(); // Re-initialize the clear buffer.
}
void EncryptAndLoadKeys() {
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
}
// Encrypt the buffer with the specified key made in
// CreateResponseWithGenericCryptoKeys.
void EncryptBuffer(unsigned int key_index, const vector<uint8_t>& in_buffer,
vector<uint8_t>* out_buffer) {
EncryptBufferWithKey(session_.license().keys[key_index].key_data, in_buffer,
out_buffer);
}
// Encrypt the buffer with the specified key.
void EncryptBufferWithKey(const uint8_t* key_data,
const vector<uint8_t>& in_buffer,
vector<uint8_t>* out_buffer) {
AES_KEY aes_key;
ASSERT_EQ(0, AES_set_encrypt_key(key_data, AES_BLOCK_SIZE * 8, &aes_key));
uint8_t iv_buffer[wvoec::KEY_IV_SIZE];
memcpy(iv_buffer, iv_, wvoec::KEY_IV_SIZE);
out_buffer->resize(in_buffer.size());
ASSERT_GT(in_buffer.size(), 0u);
ASSERT_EQ(0u, in_buffer.size() % AES_BLOCK_SIZE);
AES_cbc_encrypt(in_buffer.data(), out_buffer->data(), in_buffer.size(),
&aes_key, iv_buffer, AES_ENCRYPT);
}
// Sign the buffer with the specified key made in
// CreateResponseWithGenericCryptoKeys.
void SignBuffer(unsigned int key_index, const vector<uint8_t>& in_buffer,
vector<uint8_t>* signature) {
SignBufferWithKey(session_.license().keys[key_index].key_data, in_buffer,
signature);
}
// Sign the buffer with the specified key.
void SignBufferWithKey(const uint8_t* key_data,
const vector<uint8_t>& in_buffer,
vector<uint8_t>* signature) {
unsigned int md_len = SHA256_DIGEST_LENGTH;
signature->resize(SHA256_DIGEST_LENGTH);
HMAC(EVP_sha256(), key_data, wvoec::MAC_KEY_SIZE, in_buffer.data(),
in_buffer.size(), signature->data(), &md_len);
}
// This asks OEMCrypto to encrypt with the specified key, and expects a
// failure.
void BadEncrypt(unsigned int key_index, OEMCrypto_Algorithm algorithm,
size_t buffer_length) {
OEMCryptoResult sts;
vector<uint8_t> expected_encrypted;
EncryptBuffer(key_index, clear_buffer_, &expected_encrypted);
sts = OEMCrypto_SelectKey(session_.session_id(),
session_.license().keys[key_index].key_id,
session_.license().keys[key_index].key_id_length,
OEMCrypto_CipherMode_CTR);
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
vector<uint8_t> encrypted(buffer_length);
sts = OEMCrypto_Generic_Encrypt(session_.session_id(), clear_buffer_.data(),
buffer_length, iv_, algorithm,
encrypted.data());
EXPECT_NE(OEMCrypto_SUCCESS, sts);
expected_encrypted.resize(buffer_length);
EXPECT_NE(encrypted, expected_encrypted);
}
// This asks OEMCrypto to decrypt with the specified key, and expects a
// failure.
void BadDecrypt(unsigned int key_index, OEMCrypto_Algorithm algorithm,
size_t buffer_length) {
OEMCryptoResult sts;
vector<uint8_t> encrypted;
EncryptBuffer(key_index, clear_buffer_, &encrypted);
sts = OEMCrypto_SelectKey(session_.session_id(),
session_.license().keys[key_index].key_id,
session_.license().keys[key_index].key_id_length,
OEMCrypto_CipherMode_CTR);
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
vector<uint8_t> resultant(encrypted.size());
sts = OEMCrypto_Generic_Decrypt(session_.session_id(), encrypted.data(),
buffer_length, iv_, algorithm,
resultant.data());
EXPECT_NE(OEMCrypto_SUCCESS, sts);
EXPECT_NE(clear_buffer_, resultant);
}
// This asks OEMCrypto to sign with the specified key, and expects a
// failure.
void BadSign(unsigned int key_index, OEMCrypto_Algorithm algorithm) {
OEMCryptoResult sts;
vector<uint8_t> expected_signature;
SignBuffer(key_index, clear_buffer_, &expected_signature);
sts = OEMCrypto_SelectKey(session_.session_id(),
session_.license().keys[key_index].key_id,
session_.license().keys[key_index].key_id_length,
OEMCrypto_CipherMode_CTR);
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
size_t signature_length = (size_t)SHA256_DIGEST_LENGTH;
vector<uint8_t> signature(SHA256_DIGEST_LENGTH);
sts = OEMCrypto_Generic_Sign(session_.session_id(), clear_buffer_.data(),
clear_buffer_.size(), algorithm,
signature.data(), &signature_length);
EXPECT_NE(OEMCrypto_SUCCESS, sts);
EXPECT_NE(signature, expected_signature);
}
// This asks OEMCrypto to verify a signature with the specified key, and
// expects a failure.
void BadVerify(unsigned int key_index, OEMCrypto_Algorithm algorithm,
size_t signature_size, bool alter_data) {
OEMCryptoResult sts;
vector<uint8_t> signature;
SignBuffer(key_index, clear_buffer_, &signature);
if (alter_data) {
signature[0] ^= 42;
}
sts = OEMCrypto_SelectKey(session_.session_id(),
session_.license().keys[key_index].key_id,
session_.license().keys[key_index].key_id_length,
OEMCrypto_CipherMode_CTR);
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
sts = OEMCrypto_Generic_Verify(session_.session_id(), clear_buffer_.data(),
clear_buffer_.size(), algorithm,
signature.data(), signature_size);
EXPECT_NE(OEMCrypto_SUCCESS, sts);
}
// This must be a multiple of encryption block size.
size_t buffer_size_;
vector<uint8_t> clear_buffer_;
vector<uint8_t> encrypted_buffer_;
uint8_t iv_[wvoec::KEY_IV_SIZE];
};
TEST_P(OEMCryptoGenericCryptoTest, GenericKeyLoad) { EncryptAndLoadKeys(); }
// Test that the Generic_Encrypt function works correctly.
TEST_P(OEMCryptoGenericCryptoTest, GenericKeyEncrypt) {
EncryptAndLoadKeys();
unsigned int key_index = 0;
vector<uint8_t> expected_encrypted;
EncryptBuffer(key_index, clear_buffer_, &expected_encrypted);
ASSERT_EQ(
OEMCrypto_SUCCESS,
OEMCrypto_SelectKey(session_.session_id(),
session_.license().keys[key_index].key_id,
session_.license().keys[key_index].key_id_length,
OEMCrypto_CipherMode_CTR));
vector<uint8_t> encrypted(clear_buffer_.size());
ASSERT_EQ(
OEMCrypto_SUCCESS,
OEMCrypto_Generic_Encrypt(
session_.session_id(), clear_buffer_.data(), clear_buffer_.size(),
iv_, OEMCrypto_AES_CBC_128_NO_PADDING, encrypted.data()));
ASSERT_EQ(expected_encrypted, encrypted);
}
// Test that the Generic_Encrypt function fails when not allowed.
TEST_P(OEMCryptoGenericCryptoTest, GenericKeyBadEncrypt) {
EncryptAndLoadKeys();
BadEncrypt(0, OEMCrypto_HMAC_SHA256, buffer_size_);
// The buffer size must be a multiple of 16, so subtracting 10 is bad.
BadEncrypt(0, OEMCrypto_AES_CBC_128_NO_PADDING, buffer_size_ - 10);
BadEncrypt(1, OEMCrypto_AES_CBC_128_NO_PADDING, buffer_size_);
BadEncrypt(2, OEMCrypto_AES_CBC_128_NO_PADDING, buffer_size_);
BadEncrypt(3, OEMCrypto_AES_CBC_128_NO_PADDING, buffer_size_);
}
// Test that the Generic_Encrypt works if the input and output buffers are the
// same.
TEST_P(OEMCryptoGenericCryptoTest, GenericKeyEncryptSameBufferAPI12) {
EncryptAndLoadKeys();
unsigned int key_index = 0;
vector<uint8_t> expected_encrypted;
EncryptBuffer(key_index, clear_buffer_, &expected_encrypted);
ASSERT_EQ(
OEMCrypto_SUCCESS,
OEMCrypto_SelectKey(session_.session_id(),
session_.license().keys[key_index].key_id,
session_.license().keys[key_index].key_id_length,
OEMCrypto_CipherMode_CTR));
// Input and output are same buffer:
vector<uint8_t> buffer = clear_buffer_;
ASSERT_EQ(OEMCrypto_SUCCESS,
OEMCrypto_Generic_Encrypt(
session_.session_id(), buffer.data(), buffer.size(), iv_,
OEMCrypto_AES_CBC_128_NO_PADDING, buffer.data()));
ASSERT_EQ(expected_encrypted, buffer);
}
// Test Generic_Decrypt works correctly.
TEST_P(OEMCryptoGenericCryptoTest, GenericKeyDecrypt) {
EncryptAndLoadKeys();
unsigned int key_index = 1;
vector<uint8_t> encrypted;
EncryptBuffer(key_index, clear_buffer_, &encrypted);
ASSERT_EQ(
OEMCrypto_SUCCESS,
OEMCrypto_SelectKey(session_.session_id(),
session_.license().keys[key_index].key_id,
session_.license().keys[key_index].key_id_length,
OEMCrypto_CipherMode_CTR));
vector<uint8_t> resultant(encrypted.size());
ASSERT_EQ(OEMCrypto_SUCCESS,
OEMCrypto_Generic_Decrypt(
session_.session_id(), encrypted.data(), encrypted.size(), iv_,
OEMCrypto_AES_CBC_128_NO_PADDING, resultant.data()));
ASSERT_EQ(clear_buffer_, resultant);
}
// Test that Generic_Decrypt works correctly when the input and output buffers
// are the same.
TEST_P(OEMCryptoGenericCryptoTest, GenericKeyDecryptSameBufferAPI12) {
EncryptAndLoadKeys();
unsigned int key_index = 1;
vector<uint8_t> encrypted;
EncryptBuffer(key_index, clear_buffer_, &encrypted);
ASSERT_EQ(
OEMCrypto_SUCCESS,
OEMCrypto_SelectKey(session_.session_id(),
session_.license().keys[key_index].key_id,
session_.license().keys[key_index].key_id_length,
OEMCrypto_CipherMode_CTR));
vector<uint8_t> buffer = encrypted;
ASSERT_EQ(OEMCrypto_SUCCESS,
OEMCrypto_Generic_Decrypt(
session_.session_id(), buffer.data(), buffer.size(), iv_,
OEMCrypto_AES_CBC_128_NO_PADDING, buffer.data()));
ASSERT_EQ(clear_buffer_, buffer);
}
// Test that Generic_Decrypt fails to decrypt to an insecure buffer if the key
// requires a secure data path.
TEST_P(OEMCryptoGenericCryptoTest, GenericSecureToClear) {
license_messages_.set_control(wvoec::kControlObserveDataPath |
wvoec::kControlDataPathSecure);
license_messages_.CreateResponseWithGenericCryptoKeys();
EncryptAndLoadKeys();
unsigned int key_index = 1;
vector<uint8_t> encrypted;
EncryptBuffer(key_index, clear_buffer_, &encrypted);
ASSERT_EQ(
OEMCrypto_SUCCESS,
OEMCrypto_SelectKey(session_.session_id(),
session_.license().keys[key_index].key_id,
session_.license().keys[key_index].key_id_length,
OEMCrypto_CipherMode_CTR));
vector<uint8_t> resultant(encrypted.size());
ASSERT_NE(OEMCrypto_SUCCESS,
OEMCrypto_Generic_Decrypt(
session_.session_id(), encrypted.data(), encrypted.size(), iv_,
OEMCrypto_AES_CBC_128_NO_PADDING, resultant.data()));
ASSERT_NE(clear_buffer_, resultant);
}
// Test that the Generic_Decrypt function fails when not allowed.
TEST_P(OEMCryptoGenericCryptoTest, GenericKeyBadDecrypt) {
EncryptAndLoadKeys();
BadDecrypt(1, OEMCrypto_HMAC_SHA256, buffer_size_);
// The buffer size must be a multiple of 16, so subtracting 10 is bad.
BadDecrypt(1, OEMCrypto_AES_CBC_128_NO_PADDING, buffer_size_ - 10);
BadDecrypt(0, OEMCrypto_AES_CBC_128_NO_PADDING, buffer_size_);
BadDecrypt(2, OEMCrypto_AES_CBC_128_NO_PADDING, buffer_size_);
BadDecrypt(3, OEMCrypto_AES_CBC_128_NO_PADDING, buffer_size_);
}
TEST_P(OEMCryptoGenericCryptoTest, GenericKeySign) {
EncryptAndLoadKeys();
unsigned int key_index = 2;
vector<uint8_t> expected_signature;
SignBuffer(key_index, clear_buffer_, &expected_signature);
ASSERT_EQ(
OEMCrypto_SUCCESS,
OEMCrypto_SelectKey(session_.session_id(),
session_.license().keys[key_index].key_id,
session_.license().keys[key_index].key_id_length,
OEMCrypto_CipherMode_CTR));
size_t gen_signature_length = 0;
ASSERT_EQ(OEMCrypto_ERROR_SHORT_BUFFER,
OEMCrypto_Generic_Sign(session_.session_id(), clear_buffer_.data(),
clear_buffer_.size(), OEMCrypto_HMAC_SHA256,
nullptr, &gen_signature_length));
ASSERT_EQ(static_cast<size_t>(SHA256_DIGEST_LENGTH), gen_signature_length);
vector<uint8_t> signature(SHA256_DIGEST_LENGTH);
ASSERT_EQ(OEMCrypto_SUCCESS,
OEMCrypto_Generic_Sign(session_.session_id(), clear_buffer_.data(),
clear_buffer_.size(), OEMCrypto_HMAC_SHA256,
signature.data(), &gen_signature_length));
ASSERT_EQ(expected_signature, signature);
}
// Test that the Generic_Sign function fails when not allowed.
TEST_P(OEMCryptoGenericCryptoTest, GenericKeyBadSign) {
EncryptAndLoadKeys();
BadSign(0, OEMCrypto_HMAC_SHA256); // Can't sign with encrypt key.
BadSign(1, OEMCrypto_HMAC_SHA256); // Can't sign with decrypt key.
BadSign(3, OEMCrypto_HMAC_SHA256); // Can't sign with verify key.
BadSign(2, OEMCrypto_AES_CBC_128_NO_PADDING); // Bad signing algorithm.
}
TEST_P(OEMCryptoGenericCryptoTest, GenericKeyVerify) {
EncryptAndLoadKeys();
unsigned int key_index = 3;
vector<uint8_t> signature;
SignBuffer(key_index, clear_buffer_, &signature);
ASSERT_EQ(
OEMCrypto_SUCCESS,
OEMCrypto_SelectKey(session_.session_id(),
session_.license().keys[key_index].key_id,
session_.license().keys[key_index].key_id_length,
OEMCrypto_CipherMode_CTR));
ASSERT_EQ(OEMCrypto_SUCCESS, OEMCrypto_Generic_Verify(
session_.session_id(), clear_buffer_.data(),
clear_buffer_.size(), OEMCrypto_HMAC_SHA256,
signature.data(), signature.size()));
}
// Test that the Generic_Verify function fails when not allowed.
TEST_P(OEMCryptoGenericCryptoTest, GenericKeyBadVerify) {
EncryptAndLoadKeys();
BadVerify(0, OEMCrypto_HMAC_SHA256, SHA256_DIGEST_LENGTH, false);
BadVerify(1, OEMCrypto_HMAC_SHA256, SHA256_DIGEST_LENGTH, false);
BadVerify(2, OEMCrypto_HMAC_SHA256, SHA256_DIGEST_LENGTH, false);
BadVerify(3, OEMCrypto_HMAC_SHA256, SHA256_DIGEST_LENGTH, true);
BadVerify(3, OEMCrypto_HMAC_SHA256, SHA256_DIGEST_LENGTH - 1, false);
BadVerify(3, OEMCrypto_HMAC_SHA256, SHA256_DIGEST_LENGTH + 1, false);
BadVerify(3, OEMCrypto_AES_CBC_128_NO_PADDING, SHA256_DIGEST_LENGTH, false);
}
// Test Generic_Encrypt with the maximum buffer size.
TEST_P(OEMCryptoGenericCryptoTest, GenericKeyEncryptLargeBuffer) {
ResizeBuffer(GetResourceValue(kMaxGenericBuffer));
EncryptAndLoadKeys();
unsigned int key_index = 0;
vector<uint8_t> expected_encrypted;
EncryptBuffer(key_index, clear_buffer_, &expected_encrypted);
ASSERT_EQ(
OEMCrypto_SUCCESS,
OEMCrypto_SelectKey(session_.session_id(),
session_.license().keys[key_index].key_id,
session_.license().keys[key_index].key_id_length,
OEMCrypto_CipherMode_CTR));
vector<uint8_t> encrypted(clear_buffer_.size());
ASSERT_EQ(
OEMCrypto_SUCCESS,
OEMCrypto_Generic_Encrypt(
session_.session_id(), clear_buffer_.data(), clear_buffer_.size(),
iv_, OEMCrypto_AES_CBC_128_NO_PADDING, encrypted.data()));
ASSERT_EQ(expected_encrypted, encrypted);
}
// Test Generic_Decrypt with the maximum buffer size.
TEST_P(OEMCryptoGenericCryptoTest, GenericKeyDecryptLargeBuffer) {
// Some applications are known to pass in a block that is almost 400k.
ResizeBuffer(GetResourceValue(kMaxGenericBuffer));
EncryptAndLoadKeys();
unsigned int key_index = 1;
vector<uint8_t> encrypted;
EncryptBuffer(key_index, clear_buffer_, &encrypted);
ASSERT_EQ(
OEMCrypto_SUCCESS,
OEMCrypto_SelectKey(session_.session_id(),
session_.license().keys[key_index].key_id,
session_.license().keys[key_index].key_id_length,
OEMCrypto_CipherMode_CTR));
vector<uint8_t> resultant(encrypted.size());
ASSERT_EQ(OEMCrypto_SUCCESS,
OEMCrypto_Generic_Decrypt(
session_.session_id(), encrypted.data(), encrypted.size(), iv_,
OEMCrypto_AES_CBC_128_NO_PADDING, resultant.data()));
ASSERT_EQ(clear_buffer_, resultant);
}
// Test Generic_Sign with the maximum buffer size.
TEST_P(OEMCryptoGenericCryptoTest, GenericKeySignLargeBuffer) {
ResizeBuffer(GetResourceValue(kMaxGenericBuffer));
EncryptAndLoadKeys();
unsigned int key_index = 2;
vector<uint8_t> expected_signature;
SignBuffer(key_index, clear_buffer_, &expected_signature);
ASSERT_EQ(
OEMCrypto_SUCCESS,
OEMCrypto_SelectKey(session_.session_id(),
session_.license().keys[key_index].key_id,
session_.license().keys[key_index].key_id_length,
OEMCrypto_CipherMode_CTR));
size_t gen_signature_length = 0;
ASSERT_EQ(OEMCrypto_ERROR_SHORT_BUFFER,
OEMCrypto_Generic_Sign(session_.session_id(), clear_buffer_.data(),
clear_buffer_.size(), OEMCrypto_HMAC_SHA256,
nullptr, &gen_signature_length));
ASSERT_EQ(static_cast<size_t>(SHA256_DIGEST_LENGTH), gen_signature_length);
vector<uint8_t> signature(SHA256_DIGEST_LENGTH);
ASSERT_EQ(OEMCrypto_SUCCESS,
OEMCrypto_Generic_Sign(session_.session_id(), clear_buffer_.data(),
clear_buffer_.size(), OEMCrypto_HMAC_SHA256,
signature.data(), &gen_signature_length));
ASSERT_EQ(expected_signature, signature);
}
// Test Generic_Verify with the maximum buffer size.
TEST_P(OEMCryptoGenericCryptoTest, GenericKeyVerifyLargeBuffer) {
ResizeBuffer(GetResourceValue(kMaxGenericBuffer));
EncryptAndLoadKeys();
unsigned int key_index = 3;
vector<uint8_t> signature;
SignBuffer(key_index, clear_buffer_, &signature);
ASSERT_EQ(
OEMCrypto_SUCCESS,
OEMCrypto_SelectKey(session_.session_id(),
session_.license().keys[key_index].key_id,
session_.license().keys[key_index].key_id_length,
OEMCrypto_CipherMode_CTR));
ASSERT_EQ(OEMCrypto_SUCCESS, OEMCrypto_Generic_Verify(
session_.session_id(), clear_buffer_.data(),
clear_buffer_.size(), OEMCrypto_HMAC_SHA256,
signature.data(), signature.size()));
}
// Test Generic_Encrypt when the key duration has expired.
TEST_P(OEMCryptoGenericCryptoTest, KeyDurationEncrypt) {
license_messages_.core_response()
.timer_limits.total_playback_duration_seconds = kDuration;
license_messages_.CreateResponseWithGenericCryptoKeys();
EncryptAndLoadKeys();
vector<uint8_t> expected_encrypted;
EncryptBuffer(0, clear_buffer_, &expected_encrypted);
unsigned int key_index = 0;
vector<uint8_t> encrypted(clear_buffer_.size());
// Should be valid key at the start.
ASSERT_EQ(
OEMCrypto_SUCCESS,
OEMCrypto_SelectKey(session_.session_id(),
session_.license().keys[key_index].key_id,
session_.license().keys[key_index].key_id_length,
OEMCrypto_CipherMode_CTR));
ASSERT_EQ(
OEMCrypto_SUCCESS,
OEMCrypto_Generic_Encrypt(
session_.session_id(), clear_buffer_.data(), clear_buffer_.size(),
iv_, OEMCrypto_AES_CBC_128_NO_PADDING, encrypted.data()));
ASSERT_EQ(expected_encrypted, encrypted);
wvcdm::TestSleep::Sleep(kLongSleep + kShortSleep); // Should be expired key.
encrypted.assign(clear_buffer_.size(), 0);
OEMCryptoResult status = OEMCrypto_Generic_Encrypt(
session_.session_id(), clear_buffer_.data(), clear_buffer_.size(), iv_,
OEMCrypto_AES_CBC_128_NO_PADDING, encrypted.data());
ASSERT_EQ(OEMCrypto_ERROR_KEY_EXPIRED, status);
ASSERT_NE(encrypted, expected_encrypted);
ASSERT_NO_FATAL_FAILURE(session_.TestSelectExpired(key_index));
}
// Test Generic_Decrypt when the key duration has expired.
TEST_P(OEMCryptoGenericCryptoTest, KeyDurationDecrypt) {
license_messages_.core_response()
.timer_limits.total_playback_duration_seconds = kDuration;
license_messages_.CreateResponseWithGenericCryptoKeys();
EncryptAndLoadKeys();
// Should be valid key at the start.
unsigned int key_index = 1;
vector<uint8_t> encrypted;
EncryptBuffer(key_index, clear_buffer_, &encrypted);
ASSERT_EQ(
OEMCrypto_SUCCESS,
OEMCrypto_SelectKey(session_.session_id(),
session_.license().keys[key_index].key_id,
session_.license().keys[key_index].key_id_length,
OEMCrypto_CipherMode_CTR));
vector<uint8_t> resultant(encrypted.size());
ASSERT_EQ(OEMCrypto_SUCCESS,
OEMCrypto_Generic_Decrypt(
session_.session_id(), encrypted.data(), encrypted.size(), iv_,
OEMCrypto_AES_CBC_128_NO_PADDING, resultant.data()));
ASSERT_EQ(clear_buffer_, resultant);
wvcdm::TestSleep::Sleep(kLongSleep + kShortSleep); // Should be expired key.
resultant.assign(encrypted.size(), 0);
OEMCryptoResult status = OEMCrypto_Generic_Decrypt(
session_.session_id(), encrypted.data(), encrypted.size(), iv_,
OEMCrypto_AES_CBC_128_NO_PADDING, resultant.data());
ASSERT_EQ(OEMCrypto_ERROR_KEY_EXPIRED, status);
ASSERT_NE(clear_buffer_, resultant);
ASSERT_NO_FATAL_FAILURE(session_.TestSelectExpired(key_index));
}
// Test Generic_Sign when the key duration has expired.
TEST_P(OEMCryptoGenericCryptoTest, KeyDurationSign) {
license_messages_.core_response()
.timer_limits.total_playback_duration_seconds = kDuration;
license_messages_.CreateResponseWithGenericCryptoKeys();
EncryptAndLoadKeys();
unsigned int key_index = 2;
vector<uint8_t> expected_signature;
vector<uint8_t> signature(SHA256_DIGEST_LENGTH);
size_t signature_length = signature.size();
SignBuffer(key_index, clear_buffer_, &expected_signature);
// Should be valid key at the start.
ASSERT_EQ(
OEMCrypto_SUCCESS,
OEMCrypto_SelectKey(session_.session_id(),
session_.license().keys[key_index].key_id,
session_.license().keys[key_index].key_id_length,
OEMCrypto_CipherMode_CTR));
ASSERT_EQ(OEMCrypto_SUCCESS,
OEMCrypto_Generic_Sign(session_.session_id(), clear_buffer_.data(),
clear_buffer_.size(), OEMCrypto_HMAC_SHA256,
signature.data(), &signature_length));
ASSERT_EQ(expected_signature, signature);
wvcdm::TestSleep::Sleep(kLongSleep + kShortSleep); // Should be expired key.
signature.assign(SHA256_DIGEST_LENGTH, 0);
OEMCryptoResult status = OEMCrypto_Generic_Sign(
session_.session_id(), clear_buffer_.data(), clear_buffer_.size(),
OEMCrypto_HMAC_SHA256, signature.data(), &signature_length);
ASSERT_EQ(OEMCrypto_ERROR_KEY_EXPIRED, status);
ASSERT_NE(expected_signature, signature);
ASSERT_NO_FATAL_FAILURE(session_.TestSelectExpired(key_index));
}
// Test Generic_Verify when the key duration has expired.
TEST_P(OEMCryptoGenericCryptoTest, KeyDurationVerify) {
license_messages_.core_response()
.timer_limits.total_playback_duration_seconds = kDuration;
license_messages_.CreateResponseWithGenericCryptoKeys();
EncryptAndLoadKeys();
unsigned int key_index = 3;
vector<uint8_t> signature;
SignBuffer(key_index, clear_buffer_, &signature);
// Should be valid key at the start.
ASSERT_EQ(
OEMCrypto_SUCCESS,
OEMCrypto_SelectKey(session_.session_id(),
session_.license().keys[key_index].key_id,
session_.license().keys[key_index].key_id_length,
OEMCrypto_CipherMode_CTR));
ASSERT_EQ(OEMCrypto_SUCCESS, OEMCrypto_Generic_Verify(
session_.session_id(), clear_buffer_.data(),
clear_buffer_.size(), OEMCrypto_HMAC_SHA256,
signature.data(), signature.size()));
wvcdm::TestSleep::Sleep(kLongSleep + kShortSleep); // Should be expired key.
OEMCryptoResult status = OEMCrypto_Generic_Verify(
session_.session_id(), clear_buffer_.data(), clear_buffer_.size(),
OEMCrypto_HMAC_SHA256, signature.data(), signature.size());
ASSERT_EQ(OEMCrypto_ERROR_KEY_EXPIRED, status);
ASSERT_NO_FATAL_FAILURE(session_.TestSelectExpired(key_index));
}
const unsigned int kLongKeyId = 2;
// Test that short key ids are allowed.
class OEMCryptoGenericCryptoKeyIdLengthTest
: public OEMCryptoGenericCryptoTest {
protected:
void SetUp() override {
OEMCryptoGenericCryptoTest::SetUp();
license_messages_.set_num_keys(5);
license_messages_.set_control(wvoec::kControlAllowDecrypt);
license_messages_.core_response()
.timer_limits.total_playback_duration_seconds = kDuration;
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
SetUniformKeyIdLength(16); // Start with all key ids being 16 bytes.
// But, we are testing that the key ids do not have to have the same length.
// 12 bytes (common key id length).
license_messages_.SetKeyId(0, "123456789012");
license_messages_.SetKeyId(1, "12345"); // short key id.
// 16 byte key id. (default)
license_messages_.SetKeyId(2, "1234567890123456");
license_messages_.SetKeyId(3, "12345678901234"); // 14 byte. (uncommon)
license_messages_.SetKeyId(4, "1"); // very short key id.
ASSERT_EQ(2u, kLongKeyId);
ASSERT_NO_FATAL_FAILURE(license_messages_.FillCoreResponseSubstrings());
}
// Make all four keys have the same length.
void SetUniformKeyIdLength(size_t key_id_length) {
for (size_t i = 0; i < license_messages_.num_keys(); i++) {
string key_id;
key_id.resize(key_id_length, i + 'a');
license_messages_.SetKeyId(i, key_id);
}
ASSERT_NO_FATAL_FAILURE(license_messages_.FillCoreResponseSubstrings());
}
void TestWithKey(unsigned int key_index) {
ASSERT_LT(key_index, license_messages_.num_keys());
EncryptAndLoadKeys();
vector<uint8_t> encrypted;
// To make sure OEMCrypto is not expecting the key_id to be zero padded, we
// will create a buffer that is padded with 'Z'.
// Then, we use fill the buffer with the longer of the three keys. If
// OEMCrypto is paying attention to the key id length, it should pick out
// the correct key.
vector<uint8_t> key_id_buffer(
session_.license().keys[kLongKeyId].key_id_length + 5,
'Z'); // Fill a bigger buffer with letter 'Z'.
memcpy(key_id_buffer.data(), session_.license().keys[kLongKeyId].key_id,
session_.license().keys[kLongKeyId].key_id_length);
EncryptBuffer(key_index, clear_buffer_, &encrypted);
ASSERT_EQ(
OEMCrypto_SUCCESS,
OEMCrypto_SelectKey(session_.session_id(), key_id_buffer.data(),
session_.license().keys[key_index].key_id_length,
OEMCrypto_CipherMode_CTR));
vector<uint8_t> resultant(encrypted.size());
ASSERT_EQ(OEMCrypto_SUCCESS,
OEMCrypto_Generic_Decrypt(
session_.session_id(), encrypted.data(), encrypted.size(),
iv_, OEMCrypto_AES_CBC_128_NO_PADDING, resultant.data()));
ASSERT_EQ(clear_buffer_, resultant);
}
};
TEST_P(OEMCryptoGenericCryptoKeyIdLengthTest, MediumKeyId) { TestWithKey(0); }
TEST_P(OEMCryptoGenericCryptoKeyIdLengthTest, ShortKeyId) { TestWithKey(1); }
TEST_P(OEMCryptoGenericCryptoKeyIdLengthTest, LongKeyId) { TestWithKey(2); }
TEST_P(OEMCryptoGenericCryptoKeyIdLengthTest, FourteenByteKeyId) {
TestWithKey(3);
}
TEST_P(OEMCryptoGenericCryptoKeyIdLengthTest, VeryShortKeyId) {
TestWithKey(4);
}
TEST_P(OEMCryptoGenericCryptoKeyIdLengthTest, UniformShortKeyId) {
SetUniformKeyIdLength(5);
TestWithKey(2);
}
TEST_P(OEMCryptoGenericCryptoKeyIdLengthTest, UniformLongKeyId) {
SetUniformKeyIdLength(kTestKeyIdMaxLength);
TestWithKey(2);
}
INSTANTIATE_TEST_CASE_P(TestAll, OEMCryptoGenericCryptoTest,
Range<uint32_t>(kCurrentAPI - 1, kCurrentAPI + 1));
INSTANTIATE_TEST_CASE_P(TestAll, OEMCryptoGenericCryptoKeyIdLengthTest,
Range<uint32_t>(kCurrentAPI - 1, kCurrentAPI + 1));
// Test usage table functionality.
class LicenseWithUsageEntry {
public:
LicenseWithUsageEntry(const std::string& pst = "my_pst")
: session_(),
license_messages_(&session_),
generic_crypto_(false),
time_license_received_(0),
time_first_decrypt_(0),
time_last_decrypt_(0),
active_(true) {
license_messages_.set_pst(pst);
}
void MakeAndLoadOnline(OEMCryptoSessionTests* test) {
MakeAndLoad(test,
wvoec::kControlNonceEnabled | wvoec::kControlNonceRequired);
}
// If status in not a nullptr, then creating a new entry is allowed to fail,
// and its error code is stored in status.
void MakeOfflineAndClose(OEMCryptoSessionTests* test,
OEMCryptoResult* status = nullptr) {
MakeAndLoad(test, wvoec::kControlNonceOrEntry, status);
if (status != nullptr && *status != OEMCrypto_SUCCESS) {
ASSERT_NO_FATAL_FAILURE(session_.close());
return;
}
ASSERT_NO_FATAL_FAILURE(
session_.UpdateUsageEntry(&(test->encrypted_usage_header_)));
ASSERT_NO_FATAL_FAILURE(GenerateVerifyReport(kUnused));
ASSERT_NO_FATAL_FAILURE(session_.close());
}
// If status in not a nullptr, then creating a new entry is allowed to fail,
// and its error code is stored in status.
void MakeAndLoad(SessionUtil* util, uint32_t control,
OEMCryptoResult* status = nullptr) {
license_messages_.set_control(control);
ASSERT_NO_FATAL_FAILURE(session_.open());
ASSERT_NO_FATAL_FAILURE(util->InstallTestRSAKey(&session_));
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
if (generic_crypto_) {
ASSERT_NO_FATAL_FAILURE(
license_messages_.CreateResponseWithGenericCryptoKeys());
} else {
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
}
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_NO_FATAL_FAILURE(session_.CreateNewUsageEntry(status));
if (status != nullptr && *status != OEMCrypto_SUCCESS) return;
ASSERT_EQ(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
time_license_received_ = wvcdm::Clock().GetCurrentTime();
}
void OpenAndReload(SessionUtil* util) {
ASSERT_NO_FATAL_FAILURE(session_.open());
ASSERT_NO_FATAL_FAILURE(session_.ReloadUsageEntry());
ASSERT_NO_FATAL_FAILURE(util->InstallTestRSAKey(&session_));
ASSERT_NO_FATAL_FAILURE(session_.GenerateDerivedKeysFromSessionKey());
ASSERT_EQ(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
}
// Test decrypt, and update the decrypt times for the pst report.
void TestDecryptCTR(bool select_key_first = true,
OEMCryptoResult expected_result = OEMCrypto_SUCCESS) {
session_.TestDecryptCTR(select_key_first, expected_result);
time_last_decrypt_ = wvcdm::Clock().GetCurrentTime();
if (time_first_decrypt_ == 0) time_first_decrypt_ = time_last_decrypt_;
}
void DeactivateUsageEntry() {
active_ = false;
ASSERT_EQ(
OEMCrypto_SUCCESS,
OEMCrypto_DeactivateUsageEntry(
session_.session_id(),
reinterpret_cast<const uint8_t*>(pst().c_str()), pst().length()));
}
void GenerateVerifyReport(OEMCrypto_Usage_Entry_Status status) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateReport(pst()));
Test_PST_Report expected(pst(), status);
ASSERT_NO_FATAL_FAILURE(
session_.VerifyReport(expected, time_license_received_,
time_first_decrypt_, time_last_decrypt_));
// The PST report was signed above. Below we verify that the entire message
// that is sent to the server will be signed by the right mac keys.
RenewalRoundTrip renewal_messages(&license_messages_);
renewal_messages.set_is_release(!active_);
ASSERT_NO_FATAL_FAILURE(renewal_messages.SignAndVerifyRequest());
}
void ReloadUsageEntry() {
session_.ReloadUsageEntry();
session_.set_mac_keys(license_messages_.response_data().mac_keys);
}
const std::string& pst() const { return license_messages_.pst(); }
void set_pst(const std::string& pst) { license_messages_.set_pst(pst); }
LicenseRoundTrip& license_messages() { return license_messages_; }
Session& session() { return session_; }
void set_generic_crypto(bool generic_crypto) {
generic_crypto_ = generic_crypto;
}
private:
Session session_;
LicenseRoundTrip license_messages_;
bool generic_crypto_;
int64_t time_license_received_;
int64_t time_first_decrypt_;
int64_t time_last_decrypt_;
bool active_;
};
class OEMCryptoUsageTableTest : public OEMCryptoGenericCryptoTest {
public:
virtual void ShutDown() {
ASSERT_NO_FATAL_FAILURE(session_.close());
ASSERT_EQ(OEMCrypto_SUCCESS, OEMCrypto_Terminate());
}
virtual void Restart() {
OEMCrypto_SetSandbox(kTestSandbox, sizeof(kTestSandbox));
ASSERT_EQ(OEMCrypto_SUCCESS, OEMCrypto_Initialize());
EnsureTestKeys();
ASSERT_NO_FATAL_FAILURE(session_.open());
}
void PrintDotsWhileSleep(int64_t total_seconds, int64_t interval_seconds) {
int64_t dot_time = interval_seconds;
int64_t elapsed_time = 0;
const int64_t start_time = wvcdm::Clock().GetCurrentTime();
do {
wvcdm::TestSleep::Sleep(1);
elapsed_time = wvcdm::Clock().GetCurrentTime() - start_time;
if (elapsed_time >= dot_time) {
cout << ".";
cout.flush();
dot_time += interval_seconds;
}
} while (elapsed_time < total_seconds);
cout << endl;
}
};
// Test an online or streaming license with PST. This license requires a valid
// nonce and can only be loaded once.
TEST_P(OEMCryptoUsageTableTest, OnlineLicense) {
LicenseWithUsageEntry entry;
entry.license_messages().set_api_version(license_api_version_);
entry.MakeAndLoadOnline(this);
Session& s = entry.session();
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
// test repeated report generation
ASSERT_NO_FATAL_FAILURE(entry.GenerateVerifyReport(kUnused));
ASSERT_NO_FATAL_FAILURE(entry.GenerateVerifyReport(kUnused));
ASSERT_NO_FATAL_FAILURE(entry.GenerateVerifyReport(kUnused));
ASSERT_NO_FATAL_FAILURE(entry.GenerateVerifyReport(kUnused));
ASSERT_NO_FATAL_FAILURE(entry.TestDecryptCTR());
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(entry.GenerateVerifyReport(kActive));
// Flag the entry as inactive.
ASSERT_NO_FATAL_FAILURE(entry.DeactivateUsageEntry());
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
// It should report as inactive.
ASSERT_NO_FATAL_FAILURE(entry.GenerateVerifyReport(kInactiveUsed));
// Decrypt should fail.
ASSERT_NO_FATAL_FAILURE(
entry.TestDecryptCTR(false, OEMCrypto_ERROR_UNKNOWN_FAILURE));
// We could call DeactivateUsageEntry multiple times. The state should not
// change.
ASSERT_NO_FATAL_FAILURE(entry.DeactivateUsageEntry());
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
// It should report as inactive.
ASSERT_NO_FATAL_FAILURE(entry.GenerateVerifyReport(kInactiveUsed));
}
// Test the usage report when the license is loaded but the keys are never used
// for decryption.
TEST_P(OEMCryptoUsageTableTest, OnlineLicenseUnused) {
LicenseWithUsageEntry entry;
entry.license_messages().set_api_version(license_api_version_);
entry.MakeAndLoadOnline(this);
Session& s = entry.session();
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
// No decrypt. We do not use this license.
ASSERT_NO_FATAL_FAILURE(entry.GenerateVerifyReport(kUnused));
// Flag the entry as inactive.
ASSERT_NO_FATAL_FAILURE(entry.DeactivateUsageEntry());
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
// It should report as inactive.
ASSERT_NO_FATAL_FAILURE(entry.GenerateVerifyReport(kInactiveUnused));
// Decrypt should fail.
ASSERT_NO_FATAL_FAILURE(
entry.TestDecryptCTR(false, OEMCrypto_ERROR_UNKNOWN_FAILURE));
// We could call DeactivateUsageEntry multiple times. The state should not
// change.
ASSERT_NO_FATAL_FAILURE(entry.DeactivateUsageEntry());
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
// It should report as inactive.
ASSERT_NO_FATAL_FAILURE(entry.GenerateVerifyReport(kInactiveUnused));
}
// Test that the usage table has been updated and saved before a report can be
// generated.
TEST_P(OEMCryptoUsageTableTest, ForbidReportWithNoUpdate) {
LicenseWithUsageEntry entry;
entry.license_messages().set_api_version(license_api_version_);
entry.MakeAndLoadOnline(this);
Session& s = entry.session();
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(entry.GenerateVerifyReport(kUnused));
ASSERT_NO_FATAL_FAILURE(entry.TestDecryptCTR());
// Cannot generate a report without first updating the file.
ASSERT_NO_FATAL_FAILURE(
s.GenerateReport(entry.pst(), OEMCrypto_ERROR_ENTRY_NEEDS_UPDATE));
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
// Now it's OK.
ASSERT_NO_FATAL_FAILURE(entry.GenerateVerifyReport(kActive));
// Flag the entry as inactive.
ASSERT_NO_FATAL_FAILURE(entry.DeactivateUsageEntry());
// Cannot generate a report without first updating the file.
ASSERT_NO_FATAL_FAILURE(
s.GenerateReport(entry.pst(), OEMCrypto_ERROR_ENTRY_NEEDS_UPDATE));
// Decrypt should fail.
ASSERT_NO_FATAL_FAILURE(
entry.TestDecryptCTR(false, OEMCrypto_ERROR_UNKNOWN_FAILURE));
}
// Test an online license with a license renewal.
TEST_P(OEMCryptoUsageTableTest, OnlineLicenseWithRefreshAPI16) {
LicenseWithUsageEntry entry;
entry.license_messages().set_api_version(license_api_version_);
entry.MakeAndLoadOnline(this);
Session& s = entry.session();
ASSERT_NO_FATAL_FAILURE(entry.TestDecryptCTR());
RenewalRoundTrip renewal_messages(&entry.license_messages());
MakeRenewalRequest(&renewal_messages);
LoadRenewal(&renewal_messages, OEMCrypto_SUCCESS);
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(entry.GenerateVerifyReport(kActive));
}
// Verify that a streaming license cannot be reloaded.
TEST_P(OEMCryptoUsageTableTest, RepeatOnlineLicense) {
LicenseWithUsageEntry entry;
entry.license_messages().set_api_version(license_api_version_);
entry.MakeAndLoadOnline(this);
Session& s = entry.session();
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(s.close());
Session s2;
ASSERT_NO_FATAL_FAILURE(s2.open());
ASSERT_NO_FATAL_FAILURE(InstallTestRSAKey(&s2));
s2.LoadUsageEntry(s); // Use the same entry.
ASSERT_NE(OEMCrypto_SUCCESS, entry.license_messages().LoadResponse(&s2));
}
// An offline license should not load on the first call if the nonce is bad.
TEST_P(OEMCryptoUsageTableTest, OnlineBadNonce) {
Session s;
LicenseRoundTrip license_messages(&s);
license_messages.set_api_version(license_api_version_);
license_messages.set_control(wvoec::kControlNonceEnabled |
wvoec::kControlNonceRequired);
license_messages.set_pst("my-pst");
ASSERT_NO_FATAL_FAILURE(s.open());
ASSERT_NO_FATAL_FAILURE(InstallTestRSAKey(&s));
ASSERT_NO_FATAL_FAILURE(s.CreateNewUsageEntry());
ASSERT_NO_FATAL_FAILURE(s.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages.CreateDefaultResponse());
for (uint32_t i = 0; i < license_messages.num_keys(); i++)
license_messages.response_data().keys[i].control.nonce ^= 42;
ASSERT_NO_FATAL_FAILURE(license_messages.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_ERROR_INVALID_NONCE, license_messages.LoadResponse());
}
// A license with non-zero replay control bits needs a valid pst.
TEST_P(OEMCryptoUsageTableTest, OnlineEmptyPST) {
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
ASSERT_NO_FATAL_FAILURE(InstallTestRSAKey(&s));
ASSERT_NO_FATAL_FAILURE(s.GenerateNonce());
LicenseRoundTrip license_messages(&s);
license_messages.set_api_version(license_api_version_);
license_messages.set_control(wvoec::kControlNonceEnabled |
wvoec::kControlNonceRequired);
// DO NOT SET PST: license_messages.set_pst(pst);
ASSERT_NO_FATAL_FAILURE(license_messages.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages.EncryptAndSignResponse());
ASSERT_NO_FATAL_FAILURE(s.CreateNewUsageEntry());
ASSERT_NE(OEMCrypto_SUCCESS, license_messages.LoadResponse());
}
// A license with non-zero replay control bits needs a valid pst.
TEST_P(OEMCryptoUsageTableTest, OnlineMissingEntry) {
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
ASSERT_NO_FATAL_FAILURE(InstallTestRSAKey(&s));
ASSERT_NO_FATAL_FAILURE(s.GenerateNonce());
LicenseRoundTrip license_messages(&s);
license_messages.set_api_version(license_api_version_);
license_messages.set_control(wvoec::kControlNonceEnabled |
wvoec::kControlNonceRequired);
license_messages.set_pst("my-pst");
ASSERT_NO_FATAL_FAILURE(license_messages.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages.EncryptAndSignResponse());
// ENTRY NOT CREATED: ASSERT_NO_FATAL_FAILURE(s.CreateNewUsageEntry());
ASSERT_NE(OEMCrypto_SUCCESS, license_messages.LoadResponse());
}
// Sessions should have at most one entry at a time. This tests different
// orderings of CreateNewUsageEntry and LoadUsageEntry calls.
TEST_P(OEMCryptoUsageTableTest, CreateAndLoadMultipleEntriesAPI16) {
// Entry Count: we start each test with an empty header.
uint32_t usage_entry_number;
LicenseWithUsageEntry entry;
entry.license_messages().set_api_version(license_api_version_);
Session& s = entry.session();
// Make first entry 0.
ASSERT_NO_FATAL_FAILURE(entry.MakeOfflineAndClose(this));
// Load an entry, then try to create a second.
ASSERT_NO_FATAL_FAILURE(s.open());
// Reload entry 0.
ASSERT_NO_FATAL_FAILURE(s.ReloadUsageEntry());
// Create new entry 1 should fail.
ASSERT_EQ(OEMCrypto_ERROR_MULTIPLE_USAGE_ENTRIES,
OEMCrypto_CreateNewUsageEntry(entry.session().session_id(),
&usage_entry_number));
ASSERT_NO_FATAL_FAILURE(s.close());
// Create an entry, then try to load a second.
Session s2;
ASSERT_NO_FATAL_FAILURE(s2.open());
// Create entry 1.
ASSERT_NO_FATAL_FAILURE(s2.CreateNewUsageEntry());
// Try to reload entry 0.
ASSERT_EQ(OEMCrypto_ERROR_MULTIPLE_USAGE_ENTRIES,
OEMCrypto_LoadUsageEntry(s2.session_id(), s.usage_entry_number(),
s.encrypted_usage_entry().data(),
s.encrypted_usage_entry().size()));
ASSERT_NO_FATAL_FAILURE(s2.close());
// Reload an entry and a license, then try to load the same entry again.
// This reloads entry 0.
ASSERT_NO_FATAL_FAILURE(s.open());
ASSERT_NO_FATAL_FAILURE(s.ReloadUsageEntry());
ASSERT_EQ(OEMCrypto_ERROR_MULTIPLE_USAGE_ENTRIES,
OEMCrypto_LoadUsageEntry(s.session_id(), s.usage_entry_number(),
s.encrypted_usage_entry().data(),
s.encrypted_usage_entry().size()));
ASSERT_NO_FATAL_FAILURE(s.close());
// Create an entry, then try to create a second entry.
ASSERT_NO_FATAL_FAILURE(s2.open());
ASSERT_NO_FATAL_FAILURE(s2.CreateNewUsageEntry());
ASSERT_EQ(
OEMCrypto_ERROR_MULTIPLE_USAGE_ENTRIES,
OEMCrypto_CreateNewUsageEntry(s2.session_id(), &usage_entry_number));
}
// An entry can be loaded in only one session at a time.
TEST_P(OEMCryptoUsageTableTest, LoadEntryInMultipleSessions) {
// Entry Count: we start each test with an empty header.
LicenseWithUsageEntry entry;
entry.license_messages().set_api_version(license_api_version_);
Session& s = entry.session();
// Make first entry 0.
ASSERT_NO_FATAL_FAILURE(entry.MakeOfflineAndClose(this));
const uint32_t usage_entry_number = s.usage_entry_number();
EXPECT_EQ(usage_entry_number, 0u); // Should be only entry in this test.
// Load an entry, then try to create a second.
ASSERT_NO_FATAL_FAILURE(s.open());
// Reload entry 0.
ASSERT_NO_FATAL_FAILURE(s.ReloadUsageEntry());
// Create an entry, then try to load a second.
Session s2;
ASSERT_NO_FATAL_FAILURE(s2.open());
// Try to load entry 0 into session 2.
ASSERT_EQ(OEMCrypto_ERROR_INVALID_SESSION,
OEMCrypto_LoadUsageEntry(s2.session_id(), usage_entry_number,
s.encrypted_usage_entry().data(),
s.encrypted_usage_entry().size()));
}
// Test generic encrypt when the license uses a PST.
TEST_P(OEMCryptoUsageTableTest, GenericCryptoEncrypt) {
LicenseWithUsageEntry entry;
entry.license_messages().set_api_version(license_api_version_);
entry.set_generic_crypto(true);
entry.MakeAndLoadOnline(this);
Session& s = entry.session();
OEMCryptoResult sts;
unsigned int key_index = 0;
vector<uint8_t> expected_encrypted;
EncryptBufferWithKey(s.license().keys[key_index].key_data, clear_buffer_,
&expected_encrypted);
sts = OEMCrypto_SelectKey(s.session_id(), s.license().keys[key_index].key_id,
s.license().keys[key_index].key_id_length,
OEMCrypto_CipherMode_CTR);
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
vector<uint8_t> encrypted(clear_buffer_.size());
sts = OEMCrypto_Generic_Encrypt(
s.session_id(), clear_buffer_.data(), clear_buffer_.size(), iv_,
OEMCrypto_AES_CBC_128_NO_PADDING, encrypted.data());
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
EXPECT_EQ(expected_encrypted, encrypted);
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(entry.GenerateVerifyReport(kActive));
ASSERT_NO_FATAL_FAILURE(entry.DeactivateUsageEntry());
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(entry.GenerateVerifyReport(kInactiveUsed));
encrypted.assign(clear_buffer_.size(), 0);
sts = OEMCrypto_Generic_Encrypt(
s.session_id(), clear_buffer_.data(), clear_buffer_.size(), iv_,
OEMCrypto_AES_CBC_128_NO_PADDING, encrypted.data());
ASSERT_NE(OEMCrypto_SUCCESS, sts);
EXPECT_NE(encrypted, expected_encrypted);
}
// Test generic decrypt when the license uses a PST.
TEST_P(OEMCryptoUsageTableTest, GenericCryptoDecrypt) {
LicenseWithUsageEntry entry;
entry.license_messages().set_api_version(license_api_version_);
entry.set_generic_crypto(true);
entry.MakeAndLoadOnline(this);
Session& s = entry.session();
OEMCryptoResult sts;
unsigned int key_index = 1;
vector<uint8_t> encrypted;
EncryptBufferWithKey(s.license().keys[key_index].key_data, clear_buffer_,
&encrypted);
sts = OEMCrypto_SelectKey(s.session_id(), s.license().keys[key_index].key_id,
s.license().keys[key_index].key_id_length,
OEMCrypto_CipherMode_CTR);
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
vector<uint8_t> resultant(encrypted.size());
sts = OEMCrypto_Generic_Decrypt(
s.session_id(), encrypted.data(), encrypted.size(), iv_,
OEMCrypto_AES_CBC_128_NO_PADDING, resultant.data());
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
EXPECT_EQ(clear_buffer_, resultant);
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(entry.GenerateVerifyReport(kActive));
ASSERT_NO_FATAL_FAILURE(entry.DeactivateUsageEntry());
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(entry.GenerateVerifyReport(kInactiveUsed));
resultant.assign(encrypted.size(), 0);
sts = OEMCrypto_Generic_Decrypt(
s.session_id(), encrypted.data(), encrypted.size(), iv_,
OEMCrypto_AES_CBC_128_NO_PADDING, resultant.data());
ASSERT_NE(OEMCrypto_SUCCESS, sts);
EXPECT_NE(clear_buffer_, resultant);
}
// Test generic sign when the license uses a PST.
TEST_P(OEMCryptoUsageTableTest, GenericCryptoSign) {
LicenseWithUsageEntry entry;
entry.license_messages().set_api_version(license_api_version_);
entry.set_generic_crypto(true);
entry.MakeAndLoadOnline(this);
Session& s = entry.session();
OEMCryptoResult sts;
unsigned int key_index = 2;
vector<uint8_t> expected_signature;
SignBufferWithKey(s.license().keys[key_index].key_data, clear_buffer_,
&expected_signature);
sts = OEMCrypto_SelectKey(s.session_id(), s.license().keys[key_index].key_id,
s.license().keys[key_index].key_id_length,
OEMCrypto_CipherMode_CTR);
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
size_t gen_signature_length = 0;
sts = OEMCrypto_Generic_Sign(s.session_id(), clear_buffer_.data(),
clear_buffer_.size(), OEMCrypto_HMAC_SHA256,
nullptr, &gen_signature_length);
ASSERT_EQ(OEMCrypto_ERROR_SHORT_BUFFER, sts);
ASSERT_EQ(static_cast<size_t>(SHA256_DIGEST_LENGTH), gen_signature_length);
vector<uint8_t> signature(SHA256_DIGEST_LENGTH);
sts = OEMCrypto_Generic_Sign(s.session_id(), clear_buffer_.data(),
clear_buffer_.size(), OEMCrypto_HMAC_SHA256,
signature.data(), &gen_signature_length);
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
ASSERT_EQ(expected_signature, signature);
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(entry.GenerateVerifyReport(kActive));
ASSERT_NO_FATAL_FAILURE(entry.DeactivateUsageEntry());
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(entry.GenerateVerifyReport(kInactiveUsed));
signature.assign(SHA256_DIGEST_LENGTH, 0);
gen_signature_length = SHA256_DIGEST_LENGTH;
sts = OEMCrypto_Generic_Sign(s.session_id(), clear_buffer_.data(),
clear_buffer_.size(), OEMCrypto_HMAC_SHA256,
signature.data(), &gen_signature_length);
ASSERT_NE(OEMCrypto_SUCCESS, sts);
ASSERT_NE(signature, expected_signature);
}
// Test generic verify when the license uses a PST.
TEST_P(OEMCryptoUsageTableTest, GenericCryptoVerify) {
LicenseWithUsageEntry entry;
entry.license_messages().set_api_version(license_api_version_);
entry.set_generic_crypto(true);
entry.MakeAndLoadOnline(this);
Session& s = entry.session();
OEMCryptoResult sts;
unsigned int key_index = 3;
vector<uint8_t> signature;
SignBufferWithKey(s.license().keys[key_index].key_data, clear_buffer_,
&signature);
sts = OEMCrypto_SelectKey(s.session_id(), s.license().keys[key_index].key_id,
s.license().keys[key_index].key_id_length,
OEMCrypto_CipherMode_CTR);
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
sts = OEMCrypto_Generic_Verify(s.session_id(), clear_buffer_.data(),
clear_buffer_.size(), OEMCrypto_HMAC_SHA256,
signature.data(), signature.size());
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(entry.GenerateVerifyReport(kActive));
ASSERT_NO_FATAL_FAILURE(entry.DeactivateUsageEntry());
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(entry.GenerateVerifyReport(kInactiveUsed));
sts = OEMCrypto_Generic_Verify(s.session_id(), clear_buffer_.data(),
clear_buffer_.size(), OEMCrypto_HMAC_SHA256,
signature.data(), signature.size());
ASSERT_NE(OEMCrypto_SUCCESS, sts);
}
// Test that an offline license can be loaded.
TEST_P(OEMCryptoUsageTableTest, OfflineLicense) {
LicenseWithUsageEntry entry;
entry.license_messages().set_api_version(license_api_version_);
ASSERT_NO_FATAL_FAILURE(entry.MakeOfflineAndClose(this));
}
// Test that an offline license can be loaded and that the license can be
// renewed.
TEST_P(OEMCryptoUsageTableTest, OfflineLicenseRefresh) {
LicenseWithUsageEntry entry;
entry.license_messages().set_api_version(license_api_version_);
entry.MakeAndLoad(this, wvoec::kControlNonceOrEntry);
Session& s = entry.session();
ASSERT_NO_FATAL_FAILURE(entry.TestDecryptCTR());
// License renewal message is signed by client and verified by the server.
RenewalRoundTrip renewal_messages(&entry.license_messages());
MakeRenewalRequest(&renewal_messages);
LoadRenewal(&renewal_messages, OEMCrypto_SUCCESS);
ASSERT_NO_FATAL_FAILURE(entry.TestDecryptCTR());
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(entry.GenerateVerifyReport(kActive));
}
// Test that an offline license can be reloaded in a new session.
TEST_P(OEMCryptoUsageTableTest, ReloadOfflineLicense) {
LicenseWithUsageEntry entry;
entry.license_messages().set_api_version(license_api_version_);
entry.MakeOfflineAndClose(this);
Session& s = entry.session();
ASSERT_NO_FATAL_FAILURE(entry.OpenAndReload(this));
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(entry.GenerateVerifyReport(kUnused));
ASSERT_NO_FATAL_FAILURE(entry.TestDecryptCTR());
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(entry.GenerateVerifyReport(kActive));
}
// Test that an offline license can be reloaded in a new session, and then
// refreshed.
TEST_P(OEMCryptoUsageTableTest, ReloadOfflineLicenseWithRefresh) {
LicenseWithUsageEntry entry;
entry.license_messages().set_api_version(license_api_version_);
entry.MakeOfflineAndClose(this);
Session& s = entry.session();
ASSERT_NO_FATAL_FAILURE(entry.OpenAndReload(this));
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(entry.GenerateVerifyReport(kUnused));
ASSERT_NO_FATAL_FAILURE(entry.TestDecryptCTR());
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
RenewalRoundTrip renewal_messages(&entry.license_messages());
MakeRenewalRequest(&renewal_messages);
LoadRenewal(&renewal_messages, OEMCrypto_SUCCESS);
ASSERT_NO_FATAL_FAILURE(entry.TestDecryptCTR());
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(entry.GenerateVerifyReport(kActive));
}
// Verify that we can still reload an offline license after OEMCrypto_Terminate
// and Initialize are called. This is as close to a reboot as we can do in a
// unit test.
TEST_P(OEMCryptoUsageTableTest, ReloadOfflineLicenseWithTerminate) {
LicenseWithUsageEntry entry;
entry.license_messages().set_api_version(license_api_version_);
entry.MakeOfflineAndClose(this);
Session& s = entry.session();
ShutDown(); // This calls OEMCrypto_Terminate.
Restart(); // This calls OEMCrypto_Initialize.
ASSERT_EQ(OEMCrypto_SUCCESS,
OEMCrypto_LoadUsageTableHeader(encrypted_usage_header_.data(),
encrypted_usage_header_.size()));
ASSERT_NO_FATAL_FAILURE(entry.OpenAndReload(this));
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(entry.GenerateVerifyReport(kUnused));
ASSERT_NO_FATAL_FAILURE(entry.TestDecryptCTR());
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(entry.GenerateVerifyReport(kActive));
}
// If we attempt to load a second license with the same usage entry as the
// first, but it has different mac keys, then the attempt should fail. This is
// how we verify that we are reloading the same license.
TEST_P(OEMCryptoUsageTableTest, BadReloadOfflineLicense) {
LicenseWithUsageEntry entry;
entry.license_messages().set_api_version(license_api_version_);
entry.MakeOfflineAndClose(this);
Session& s = entry.session();
// Offline license with new mac keys should fail.
Session s2;
LicenseRoundTrip license_messages2(&s2);
// Copy the response, and then change the mac keys.
license_messages2.response_data() = entry.license_messages().response_data();
license_messages2.core_response() = entry.license_messages().core_response();
license_messages2.response_data().mac_keys[7] ^= 42;
ASSERT_NO_FATAL_FAILURE(s2.open());
ASSERT_NO_FATAL_FAILURE(InstallTestRSAKey(&s2));
// This is a valid license: it is correctly signed.
license_messages2.EncryptAndSignResponse();
// Load the usage entry should be OK.
ASSERT_NO_FATAL_FAILURE(s2.LoadUsageEntry(s));
ASSERT_NE(OEMCrypto_SUCCESS, license_messages2.LoadResponse());
ASSERT_NO_FATAL_FAILURE(s2.close());
// Now we go back to the original license response. It should load OK.
ASSERT_NO_FATAL_FAILURE(entry.OpenAndReload(this));
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(entry.GenerateVerifyReport(kUnused));
}
// An offline license should not load on the first call if the nonce is bad.
TEST_P(OEMCryptoUsageTableTest, OfflineBadNonce) {
Session s;
LicenseRoundTrip license_messages(&s);
license_messages.set_api_version(license_api_version_);
license_messages.set_control(wvoec::kControlNonceOrEntry);
license_messages.set_pst("my-pst");
ASSERT_NO_FATAL_FAILURE(s.open());
ASSERT_NO_FATAL_FAILURE(InstallTestRSAKey(&s));
ASSERT_NO_FATAL_FAILURE(s.CreateNewUsageEntry());
ASSERT_NO_FATAL_FAILURE(s.GenerateNonce());
ASSERT_NO_FATAL_FAILURE(license_messages.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages.CreateDefaultResponse());
for (size_t i = 0; i < license_messages.num_keys(); i++)
license_messages.response_data().keys[i].control.nonce ^= 42;
ASSERT_NO_FATAL_FAILURE(license_messages.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_ERROR_INVALID_NONCE, license_messages.LoadResponse());
}
// An offline license needs a valid pst.
TEST_P(OEMCryptoUsageTableTest, OfflineEmptyPST) {
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
ASSERT_NO_FATAL_FAILURE(InstallTestRSAKey(&s));
ASSERT_NO_FATAL_FAILURE(s.GenerateNonce());
LicenseRoundTrip license_messages(&s);
license_messages.set_api_version(license_api_version_);
license_messages.set_control(wvoec::kControlNonceOrEntry);
// DO NOT SET PST: license_messages.set_pst(pst);
ASSERT_NO_FATAL_FAILURE(license_messages.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages.EncryptAndSignResponse());
ASSERT_NO_FATAL_FAILURE(s.CreateNewUsageEntry());
ASSERT_NE(OEMCrypto_SUCCESS, license_messages.LoadResponse());
}
// If we try to reload a license with a different PST, the attempt should fail.
TEST_P(OEMCryptoUsageTableTest, ReloadOfflineWrongPST) {
LicenseWithUsageEntry entry;
entry.license_messages().set_api_version(license_api_version_);
entry.MakeOfflineAndClose(this);
Session& s = entry.session();
Session s2;
LicenseRoundTrip license_messages2(&s2);
license_messages2.response_data() = entry.license_messages().response_data();
license_messages2.core_response() = entry.license_messages().core_response();
// Change the middle of the pst.
license_messages2.response_data().pst[3] ^= 'Z';
ASSERT_NO_FATAL_FAILURE(s2.open());
ASSERT_NO_FATAL_FAILURE(InstallTestRSAKey(&s2));
// This is a valid license: it is correctly signed.
license_messages2.EncryptAndSignResponse();
// Load the usage entry should be OK.
ASSERT_NO_FATAL_FAILURE(s2.LoadUsageEntry(s));
ASSERT_NE(OEMCrypto_SUCCESS, license_messages2.LoadResponse());
}
// Once a license has been deactivated, the keys can no longer be used for
// decryption. However, we can still generate a usage report.
TEST_P(OEMCryptoUsageTableTest, DeactivateOfflineLicense) {
LicenseWithUsageEntry entry;
entry.license_messages().set_api_version(license_api_version_);
entry.MakeOfflineAndClose(this);
Session& s = entry.session();
// Reload the offline license.
ASSERT_NO_FATAL_FAILURE(entry.OpenAndReload(this));
ASSERT_NO_FATAL_FAILURE(
entry.TestDecryptCTR()); // Should be able to decrypt.
ASSERT_NO_FATAL_FAILURE(entry.DeactivateUsageEntry()); // Then deactivate.
// After deactivate, should not be able to decrypt.
ASSERT_NO_FATAL_FAILURE(
entry.TestDecryptCTR(false, OEMCrypto_ERROR_UNKNOWN_FAILURE));
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(entry.GenerateVerifyReport(kInactiveUsed));
ASSERT_NO_FATAL_FAILURE(s.close());
// Offline license can not be reused if it has been deactivated.
ASSERT_NO_FATAL_FAILURE(s.open());
ASSERT_NO_FATAL_FAILURE(InstallTestRSAKey(&s));
ASSERT_NE(OEMCrypto_SUCCESS, entry.license_messages().LoadResponse(&s));
s.close();
// But we can still generate a report.
ASSERT_NO_FATAL_FAILURE(s.open());
ASSERT_NO_FATAL_FAILURE(entry.ReloadUsageEntry());
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
// Sending a release from an offline license that has been deactivate will
// only work if the license server can handle v16 licenses. This is a rare
// condition, so it is OK to break it during the transition months.
entry.license_messages().set_api_version(global_features.api_version);
ASSERT_NO_FATAL_FAILURE(entry.GenerateVerifyReport(kInactiveUsed));
// We could call DeactivateUsageEntry multiple times. The state should not
// change.
ASSERT_NO_FATAL_FAILURE(entry.DeactivateUsageEntry());
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(entry.GenerateVerifyReport(kInactiveUsed));
}
// The usage report should indicate that the keys were never used for
// decryption.
TEST_P(OEMCryptoUsageTableTest, DeactivateOfflineLicenseUnused) {
LicenseWithUsageEntry entry;
entry.license_messages().set_api_version(license_api_version_);
entry.MakeOfflineAndClose(this);
Session& s = entry.session();
// No Decrypt. This license is unused.
ASSERT_NO_FATAL_FAILURE(entry.OpenAndReload(this));
ASSERT_NO_FATAL_FAILURE(entry.DeactivateUsageEntry()); // Then deactivate.
// After deactivate, should not be able to decrypt.
ASSERT_NO_FATAL_FAILURE(
entry.TestDecryptCTR(false, OEMCrypto_ERROR_UNKNOWN_FAILURE));
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(entry.GenerateVerifyReport(kInactiveUnused));
ASSERT_NO_FATAL_FAILURE(s.close());
// Offline license can not be reused if it has been deactivated.
ASSERT_NO_FATAL_FAILURE(s.open());
ASSERT_NO_FATAL_FAILURE(InstallTestRSAKey(&s));
ASSERT_NE(OEMCrypto_SUCCESS, entry.license_messages().LoadResponse(&s));
s.close();
// But we can still generate a report.
ASSERT_NO_FATAL_FAILURE(s.open());
ASSERT_NO_FATAL_FAILURE(entry.ReloadUsageEntry());
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
// Sending a release from an offline license that has been deactivate will
// only work if the license server can handle v16 licenses. This is a rare
// condition, so it is OK to break it during the transition months.
entry.license_messages().set_api_version(global_features.api_version);
ASSERT_NO_FATAL_FAILURE(entry.GenerateVerifyReport(kInactiveUnused));
// We could call DeactivateUsageEntry multiple times. The state should not
// change.
ASSERT_NO_FATAL_FAILURE(entry.DeactivateUsageEntry());
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(entry.GenerateVerifyReport(kInactiveUnused));
}
TEST_P(OEMCryptoUsageTableTest, SecureStop) {
LicenseWithUsageEntry entry;
entry.license_messages().set_api_version(license_api_version_);
entry.MakeAndLoadOnline(this);
Session& s = entry.session();
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(entry.TestDecryptCTR());
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(s.close());
// When we generate a secure stop without loading the license first, it
// should assume the server does not support core messages.
ASSERT_NO_FATAL_FAILURE(s.open());
ASSERT_NO_FATAL_FAILURE(entry.ReloadUsageEntry());
ASSERT_NO_FATAL_FAILURE(entry.DeactivateUsageEntry());
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
// It should report as inactive.
ASSERT_NO_FATAL_FAILURE(entry.GenerateVerifyReport(kInactiveUsed));
}
// Test update usage table fails when passed a null pointer.
TEST_P(OEMCryptoUsageTableTest, UpdateFailsWithNullPtr) {
LicenseWithUsageEntry entry;
entry.license_messages().set_api_version(license_api_version_);
entry.MakeAndLoadOnline(this);
Session& s = entry.session();
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
size_t header_buffer_length = encrypted_usage_header_.size();
size_t entry_buffer_length = s.encrypted_usage_entry().size();
vector<uint8_t> buffer(entry_buffer_length);
// Now try to pass in null pointers for the buffers. This should fail.
ASSERT_NE(
OEMCrypto_SUCCESS,
OEMCrypto_UpdateUsageEntry(s.session_id(), nullptr, &header_buffer_length,
buffer.data(), &entry_buffer_length));
ASSERT_NE(OEMCrypto_SUCCESS,
OEMCrypto_UpdateUsageEntry(
s.session_id(), encrypted_usage_header_.data(),
&header_buffer_length, nullptr, &entry_buffer_length));
}
// Class used to test usage table defragmentation.
class OEMCryptoUsageTableDefragTest : public OEMCryptoUsageTableTest {
protected:
void ReloadLicense(LicenseWithUsageEntry* entry) {
Session& s = entry->session();
ASSERT_NO_FATAL_FAILURE(entry->OpenAndReload(this));
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(entry->TestDecryptCTR());
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(entry->GenerateVerifyReport(kActive));
ASSERT_NO_FATAL_FAILURE(s.close());
}
void FailReloadLicense(LicenseWithUsageEntry* entry,
OEMCryptoResult expected_result) {
Session& s = entry->session();
ASSERT_NO_FATAL_FAILURE(s.open());
ASSERT_NO_FATAL_FAILURE(InstallTestRSAKey(&s));
ASSERT_EQ(expected_result,
OEMCrypto_LoadUsageEntry(s.session_id(), s.usage_entry_number(),
s.encrypted_usage_entry().data(),
s.encrypted_usage_entry().size()));
ASSERT_NE(OEMCrypto_SUCCESS, entry->license_messages().LoadResponse());
ASSERT_NO_FATAL_FAILURE(s.close());
}
void ShrinkHeader(uint32_t new_size,
OEMCryptoResult expected_result = OEMCrypto_SUCCESS) {
// We call OEMCrypto_ShrinkUsageTableHeader once with a zero length buffer,
// so that OEMCrypto can tell us how big the buffer should be.
size_t header_buffer_length = 0;
OEMCryptoResult sts = OEMCrypto_ShrinkUsageTableHeader(
new_size, nullptr, &header_buffer_length);
// If we are expecting success, then the first call shall return
// SHORT_BUFFER. However, if we are not expecting success, this first call
// may return either SHORT_BUFFER or the expect error.
if (expected_result == OEMCrypto_SUCCESS) {
ASSERT_EQ(OEMCrypto_ERROR_SHORT_BUFFER, sts);
} else if (sts != OEMCrypto_ERROR_SHORT_BUFFER) {
// If we got any thing from the first call, it should be the expected
// error, and we don't need to call a second time.
ASSERT_EQ(expected_result, sts);
return;
}
// If the first call resulted in SHORT_BUFFER, we should resize the buffer
// and try again.
ASSERT_LT(0u, header_buffer_length);
encrypted_usage_header_.resize(header_buffer_length);
sts = OEMCrypto_ShrinkUsageTableHeader(
new_size, encrypted_usage_header_.data(), &header_buffer_length);
// For the second call, we always demand the expected result.
ASSERT_EQ(expected_result, sts);
}
};
// Verify that usage table entries can be moved around in the table.
TEST_P(OEMCryptoUsageTableDefragTest, MoveUsageEntries) {
const size_t ENTRY_COUNT = 10;
vector<LicenseWithUsageEntry> entries(ENTRY_COUNT);
for (size_t i = 0; i < ENTRY_COUNT; i++) {
entries[i].set_pst("pst " + std::to_string(i));
ASSERT_NO_FATAL_FAILURE(entries[i].MakeOfflineAndClose(this))
<< "On license " << i << " pst=" << entries[i].pst();
wvcdm::TestSleep::SyncFakeClock();
}
for (size_t i = 0; i < ENTRY_COUNT; i++) {
ASSERT_NO_FATAL_FAILURE(entries[i].OpenAndReload(this))
<< "On license " << i << " pst=" << entries[i].pst();
ASSERT_NO_FATAL_FAILURE(entries[i].session().close())
<< "On license " << i << " pst=" << entries[i].pst();
}
// Move 4 to 1.
ASSERT_NO_FATAL_FAILURE(
entries[4].session().MoveUsageEntry(1, &encrypted_usage_header_));
// Shrink header to 3 entries 0, 1 was 4, 2.
ASSERT_NO_FATAL_FAILURE(ShrinkHeader(3));
ShutDown();
Restart();
ASSERT_EQ(OEMCrypto_SUCCESS,
OEMCrypto_LoadUsageTableHeader(encrypted_usage_header_.data(),
encrypted_usage_header_.size()));
wvcdm::TestSleep::SyncFakeClock();
ASSERT_NO_FATAL_FAILURE(ReloadLicense(&entries[0]));
// Now has index 1.
ASSERT_NO_FATAL_FAILURE(ReloadLicense(&entries[4]));
ASSERT_NO_FATAL_FAILURE(ReloadLicense(&entries[2]));
// When 4 was moved to 1, it increased the gen. number in the header.
ASSERT_NO_FATAL_FAILURE(
FailReloadLicense(&entries[1], OEMCrypto_ERROR_GENERATION_SKEW));
// Index 3 is beyond the end of the table.
ASSERT_NO_FATAL_FAILURE(
FailReloadLicense(&entries[3], OEMCrypto_ERROR_UNKNOWN_FAILURE));
}
// A usage table entry cannot be moved into an entry where an open session is
// currently using the entry.
TEST_P(OEMCryptoUsageTableDefragTest, MoveUsageEntriesToOpenSession) {
LicenseWithUsageEntry entry0;
entry0.set_pst("pst 0");
entry0.MakeOfflineAndClose(this);
LicenseWithUsageEntry entry1;
entry1.set_pst("pst 1");
entry1.MakeOfflineAndClose(this);
entry0.session().open();
ASSERT_NO_FATAL_FAILURE(entry0.ReloadUsageEntry());
// s0 currently open on index 0. Expect this to fail:
ASSERT_NO_FATAL_FAILURE(entry1.session().MoveUsageEntry(
0, &encrypted_usage_header_, OEMCrypto_ERROR_ENTRY_IN_USE));
}
// The usage table cannot be shrunk if any session is using an entry that would
// be deleted.
TEST_P(OEMCryptoUsageTableDefragTest, ShrinkOverOpenSessions) {
LicenseWithUsageEntry entry0;
entry0.set_pst("pst 0");
entry0.MakeOfflineAndClose(this);
LicenseWithUsageEntry entry1;
entry1.set_pst("pst 1");
entry1.MakeOfflineAndClose(this);
entry0.session().open();
ASSERT_NO_FATAL_FAILURE(entry0.ReloadUsageEntry());
entry1.session().open();
ASSERT_NO_FATAL_FAILURE(entry1.ReloadUsageEntry());
// Since s0 and s1 are open, we can't shrink.
ASSERT_NO_FATAL_FAILURE(ShrinkHeader(1, OEMCrypto_ERROR_ENTRY_IN_USE));
entry1.session().close(); // Can shrink after closing s1, even if s0 is open.
ASSERT_NO_FATAL_FAILURE(ShrinkHeader(1, OEMCrypto_SUCCESS));
}
// Verify the usage table size can be increased.
TEST_P(OEMCryptoUsageTableDefragTest, EnlargeHeader) {
LicenseWithUsageEntry entry0;
entry0.set_pst("pst 0");
entry0.MakeOfflineAndClose(this);
LicenseWithUsageEntry entry1;
entry1.set_pst("pst 1");
entry1.MakeOfflineAndClose(this);
// Can only shrink the header -- not make it bigger.
ASSERT_NO_FATAL_FAILURE(ShrinkHeader(4, OEMCrypto_ERROR_UNKNOWN_FAILURE));
}
// A new header can only be created while no entries are in use.
TEST_P(OEMCryptoUsageTableDefragTest, CreateNewHeaderWhileUsingOldOne) {
LicenseWithUsageEntry entry0;
entry0.set_pst("pst 0");
entry0.MakeOfflineAndClose(this);
LicenseWithUsageEntry entry1;
entry1.set_pst("pst 1");
entry1.MakeOfflineAndClose(this);
entry0.session().open();
ASSERT_NO_FATAL_FAILURE(entry0.ReloadUsageEntry());
const bool kExpectFailure = false;
ASSERT_NO_FATAL_FAILURE(CreateUsageTableHeader(kExpectFailure));
}
// Verify that a usage table entry can only be loaded into the correct index of
// the table.
TEST_P(OEMCryptoUsageTableDefragTest, ReloadUsageEntryWrongIndex) {
LicenseWithUsageEntry entry0;
entry0.set_pst("pst 0");
entry0.MakeOfflineAndClose(this);
LicenseWithUsageEntry entry1;
entry1.set_pst("pst 1");
entry1.MakeOfflineAndClose(this);
entry0.session().set_usage_entry_number(1);
ASSERT_NO_FATAL_FAILURE(
FailReloadLicense(&entry0, OEMCrypto_ERROR_INVALID_SESSION));
}
// Verify that a usage table entry cannot be loaded if it has been altered.
TEST_P(OEMCryptoUsageTableDefragTest, ReloadUsageEntryBadData) {
LicenseWithUsageEntry entry;
entry.MakeOfflineAndClose(this);
Session& s = entry.session();
ASSERT_NO_FATAL_FAILURE(s.open());
ASSERT_NO_FATAL_FAILURE(InstallTestRSAKey(&s));
vector<uint8_t> data = s.encrypted_usage_entry();
ASSERT_LT(0UL, data.size());
data[0] ^= 42;
// Error could be signature or verification error.
ASSERT_NE(OEMCrypto_SUCCESS,
OEMCrypto_LoadUsageEntry(s.session_id(), s.usage_entry_number(),
data.data(), data.size()));
}
// This verifies we can actually create the required number of usage table
// entries.
TEST_P(OEMCryptoUsageTableDefragTest, ManyUsageEntries) {
// OEMCrypto is required to store at least 300 entries in the usage table
// header, but it is allowed to store more. This test verifies that if we keep
// adding entries, the error indicates a resource limit. It then verifies
// that all of the successful entries are still valid after we throw out the
// last invalid entry.
// After API 16, we require 300 entries in the usage table. Before API 16, we
// required 200.
const size_t required_capacity = RequiredUsageSize();
// We try to make a much large header, and assume there is an error at some
// point.
const size_t attempt_count = required_capacity * 5;
// Count of how many entries we successfully create.
size_t successful_count = 0;
// These entries have licenses tied to them.
std::vector<std::unique_ptr<LicenseWithUsageEntry>> entries;
// Store the status of the last attempt to create an entry.
OEMCryptoResult status = OEMCrypto_SUCCESS;
while (successful_count < attempt_count && status == OEMCrypto_SUCCESS) {
wvcdm::TestSleep::SyncFakeClock();
LOGD("Creating license for entry %zd", successful_count);
entries.push_back(
std::unique_ptr<LicenseWithUsageEntry>(new LicenseWithUsageEntry()));
entries.back()->set_pst("pst " + std::to_string(successful_count));
ASSERT_NO_FATAL_FAILURE(entries.back()->MakeOfflineAndClose(this, &status))
<< "Failed creating license for entry " << successful_count;
if (status != OEMCrypto_SUCCESS) {
// Remove the failed session.
entries.resize(entries.size() - 1);
break;
}
EXPECT_EQ(entries.back()->session().usage_entry_number(), successful_count);
successful_count++;
// We don't create a license for each entry. For every license, we'll
// create 10 empty entries.
constexpr size_t filler_count = 10;
for (size_t i = 0; i < filler_count; i++) {
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
ASSERT_NO_FATAL_FAILURE(s.CreateNewUsageEntry(&status))
<< "Failed creating entry " << successful_count;
if (status != OEMCrypto_SUCCESS) break;
EXPECT_EQ(s.usage_entry_number(), successful_count);
successful_count++;
}
}
LOGD("successful_count = %d", successful_count);
if (status != OEMCrypto_SUCCESS) {
// If we failed to create this many entries because of limited resources,
// then the error returned should be insufficient resources.
EXPECT_EQ(OEMCrypto_ERROR_INSUFFICIENT_RESOURCES, status)
<< "Failed to create license " << successful_count
<< ", with wrong error code.";
}
EXPECT_GE(successful_count, required_capacity);
wvcdm::TestSleep::SyncFakeClock();
// Shrink the table a little.
constexpr size_t small_number = 5;
size_t smaller_size = successful_count - small_number;
ASSERT_NO_FATAL_FAILURE(ShrinkHeader(smaller_size));
// Throw out the last license if it was in the part of the table that was
// shrunk.
if (entries.back()->session().usage_entry_number() >= smaller_size) {
entries.pop_back();
}
// Create a few more license
for (size_t i = 0; i < small_number; i++) {
wvcdm::TestSleep::SyncFakeClock();
entries.push_back(
std::unique_ptr<LicenseWithUsageEntry>(new LicenseWithUsageEntry()));
entries.back()->set_pst("new pst " + std::to_string(smaller_size + i));
entries.back()->MakeOfflineAndClose(this);
}
// Make sure that all of the licenses can be reloaded.
for (size_t i = 0; i < entries.size(); i++) {
wvcdm::TestSleep::SyncFakeClock();
Session& s = entries[i]->session();
ASSERT_NO_FATAL_FAILURE(entries[i]->OpenAndReload(this));
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(entries[i]->GenerateVerifyReport(kUnused));
ASSERT_NO_FATAL_FAILURE(entries[i]->TestDecryptCTR());
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(entries[i]->GenerateVerifyReport(kActive));
ASSERT_NO_FATAL_FAILURE(s.close());
}
}
// This verifies that the usage table header can be loaded if the generation
// number is off by one, but not off by two.
TEST_P(OEMCryptoUsageTableTest, ReloadUsageTableWithSkew) {
// This also tests a few other error conditions with usage table headers.
LicenseWithUsageEntry entry;
entry.MakeOfflineAndClose(this);
Session& s = entry.session();
// Reload the license, and save the header.
ASSERT_NO_FATAL_FAILURE(entry.OpenAndReload(this));
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
vector<uint8_t> old_usage_header_2_ = encrypted_usage_header_;
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
vector<uint8_t> old_usage_header_1_ = encrypted_usage_header_;
vector<uint8_t> old_usage_entry_1 = s.encrypted_usage_entry();
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(s.close());
ShutDown();
Restart();
// Null pointer generates error.
ASSERT_NE(OEMCrypto_SUCCESS, OEMCrypto_LoadUsageTableHeader(
nullptr, old_usage_header_2_.size()));
ASSERT_NO_FATAL_FAILURE(s.open());
// Cannot load an entry if header didn't load.
ASSERT_EQ(OEMCrypto_ERROR_UNKNOWN_FAILURE,
OEMCrypto_LoadUsageEntry(s.session_id(), s.usage_entry_number(),
s.encrypted_usage_entry().data(),
s.encrypted_usage_entry().size()));
ASSERT_NO_FATAL_FAILURE(s.close());
// Modified header generates error.
vector<uint8_t> bad_header = encrypted_usage_header_;
bad_header[3] ^= 42;
ASSERT_NE(OEMCrypto_SUCCESS, OEMCrypto_LoadUsageTableHeader(
bad_header.data(), bad_header.size()));
ASSERT_NO_FATAL_FAILURE(s.open());
// Cannot load an entry if header didn't load.
ASSERT_EQ(OEMCrypto_ERROR_UNKNOWN_FAILURE,
OEMCrypto_LoadUsageEntry(s.session_id(), s.usage_entry_number(),
s.encrypted_usage_entry().data(),
s.encrypted_usage_entry().size()));
ASSERT_NO_FATAL_FAILURE(s.close());
// Old by 2 generation numbers is error.
ASSERT_EQ(OEMCrypto_ERROR_GENERATION_SKEW,
OEMCrypto_LoadUsageTableHeader(old_usage_header_2_.data(),
old_usage_header_2_.size()));
ASSERT_NO_FATAL_FAILURE(s.open());
// Cannot load an entry if header didn't load.
ASSERT_NE(OEMCrypto_SUCCESS,
OEMCrypto_LoadUsageEntry(s.session_id(), s.usage_entry_number(),
s.encrypted_usage_entry().data(),
s.encrypted_usage_entry().size()));
ASSERT_NO_FATAL_FAILURE(s.close());
// Old by 1 generation numbers is just warning.
ASSERT_EQ(OEMCrypto_WARNING_GENERATION_SKEW,
OEMCrypto_LoadUsageTableHeader(old_usage_header_1_.data(),
old_usage_header_1_.size()));
// Everything else should still work. The old entry goes with the old header.
ASSERT_NO_FATAL_FAILURE(s.open());
ASSERT_EQ(OEMCrypto_SUCCESS,
OEMCrypto_LoadUsageEntry(s.session_id(), s.usage_entry_number(),
old_usage_entry_1.data(),
old_usage_entry_1.size()));
ASSERT_NO_FATAL_FAILURE(InstallTestRSAKey(&s));
ASSERT_NO_FATAL_FAILURE(s.GenerateDerivedKeysFromSessionKey());
ASSERT_EQ(OEMCrypto_SUCCESS, entry.license_messages().LoadResponse());
}
// A usage report with the wrong pst should fail.
TEST_P(OEMCryptoUsageTableTest, GenerateReportWrongPST) {
LicenseWithUsageEntry entry;
entry.license_messages().set_api_version(license_api_version_);
entry.MakeAndLoadOnline(this);
Session& s = entry.session();
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(
s.GenerateReport("wrong_pst", OEMCrypto_ERROR_WRONG_PST));
}
// Test usage table timing.
TEST_P(OEMCryptoUsageTableTest, TimingTest) {
LicenseWithUsageEntry entry1;
entry1.license_messages().set_api_version(license_api_version_);
Session& s1 = entry1.session();
entry1.set_pst("my_pst_1");
ASSERT_NO_FATAL_FAILURE(entry1.MakeOfflineAndClose(this));
LicenseWithUsageEntry entry2;
entry2.license_messages().set_api_version(license_api_version_);
Session& s2 = entry2.session();
entry2.set_pst("my_pst_2");
ASSERT_NO_FATAL_FAILURE(entry2.MakeOfflineAndClose(this));
LicenseWithUsageEntry entry3;
entry3.license_messages().set_api_version(license_api_version_);
Session& s3 = entry3.session();
entry3.set_pst("my_pst_3");
ASSERT_NO_FATAL_FAILURE(entry3.MakeOfflineAndClose(this));
ASSERT_NO_FATAL_FAILURE(entry1.MakeOfflineAndClose(this));
ASSERT_NO_FATAL_FAILURE(entry2.MakeOfflineAndClose(this));
ASSERT_NO_FATAL_FAILURE(entry3.MakeOfflineAndClose(this));
wvcdm::TestSleep::Sleep(kLongSleep);
ASSERT_NO_FATAL_FAILURE(entry1.OpenAndReload(this));
ASSERT_NO_FATAL_FAILURE(entry1.TestDecryptCTR());
ASSERT_NO_FATAL_FAILURE(entry2.OpenAndReload(this));
ASSERT_NO_FATAL_FAILURE(entry2.TestDecryptCTR());
wvcdm::TestSleep::Sleep(kLongSleep);
ASSERT_NO_FATAL_FAILURE(entry1.TestDecryptCTR());
ASSERT_NO_FATAL_FAILURE(entry2.TestDecryptCTR());
wvcdm::TestSleep::Sleep(kLongSleep);
ASSERT_NO_FATAL_FAILURE(entry1.DeactivateUsageEntry());
ASSERT_NO_FATAL_FAILURE(s1.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(s2.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(s1.close());
ASSERT_NO_FATAL_FAILURE(s2.close());
wvcdm::TestSleep::Sleep(kLongSleep);
// This is as close to reboot as we can simulate in code.
ShutDown();
wvcdm::TestSleep::Sleep(kShortSleep);
Restart();
ASSERT_EQ(OEMCrypto_SUCCESS,
OEMCrypto_LoadUsageTableHeader(encrypted_usage_header_.data(),
encrypted_usage_header_.size()));
// After a reboot, we should be able to reload keys, and generate reports.
wvcdm::TestSleep::Sleep(kLongSleep);
ASSERT_NO_FATAL_FAILURE(entry2.OpenAndReload(this));
ASSERT_NO_FATAL_FAILURE(entry2.TestDecryptCTR());
ASSERT_NO_FATAL_FAILURE(s2.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(s2.close());
ASSERT_NO_FATAL_FAILURE(s1.open());
ASSERT_NO_FATAL_FAILURE(entry1.ReloadUsageEntry());
ASSERT_NO_FATAL_FAILURE(entry2.OpenAndReload(this));
ASSERT_NO_FATAL_FAILURE(entry3.OpenAndReload(this));
wvcdm::TestSleep::Sleep(kLongSleep);
ASSERT_NO_FATAL_FAILURE(s1.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(entry1.GenerateVerifyReport(kInactiveUsed));
ASSERT_NO_FATAL_FAILURE(s2.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(entry2.GenerateVerifyReport(kActive));
ASSERT_NO_FATAL_FAILURE(s3.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(entry3.GenerateVerifyReport(kUnused));
}
// Verify the times in the usage report. For performance reasons, we allow the
// times in the usage report to be off by as much as kUsageTimeTolerance, which
// is 10 seconds. This acceptable error is called slop. This test needs to run
// long enough that the reported values are distinct, even after accounting for
// this slop.
TEST_P(OEMCryptoUsageTableTest, VerifyUsageTimes) {
LicenseWithUsageEntry entry;
entry.license_messages().set_api_version(license_api_version_);
entry.MakeAndLoadOnline(this);
Session& s = entry.session();
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(entry.GenerateVerifyReport(kUnused));
const int64_t kDotIntervalInSeconds = 5;
const int64_t kIdleInSeconds = 20;
const int64_t kPlaybackLoopInSeconds = 2 * 60;
cout << "This test verifies the elapsed time reported in the usage table "
"for a 2 minute simulated playback."
<< endl;
cout << "The total time for this test is about "
<< kPlaybackLoopInSeconds + 2 * kIdleInSeconds << " seconds." << endl;
cout << "Wait " << kIdleInSeconds
<< " seconds to verify usage table time before playback." << endl;
PrintDotsWhileSleep(kIdleInSeconds, kDotIntervalInSeconds);
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(entry.GenerateVerifyReport(kUnused));
cout << "Start simulated playback..." << endl;
int64_t dot_time = kDotIntervalInSeconds;
int64_t playback_time = 0;
const int64_t start_time = wvcdm::Clock().GetCurrentTime();
do {
ASSERT_NO_FATAL_FAILURE(entry.TestDecryptCTR());
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(entry.GenerateVerifyReport(kActive));
wvcdm::TestSleep::Sleep(kShortSleep);
playback_time = wvcdm::Clock().GetCurrentTime() - start_time;
ASSERT_LE(0, playback_time);
if (playback_time >= dot_time) {
cout << ".";
cout.flush();
dot_time += kDotIntervalInSeconds;
}
} while (playback_time < kPlaybackLoopInSeconds);
cout << "\nSimulated playback time = " << playback_time << " seconds.\n";
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(entry.GenerateVerifyReport(kActive));
EXPECT_NEAR(s.pst_report().seconds_since_first_decrypt() -
s.pst_report().seconds_since_last_decrypt(),
playback_time, kUsageTableTimeTolerance);
cout << "Wait another " << kIdleInSeconds
<< " seconds "
"to verify usage table time since playback ended."
<< endl;
PrintDotsWhileSleep(kIdleInSeconds, kDotIntervalInSeconds);
// At this point, this is what we expect:
// idle playback loop idle
// |-----|-------------------------|-----|
// |<--->| = seconds_since_last_decrypt
// |<----------------------------->| = seconds_since_first_decrypt
// |<------------------------------------| = seconds_since_license_received
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(entry.GenerateVerifyReport(kActive));
ASSERT_NO_FATAL_FAILURE(entry.DeactivateUsageEntry());
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(entry.GenerateVerifyReport(kInactiveUsed));
ASSERT_NO_FATAL_FAILURE(
entry.TestDecryptCTR(false, OEMCrypto_ERROR_UNKNOWN_FAILURE));
}
// This test class is only used to roll back the wall clock. It is used to
// verify that OEMCrypto's system clock is monotonic. It is should only be run
// on a device that allows an application to set the clock.
class OEMCryptoUsageTableTestWallClock : public OEMCryptoUsageTableTest {
public:
void SetUp() override {
OEMCryptoUsageTableTest::SetUp();
}
void TearDown() override {
wvcdm::TestSleep::ResetRollback();
OEMCryptoUsageTableTest::TearDown();
}
};
// NOTE: This test needs root access since clock_settime messes with the system
// time in order to verify that OEMCrypto protects against rollbacks in usage
// entries. Therefore, this test is filtered if not run as root.
// We don't test roll-forward protection or instances where the user rolls back
// the time to the last decrypt call since this requires hardware-secure clocks
// to guarantee.
//
// This test overlaps two tests in parallel because they each have several
// seconds of sleeping, then we roll the system clock back, and then we sleep
// some more.
// For the first test, we use entry1. The playback duration is 6 short
// intervals. We play for 3, roll the clock back 2, and then play for 3 more.
// We then sleep until after the allowed playback duration and try to play. If
// OEMCrypto allows the rollback, then there is only 5 intervals, which is
// legal. But if OEMCrypto forbids the rollback, then there is 8 intervals of
// playback, which is not legal.
//
// For the second test, we use entry2. The rental duration is 6 short
// intervals. The times are the same as for entry1, except we do not start
// playback for entry2 until the end.
// clang-format off
// [--][--][--][--][--][--][--] -- playback or rental limit.
//
// Here's what the system clock sees with rollback:
// [--][--][--] 3 short intervals of playback or sleep
// <------> Rollback 2 short intervals.
// [--][--][--] 3 short intervals of playback or sleep
// [--] 1 short intervals of sleep.
//
// Here's what the system clock sees without rollback:
// [--][--][--] 3 short intervals of playback or sleep
// [--][--][--] 3 short intervals of playback or sleep
// [--][--]X 2 short intervals of sleep.
//
// |<---------------------------->| 8 short intervals from license received
// until pst reports generated.
// clang-format on
TEST_P(OEMCryptoUsageTableTestWallClock, TimeRollbackPrevention) {
cout << "This test temporarily rolls back the system time in order to verify "
<< "that the usage report accounts for the change. After the test, it "
<< "rolls the clock back forward." << endl;
constexpr int kRollBackTime = kShortSleep * 2;
constexpr int kPlaybackCount = 3;
constexpr int kTotalTime = kShortSleep * 8;
LicenseWithUsageEntry entry1;
entry1.license_messages()
.core_response()
.timer_limits.total_playback_duration_seconds = 7 * kShortSleep;
entry1.MakeOfflineAndClose(this);
Session& s1 = entry1.session();
ASSERT_NO_FATAL_FAILURE(entry1.OpenAndReload(this));
LicenseWithUsageEntry entry2;
entry2.license_messages()
.core_response()
.timer_limits.rental_duration_seconds = 7 * kShortSleep;
entry2.MakeOfflineAndClose(this);
Session& s2 = entry2.session();
ASSERT_NO_FATAL_FAILURE(entry2.OpenAndReload(this));
// Start with three short intervals of playback for entry1.
for (int i = 0; i < kPlaybackCount; i++) {
ASSERT_NO_FATAL_FAILURE(entry1.TestDecryptCTR());
wvcdm::TestSleep::Sleep(kShortSleep);
ASSERT_NO_FATAL_FAILURE(entry1.TestDecryptCTR());
}
cout << "Rolling the system time back..." << endl;
ASSERT_TRUE(wvcdm::TestSleep::RollbackSystemTime(kRollBackTime));
// Three more short intervals of playback after the rollback.
for (int i = 0; i < kPlaybackCount; i++) {
ASSERT_NO_FATAL_FAILURE(entry1.TestDecryptCTR());
wvcdm::TestSleep::Sleep(kShortSleep);
ASSERT_NO_FATAL_FAILURE(entry1.TestDecryptCTR());
}
// One short interval of sleep to push us past the 6 interval duration.
wvcdm::TestSleep::Sleep(2 * kShortSleep);
// Should not be able to continue playback in entry1.
ASSERT_NO_FATAL_FAILURE(
entry1.TestDecryptCTR(false, OEMCrypto_ERROR_KEY_EXPIRED));
// Should not be able to start playback in entry2.
ASSERT_NO_FATAL_FAILURE(
entry2.TestDecryptCTR(true, OEMCrypto_ERROR_KEY_EXPIRED));
// Now we look at the usage reports:
ASSERT_NO_FATAL_FAILURE(s1.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(s2.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(s1.GenerateReport(entry1.pst()));
wvcdm::Unpacked_PST_Report report1 = s1.pst_report();
EXPECT_EQ(report1.status(), kActive);
EXPECT_GE(report1.seconds_since_license_received(), kTotalTime);
EXPECT_GE(report1.seconds_since_first_decrypt(), kTotalTime);
ASSERT_NO_FATAL_FAILURE(s2.GenerateReport(entry2.pst()));
wvcdm::Unpacked_PST_Report report2 = s2.pst_report();
EXPECT_EQ(report2.status(), kUnused);
EXPECT_GE(report2.seconds_since_license_received(), kTotalTime);
}
// Verify that a large PST can be used with usage table entries.
TEST_P(OEMCryptoUsageTableTest, PSTLargeBuffer) {
std::string pst(kMaxPSTLength, 'a'); // A large PST.
LicenseWithUsageEntry entry(pst);
entry.MakeOfflineAndClose(this);
Session& s = entry.session();
ASSERT_NO_FATAL_FAILURE(entry.OpenAndReload(this));
ASSERT_NO_FATAL_FAILURE(
entry.TestDecryptCTR()); // Should be able to decrypt.
ASSERT_NO_FATAL_FAILURE(entry.DeactivateUsageEntry()); // Then deactivate.
// After deactivate, should not be able to decrypt.
ASSERT_NO_FATAL_FAILURE(
entry.TestDecryptCTR(false, OEMCrypto_ERROR_UNKNOWN_FAILURE));
ASSERT_NO_FATAL_FAILURE(s.UpdateUsageEntry(&encrypted_usage_header_));
ASSERT_NO_FATAL_FAILURE(entry.GenerateVerifyReport(kInactiveUsed));
ASSERT_NO_FATAL_FAILURE(s.close());
}
INSTANTIATE_TEST_CASE_P(TestAll, OEMCryptoUsageTableTest,
Range<uint32_t>(kCurrentAPI - 1, kCurrentAPI + 1));
// These tests only work when the license has a core message.
INSTANTIATE_TEST_CASE_P(TestAPI16, OEMCryptoUsageTableDefragTest,
Values<uint32_t>(kCurrentAPI));
// These tests only work when the license has a core message.
INSTANTIATE_TEST_CASE_P(TestAPI16, OEMCryptoUsageTableTestWallClock,
Values<uint32_t>(kCurrentAPI));
} // namespace wvoec