Files
android/libwvdrmengine/oemcrypto/mock/src/oemcrypto_engine_mock.cpp
Fred Gylys-Colwell 08ad98cad9 Implement provisioning 3.0 functionality in oemcrypto mock
Merge from widevine repo of http://go/wvgerrit/21684

This CL adds provisioning 3.0 functionality to the OEMCrypto reference
implementation.

Change-Id: I60c1fd88f246d443e0ae59ad56862c2ea9d95445
2016-11-29 16:07:00 -08:00

1601 lines
57 KiB
C++

// Copyright 2013 Google Inc. All Rights Reserved.
//
// Mock implementation of OEMCrypto APIs
//
#include "oemcrypto_engine_mock.h"
#include <arpa/inet.h>
#include <assert.h>
#include <string.h>
#include <algorithm>
#include <iostream>
#include <vector>
#include <openssl/aes.h>
#include <openssl/bio.h>
#include <openssl/cmac.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/hmac.h>
#include <openssl/rand.h>
#include <openssl/rsa.h>
#include <openssl/sha.h>
#include <openssl/x509.h>
#include "keys.h"
#include "log.h"
#include "oemcrypto_key_mock.h"
#include "oemcrypto_logging.h"
#include "oemcrypto_usage_table_mock.h"
#include "string_conversions.h"
#include "wv_cdm_constants.h"
static const int kPssSaltLength = 20;
namespace {
// Increment counter for AES-CTR. The CENC spec specifies we increment only
// the low 64 bits of the IV counter, and leave the high 64 bits alone.
void ctr128_inc64(uint8_t* counter) {
uint32_t n = 16;
do {
if (++counter[--n] != 0) return;
} while (n > 8);
}
void dump_openssl_error() {
while (unsigned long err = ERR_get_error()) {
char buffer[120];
LOGE("openssl error -- %lu -- %s",
err, ERR_error_string(err, buffer));
}
}
// A 2048 bit RSA key in PKCS#8 PrivateKeyInfo format
// This is the RSA Test Key.
static const uint8_t kTestRSAPKCS8PrivateKeyInfo2_2048[] = {
0x30, 0x82, 0x04, 0xbc, 0x02, 0x01, 0x00, 0x30,
0x0d, 0x06, 0x09, 0x2a, 0x86, 0x48, 0x86, 0xf7,
0x0d, 0x01, 0x01, 0x01, 0x05, 0x00, 0x04, 0x82,
0x04, 0xa6, 0x30, 0x82, 0x04, 0xa2, 0x02, 0x01,
0x00, 0x02, 0x82, 0x01, 0x01, 0x00, 0xa7, 0x00,
0x36, 0x60, 0x65, 0xdc, 0xbd, 0x54, 0x5a, 0x2a,
0x40, 0xb4, 0xe1, 0x15, 0x94, 0x58, 0x11, 0x4f,
0x94, 0x58, 0xdd, 0xde, 0xa7, 0x1f, 0x3c, 0x2c,
0xe0, 0x88, 0x09, 0x29, 0x61, 0x57, 0x67, 0x5e,
0x56, 0x7e, 0xee, 0x27, 0x8f, 0x59, 0x34, 0x9a,
0x2a, 0xaa, 0x9d, 0xb4, 0x4e, 0xfa, 0xa7, 0x6a,
0xd4, 0xc9, 0x7a, 0x53, 0xc1, 0x4e, 0x9f, 0xe3,
0x34, 0xf7, 0x3d, 0xb7, 0xc9, 0x10, 0x47, 0x4f,
0x28, 0xda, 0x3f, 0xce, 0x31, 0x7b, 0xfd, 0x06,
0x10, 0xeb, 0xf7, 0xbe, 0x92, 0xf9, 0xaf, 0xfb,
0x3e, 0x68, 0xda, 0xee, 0x1a, 0x64, 0x4c, 0xf3,
0x29, 0xf2, 0x73, 0x9e, 0x39, 0xd8, 0xf6, 0x6f,
0xd8, 0xb2, 0x80, 0x82, 0x71, 0x8e, 0xb5, 0xa4,
0xf2, 0xc2, 0x3e, 0xcd, 0x0a, 0xca, 0xb6, 0x04,
0xcd, 0x9a, 0x13, 0x8b, 0x54, 0x73, 0x54, 0x25,
0x54, 0x8c, 0xbe, 0x98, 0x7a, 0x67, 0xad, 0xda,
0xb3, 0x4e, 0xb3, 0xfa, 0x82, 0xa8, 0x4a, 0x67,
0x98, 0x56, 0x57, 0x54, 0x71, 0xcd, 0x12, 0x7f,
0xed, 0xa3, 0x01, 0xc0, 0x6a, 0x8b, 0x24, 0x03,
0x96, 0x88, 0xbe, 0x97, 0x66, 0x2a, 0xbc, 0x53,
0xc9, 0x83, 0x06, 0x51, 0x5a, 0x88, 0x65, 0x13,
0x18, 0xe4, 0x3a, 0xed, 0x6b, 0xf1, 0x61, 0x5b,
0x4c, 0xc8, 0x1e, 0xf4, 0xc2, 0xae, 0x08, 0x5e,
0x2d, 0x5f, 0xf8, 0x12, 0x7f, 0xa2, 0xfc, 0xbb,
0x21, 0x18, 0x30, 0xda, 0xfe, 0x40, 0xfb, 0x01,
0xca, 0x2e, 0x37, 0x0e, 0xce, 0xdd, 0x76, 0x87,
0x82, 0x46, 0x0b, 0x3a, 0x77, 0x8f, 0xc0, 0x72,
0x07, 0x2c, 0x7f, 0x9d, 0x1e, 0x86, 0x5b, 0xed,
0x27, 0x29, 0xdf, 0x03, 0x97, 0x62, 0xef, 0x44,
0xd3, 0x5b, 0x3d, 0xdb, 0x9c, 0x5e, 0x1b, 0x7b,
0x39, 0xb4, 0x0b, 0x6d, 0x04, 0x6b, 0xbb, 0xbb,
0x2c, 0x5f, 0xcf, 0xb3, 0x7a, 0x05, 0x02, 0x03,
0x01, 0x00, 0x01, 0x02, 0x82, 0x01, 0x00, 0x5e,
0x79, 0x65, 0x49, 0xa5, 0x76, 0x79, 0xf9, 0x05,
0x45, 0x0f, 0xf4, 0x03, 0xbd, 0xa4, 0x7d, 0x29,
0xd5, 0xde, 0x33, 0x63, 0xd8, 0xb8, 0xac, 0x97,
0xeb, 0x3f, 0x5e, 0x55, 0xe8, 0x7d, 0xf3, 0xe7,
0x3b, 0x5c, 0x2d, 0x54, 0x67, 0x36, 0xd6, 0x1d,
0x46, 0xf5, 0xca, 0x2d, 0x8b, 0x3a, 0x7e, 0xdc,
0x45, 0x38, 0x79, 0x7e, 0x65, 0x71, 0x5f, 0x1c,
0x5e, 0x79, 0xb1, 0x40, 0xcd, 0xfe, 0xc5, 0xe1,
0xc1, 0x6b, 0x78, 0x04, 0x4e, 0x8e, 0x79, 0xf9,
0x0a, 0xfc, 0x79, 0xb1, 0x5e, 0xb3, 0x60, 0xe3,
0x68, 0x7b, 0xc6, 0xef, 0xcb, 0x71, 0x4c, 0xba,
0xa7, 0x79, 0x5c, 0x7a, 0x81, 0xd1, 0x71, 0xe7,
0x00, 0x21, 0x13, 0xe2, 0x55, 0x69, 0x0e, 0x75,
0xbe, 0x09, 0xc3, 0x4f, 0xa9, 0xc9, 0x68, 0x22,
0x0e, 0x97, 0x8d, 0x89, 0x6e, 0xf1, 0xe8, 0x88,
0x7a, 0xd1, 0xd9, 0x09, 0x5d, 0xd3, 0x28, 0x78,
0x25, 0x0b, 0x1c, 0x47, 0x73, 0x25, 0xcc, 0x21,
0xb6, 0xda, 0xc6, 0x24, 0x5a, 0xd0, 0x37, 0x14,
0x46, 0xc7, 0x94, 0x69, 0xe4, 0x43, 0x6f, 0x47,
0xde, 0x00, 0x33, 0x4d, 0x8f, 0x95, 0x72, 0xfa,
0x68, 0x71, 0x17, 0x66, 0x12, 0x1a, 0x87, 0x27,
0xf7, 0xef, 0x7e, 0xe0, 0x35, 0x58, 0xf2, 0x4d,
0x6f, 0x35, 0x01, 0xaa, 0x96, 0xe2, 0x3d, 0x51,
0x13, 0x86, 0x9c, 0x79, 0xd0, 0xb7, 0xb6, 0x64,
0xe8, 0x86, 0x65, 0x50, 0xbf, 0xcc, 0x27, 0x53,
0x1f, 0x51, 0xd4, 0xca, 0xbe, 0xf5, 0xdd, 0x77,
0x70, 0x98, 0x0f, 0xee, 0xa8, 0x96, 0x07, 0x5f,
0x45, 0x6a, 0x7a, 0x0d, 0x03, 0x9c, 0x4f, 0x29,
0xf6, 0x06, 0xf3, 0x5d, 0x58, 0x6c, 0x47, 0xd0,
0x96, 0xa9, 0x03, 0x17, 0xbb, 0x4e, 0xc9, 0x21,
0xe0, 0xac, 0xcd, 0x78, 0x78, 0xb2, 0xfe, 0x81,
0xb2, 0x51, 0x53, 0xa6, 0x1f, 0x98, 0x45, 0x02,
0x81, 0x81, 0x00, 0xcf, 0x73, 0x8c, 0xbe, 0x6d,
0x45, 0x2d, 0x0c, 0x0b, 0x5d, 0x5c, 0x6c, 0x75,
0x78, 0xcc, 0x35, 0x48, 0xb6, 0x98, 0xf1, 0xb9,
0x64, 0x60, 0x8c, 0x43, 0xeb, 0x85, 0xab, 0x04,
0xb6, 0x7d, 0x1b, 0x71, 0x75, 0x06, 0xe2, 0xda,
0x84, 0x68, 0x2e, 0x7f, 0x4c, 0xe3, 0x73, 0xb4,
0xde, 0x51, 0x4b, 0xb6, 0x51, 0x86, 0x7b, 0xd0,
0xe6, 0x4d, 0xf3, 0xd1, 0xcf, 0x1a, 0xfe, 0x7f,
0x3a, 0x83, 0xba, 0xb3, 0xe1, 0xff, 0x54, 0x13,
0x93, 0xd7, 0x9c, 0x27, 0x80, 0xb7, 0x1e, 0x64,
0x9e, 0xf7, 0x32, 0x2b, 0x46, 0x29, 0xf7, 0xf8,
0x18, 0x6c, 0xf7, 0x4a, 0xbe, 0x4b, 0xee, 0x96,
0x90, 0x8f, 0xa2, 0x16, 0x22, 0x6a, 0xcc, 0x48,
0x06, 0x74, 0x63, 0x43, 0x7f, 0x27, 0x22, 0x44,
0x3c, 0x2d, 0x3b, 0x62, 0xf1, 0x1c, 0xb4, 0x27,
0x33, 0x85, 0x26, 0x60, 0x48, 0x16, 0xcb, 0xef,
0xf8, 0xcd, 0x37, 0x02, 0x81, 0x81, 0x00, 0xce,
0x15, 0x43, 0x6e, 0x4b, 0x0f, 0xf9, 0x3f, 0x87,
0xc3, 0x41, 0x45, 0x97, 0xb1, 0x49, 0xc2, 0x19,
0x23, 0x87, 0xe4, 0x24, 0x1c, 0x64, 0xe5, 0x28,
0xcb, 0x43, 0x10, 0x14, 0x14, 0x0e, 0x19, 0xcb,
0xbb, 0xdb, 0xfd, 0x11, 0x9d, 0x17, 0x68, 0x78,
0x6d, 0x61, 0x70, 0x63, 0x3a, 0xa1, 0xb3, 0xf3,
0xa7, 0x5b, 0x0e, 0xff, 0xb7, 0x61, 0x11, 0x54,
0x91, 0x99, 0xe5, 0x91, 0x32, 0x2d, 0xeb, 0x3f,
0xd8, 0x3e, 0xf7, 0xd4, 0xcb, 0xd2, 0xa3, 0x41,
0xc1, 0xee, 0xc6, 0x92, 0x13, 0xeb, 0x7f, 0x42,
0x58, 0xf4, 0xd0, 0xb2, 0x74, 0x1d, 0x8e, 0x87,
0x46, 0xcd, 0x14, 0xb8, 0x16, 0xad, 0xb5, 0xbd,
0x0d, 0x6c, 0x95, 0x5a, 0x16, 0xbf, 0xe9, 0x53,
0xda, 0xfb, 0xed, 0x83, 0x51, 0x67, 0xa9, 0x55,
0xab, 0x54, 0x02, 0x95, 0x20, 0xa6, 0x68, 0x17,
0x53, 0xa8, 0xea, 0x43, 0xe5, 0xb0, 0xa3, 0x02,
0x81, 0x80, 0x67, 0x9c, 0x32, 0x83, 0x39, 0x57,
0xff, 0x73, 0xb0, 0x89, 0x64, 0x8b, 0xd6, 0xf0,
0x0a, 0x2d, 0xe2, 0xaf, 0x30, 0x1c, 0x2a, 0x97,
0xf3, 0x90, 0x9a, 0xab, 0x9b, 0x0b, 0x1b, 0x43,
0x79, 0xa0, 0xa7, 0x3d, 0xe7, 0xbe, 0x8d, 0x9c,
0xeb, 0xdb, 0xad, 0x40, 0xdd, 0xa9, 0x00, 0x80,
0xb8, 0xe1, 0xb3, 0xa1, 0x6c, 0x25, 0x92, 0xe4,
0x33, 0xb2, 0xbe, 0xeb, 0x4d, 0x74, 0x26, 0x5f,
0x37, 0x43, 0x9c, 0x6c, 0x17, 0x76, 0x0a, 0x81,
0x20, 0x82, 0xa1, 0x48, 0x2c, 0x2d, 0x45, 0xdc,
0x0f, 0x62, 0x43, 0x32, 0xbb, 0xeb, 0x59, 0x41,
0xf9, 0xca, 0x58, 0xce, 0x4a, 0x66, 0x53, 0x54,
0xc8, 0x28, 0x10, 0x1e, 0x08, 0x71, 0x16, 0xd8,
0x02, 0x71, 0x41, 0x58, 0xd4, 0x56, 0xcc, 0xf5,
0xb1, 0x31, 0xa3, 0xed, 0x00, 0x85, 0x09, 0xbf,
0x35, 0x95, 0x41, 0x29, 0x40, 0x19, 0x83, 0x35,
0x24, 0x69, 0x02, 0x81, 0x80, 0x55, 0x10, 0x0b,
0xcc, 0x3b, 0xa9, 0x75, 0x3d, 0x16, 0xe1, 0xae,
0x50, 0x76, 0x63, 0x94, 0x49, 0x4c, 0xad, 0x10,
0xcb, 0x47, 0x68, 0x7c, 0xf0, 0xe5, 0xdc, 0xb8,
0x6a, 0xab, 0x8e, 0xf7, 0x9f, 0x08, 0x2c, 0x1b,
0x8a, 0xa2, 0xb9, 0x8f, 0xce, 0xec, 0x5e, 0x61,
0xa8, 0xcd, 0x1c, 0x87, 0x60, 0x4a, 0xc3, 0x1a,
0x5f, 0xdf, 0x87, 0x26, 0xc6, 0xcb, 0x7c, 0x69,
0xe4, 0x8b, 0x01, 0x06, 0x59, 0x22, 0xfa, 0x34,
0x4b, 0x81, 0x87, 0x3c, 0x03, 0x6d, 0x02, 0x0a,
0x77, 0xe6, 0x15, 0xd8, 0xcf, 0xa7, 0x68, 0x26,
0x6c, 0xfa, 0x2b, 0xd9, 0x83, 0x5a, 0x2d, 0x0c,
0x3b, 0x70, 0x1c, 0xd4, 0x48, 0xbe, 0xa7, 0x0a,
0xd9, 0xbe, 0xdc, 0xc3, 0x0c, 0x21, 0x33, 0xb3,
0x66, 0xff, 0x1c, 0x1b, 0xc8, 0x96, 0x76, 0xe8,
0x6f, 0x44, 0x74, 0xbc, 0x9b, 0x1c, 0x7d, 0xc8,
0xac, 0x21, 0xa8, 0x6e, 0x37, 0x02, 0x81, 0x80,
0x2c, 0x7c, 0xad, 0x1e, 0x75, 0xf6, 0x69, 0x1d,
0xe7, 0xa6, 0xca, 0x74, 0x7d, 0x67, 0xc8, 0x65,
0x28, 0x66, 0xc4, 0x43, 0xa6, 0xbd, 0x40, 0x57,
0xae, 0xb7, 0x65, 0x2c, 0x52, 0xf9, 0xe4, 0xc7,
0x81, 0x7b, 0x56, 0xa3, 0xd2, 0x0d, 0xe8, 0x33,
0x70, 0xcf, 0x06, 0x84, 0xb3, 0x4e, 0x44, 0x50,
0x75, 0x61, 0x96, 0x86, 0x4b, 0xb6, 0x2b, 0xad,
0xf0, 0xad, 0x57, 0xd0, 0x37, 0x0d, 0x1d, 0x35,
0x50, 0xcb, 0x69, 0x22, 0x39, 0x29, 0xb9, 0x3a,
0xd3, 0x29, 0x23, 0x02, 0x60, 0xf7, 0xab, 0x30,
0x40, 0xda, 0x8e, 0x4d, 0x45, 0x70, 0x26, 0xf4,
0xa2, 0x0d, 0xd0, 0x64, 0x5d, 0x47, 0x3c, 0x18,
0xf4, 0xd4, 0x52, 0x95, 0x00, 0xae, 0x84, 0x6b,
0x47, 0xb2, 0x3c, 0x82, 0xd3, 0x72, 0x53, 0xde,
0x72, 0x2c, 0xf7, 0xc1, 0x22, 0x36, 0xd9, 0x18,
0x56, 0xfe, 0x39, 0x28, 0x33, 0xe0, 0xdb, 0x03
};
} // namespace
namespace wvoec_mock {
SessionKeyTable::~SessionKeyTable() {
for (KeyMap::iterator i = keys_.begin(); i != keys_.end(); ++i) {
if (NULL != i->second) {
delete i->second;
}
}
}
bool SessionKeyTable::Insert(const KeyId key_id, const Key& key_data) {
if (keys_.find(key_id) != keys_.end()) return false;
keys_[key_id] = new Key(key_data);
return true;
}
Key* SessionKeyTable::Find(const KeyId key_id) {
if (keys_.find(key_id) == keys_.end()) {
return NULL;
}
return keys_[key_id];
}
void SessionKeyTable::Remove(const KeyId key_id) {
if (keys_.find(key_id) != keys_.end()) {
delete keys_[key_id];
keys_.erase(key_id);
}
}
void SessionKeyTable::UpdateDuration(const KeyControlBlock& control) {
for (KeyMap::iterator it = keys_.begin(); it != keys_.end(); ++it) {
it->second->UpdateDuration(control);
}
}
void RSA_shared_ptr::reset() {
if (rsa_key_ && key_owned_) {
RSA_free(rsa_key_);
}
key_owned_ = false;
rsa_key_ = NULL;
}
bool RSA_shared_ptr::LoadPkcs8RsaKey(const uint8_t* buffer, size_t length) {
assert(buffer != NULL);
reset();
key_owned_ = true;
uint8_t* pkcs8_rsa_key = const_cast<uint8_t*>(buffer);
BIO* bio = BIO_new_mem_buf(pkcs8_rsa_key, length);
if (bio == NULL) {
LOGE("[LoadPkcs8RsaKey(): Could not allocate bio buffer]");
return false;
}
bool success = true;
PKCS8_PRIV_KEY_INFO* pkcs8_pki = d2i_PKCS8_PRIV_KEY_INFO_bio(bio, NULL);
if (pkcs8_pki == NULL) {
LOGE("[LoadPkcs8RsaKey(): d2i_PKCS8_PRIV_KEY_INFO_bio returned NULL]");
success = false;
}
EVP_PKEY* evp = NULL;
if (success) {
evp = EVP_PKCS82PKEY(pkcs8_pki);
if (evp == NULL) {
LOGE("[LoadPkcs8RsaKey(): EVP_PKCS82PKEY returned NULL]");
success = false;
}
}
if (success) {
rsa_key_ = EVP_PKEY_get1_RSA(evp);
if (rsa_key_ == NULL) {
LOGE("[LoadPkcs8RsaKey(): PrivateKeyInfo did not contain an RSA key]");
success = false;
}
}
if (evp != NULL) {
EVP_PKEY_free(evp);
}
if (pkcs8_pki != NULL) {
PKCS8_PRIV_KEY_INFO_free(pkcs8_pki);
}
BIO_free(bio);
if (!success) {
return false;
}
switch (RSA_check_key(rsa_key_)) {
case 1: // valid.
return true;
case 0: // not valid.
LOGE("[LoadPkcs8RsaKey(): rsa key not valid]");
dump_openssl_error();
return false;
default: // -1 == check failed.
LOGE("[LoadPkcs8RsaKey(): error checking rsa key]");
dump_openssl_error();
return false;
}
}
SessionContext::~SessionContext() {
if (usage_entry_) usage_entry_->set_session(NULL);
}
// Internal utility function to derive key using CMAC-128
bool SessionContext::DeriveKey(const std::vector<uint8_t>& key,
const std::vector<uint8_t>& context,
int counter,
std::vector<uint8_t>* out) {
if (key.empty() || counter > 4 || context.empty() || out == NULL) {
LOGE("[DeriveKey(): OEMCrypto_ERROR_INVALID_CONTEXT]");
return false;
}
const EVP_CIPHER* cipher = EVP_aes_128_cbc();
CMAC_CTX* cmac_ctx = CMAC_CTX_new();
if (!CMAC_Init(cmac_ctx, &key[0], key.size(), cipher, 0)) {
LOGE("[DeriveKey(): OEMCrypto_ERROR_CMAC_FAILURE]");
return false;
}
std::vector<uint8_t> message;
message.push_back(counter);
message.insert(message.end(), context.begin(), context.end());
if (!CMAC_Update(cmac_ctx, &message[0], message.size())) {
LOGE("[DeriveKey(): OEMCrypto_ERROR_CMAC_FAILURE]");
return false;
}
size_t reslen;
uint8_t res[128];
if (!CMAC_Final(cmac_ctx, res, &reslen)) {
LOGE("[DeriveKey(): OEMCrypto_ERROR_CMAC_FAILURE]");
return false;
}
out->assign(res, res + reslen);
CMAC_CTX_free(cmac_ctx);
return true;
}
bool SessionContext::DeriveKeys(const std::vector<uint8_t>& master_key,
const std::vector<uint8_t>& mac_key_context,
const std::vector<uint8_t>& enc_key_context) {
// Generate derived key for mac key
std::vector<uint8_t> mac_key_server;
std::vector<uint8_t> mac_key_client;
std::vector<uint8_t> mac_key_part2;
if (!DeriveKey(master_key, mac_key_context, 1, &mac_key_server)) {
return false;
}
if (!DeriveKey(master_key, mac_key_context, 2, &mac_key_part2)) {
return false;
}
mac_key_server.insert(mac_key_server.end(), mac_key_part2.begin(),
mac_key_part2.end());
if (!DeriveKey(master_key, mac_key_context, 3, &mac_key_client)) {
return false;
}
if (!DeriveKey(master_key, mac_key_context, 4, &mac_key_part2)) {
return false;
}
mac_key_client.insert(mac_key_client.end(), mac_key_part2.begin(),
mac_key_part2.end());
// Generate derived key for encryption key
std::vector<uint8_t> enc_key;
if (!DeriveKey(master_key, enc_key_context, 1, &enc_key)) {
return false;
}
if (LogCategoryEnabled(kLoggingDumpDerivedKeys)) {
LOGI((" mac_key_context = " + wvcdm::b2a_hex(mac_key_context)).c_str());
LOGI((" enc_key_context = " + wvcdm::b2a_hex(enc_key_context)).c_str());
LOGI((" mac_key_server = " + wvcdm::b2a_hex(mac_key_server)).c_str());
LOGI((" mac_key_client = " + wvcdm::b2a_hex(mac_key_client)).c_str());
LOGI((" enc_key = " + wvcdm::b2a_hex(enc_key)).c_str());
}
set_mac_key_server(mac_key_server);
set_mac_key_client(mac_key_client);
set_encryption_key(enc_key);
return true;
}
bool SessionContext::RSADeriveKeys(const std::vector<uint8_t>& enc_session_key,
const std::vector<uint8_t>& mac_key_context,
const std::vector<uint8_t>& enc_key_context) {
if (!rsa_key()) {
LOGE("[RSADeriveKeys(): no RSA key set]");
return false;
}
if (enc_session_key.size() != static_cast<size_t>(RSA_size(rsa_key()))) {
LOGE("[RSADeriveKeys(): encrypted session key wrong size:%zu, expected %d]",
enc_session_key.size(), RSA_size(rsa_key()));
dump_openssl_error();
return false;
}
session_key_.resize(RSA_size(rsa_key()));
int decrypted_size = RSA_private_decrypt(enc_session_key.size(),
&enc_session_key[0],
&session_key_[0], rsa_key(),
RSA_PKCS1_OAEP_PADDING);
if (-1 == decrypted_size) {
LOGE("[RSADeriveKeys(): error decrypting session key.]");
dump_openssl_error();
return false;
}
session_key_.resize(decrypted_size);
if (decrypted_size != static_cast<int>(wvcdm::KEY_SIZE)) {
LOGE("[RSADeriveKeys(): error. session key is wrong size: %d.]",
decrypted_size);
dump_openssl_error();
session_key_.clear();
return false;
}
return DeriveKeys(session_key_, mac_key_context, enc_key_context);
}
// Utility function to generate a message signature
bool SessionContext::GenerateSignature(const uint8_t* message,
size_t message_length,
uint8_t* signature,
size_t* signature_length) {
if (message == NULL || message_length == 0 ||
signature == NULL || signature_length == 0) {
LOGE("[OEMCrypto_GenerateSignature(): OEMCrypto_ERROR_INVALID_CONTEXT]");
return false;
}
if (mac_key_client_.empty() ||
mac_key_client_.size() != wvcdm::MAC_KEY_SIZE) {
LOGE("[GenerateSignature(): No MAC Key]");
return false;
}
if (*signature_length < SHA256_DIGEST_LENGTH) {
*signature_length = SHA256_DIGEST_LENGTH;
return false;
}
unsigned int md_len = *signature_length;
if (HMAC(EVP_sha256(), &mac_key_client_[0], mac_key_client_.size(),
message, message_length, signature, &md_len)) {
*signature_length = md_len;
return true;
}
return false;
}
size_t SessionContext::RSASignatureSize() {
if (!rsa_key()) {
LOGE("[GenerateRSASignature(): no RSA key set]");
return 0;
}
return static_cast<size_t>(RSA_size(rsa_key()));
}
OEMCryptoResult SessionContext::GenerateRSASignature(
const uint8_t* message, size_t message_length, uint8_t* signature,
size_t* signature_length, RSA_Padding_Scheme padding_scheme) {
if (message == NULL || message_length == 0 ||
signature == NULL || signature_length == 0) {
LOGE("[GenerateRSASignature(): OEMCrypto_ERROR_INVALID_CONTEXT]");
return OEMCrypto_ERROR_INVALID_CONTEXT;
}
if (!rsa_key()) {
LOGE("[GenerateRSASignature(): no RSA key set]");
return OEMCrypto_ERROR_INVALID_RSA_KEY;
}
if (*signature_length < static_cast<size_t>(RSA_size(rsa_key()))) {
*signature_length = RSA_size(rsa_key());
return OEMCrypto_ERROR_SHORT_BUFFER;
}
if ((padding_scheme & allowed_schemes_) != padding_scheme) {
LOGE("[GenerateRSASignature(): padding_scheme not allowed]");
return OEMCrypto_ERROR_INVALID_RSA_KEY;
}
// This is the standard padding scheme used for license requests.
if (padding_scheme == kSign_RSASSA_PSS) {
// Hash the message using SHA1.
uint8_t hash[SHA_DIGEST_LENGTH];
if (!SHA1(message, message_length, hash)) {
LOGE("[GeneratRSASignature(): error creating signature hash.]");
dump_openssl_error();
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
// Add PSS padding.
std::vector<uint8_t> padded_digest(*signature_length);
int status = RSA_padding_add_PKCS1_PSS_mgf1(rsa_key(), &padded_digest[0],
hash, EVP_sha1(), NULL,
kPssSaltLength);
if (status == -1) {
LOGE("[GeneratRSASignature(): error padding hash.]");
dump_openssl_error();
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
// Encrypt PSS padded digest.
status = RSA_private_encrypt(*signature_length, &padded_digest[0], signature,
rsa_key(), RSA_NO_PADDING);
if (status == -1) {
LOGE("[GeneratRSASignature(): error in private encrypt.]");
dump_openssl_error();
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
// This is the alternate padding scheme used by cast receivers only.
} else if (padding_scheme == kSign_PKCS1_Block1) {
if (message_length > 83) {
LOGE("[GeneratRSASignature(): RSA digest too large.]");
return OEMCrypto_ERROR_SIGNATURE_FAILURE;
}
// Pad the message with PKCS1 padding, and then encrypt.
size_t status = RSA_private_encrypt(message_length, message, signature,
rsa_key(), RSA_PKCS1_PADDING);
if (status != *signature_length) {
LOGE("[GeneratRSASignature(): error in RSA private encrypt. status=%d]", status);
dump_openssl_error();
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
} else { // Bad RSA_Padding_Scheme
return OEMCrypto_ERROR_INVALID_RSA_KEY;
}
return OEMCrypto_SUCCESS;
}
// Validate message signature
bool SessionContext::ValidateMessage(const uint8_t* given_message,
size_t message_length,
const uint8_t* given_signature,
size_t signature_length) {
if (signature_length != SHA256_DIGEST_LENGTH) {
return false;
}
uint8_t computed_signature[SHA256_DIGEST_LENGTH];
memset(computed_signature, 0, SHA256_DIGEST_LENGTH);
unsigned int md_len = SHA256_DIGEST_LENGTH;
if (!HMAC(EVP_sha256(), &mac_key_server_[0], mac_key_server_.size(),
given_message, message_length, computed_signature, &md_len)) {
LOGE("ValidateMessage: Could not compute signature.");
return false;
}
if (memcmp(given_signature, computed_signature, signature_length)) {
LOGE("Invalid signature given: %s",
wvcdm::HexEncode(given_signature, signature_length).c_str());
LOGE("Invalid signature computed: %s",
wvcdm::HexEncode(computed_signature, signature_length).c_str());
return false;
}
return true;
}
bool SessionContext::CheckNonceOrEntry(const KeyControlBlock& key_control_block,
const std::vector<uint8_t>& pst) {
switch (key_control_block.control_bits() & kControlReplayMask) {
case kControlNonceRequired: // Online license. Nonce always required.
if (pst.size() == 0) {
LOGE("KCB: PST null for kControlNonceRequired.");
return false;
}
if (!(key_control_block.control_bits() & kControlNonceEnabled)) {
LOGE("KCB: Server provided Nonce_Required but Nonce_Enabled = 0.");
// Server error. Continue, and assume nonce required.
}
if (!CheckNonce(key_control_block.nonce())) return false;
if (!usage_entry_) {
if (ce_->usage_table()->FindEntry(pst)) {
LOGE("KCB: Cannot create duplicate entries in usage table.");
return false;
}
usage_entry_ = ce_->usage_table()->CreateEntry(pst, this);
}
break; // Offline license. Nonce required on first use.
case kControlNonceOrEntry:
if (key_control_block.control_bits() & kControlNonceEnabled) {
LOGE("KCB: Server provided NonceOrEntry but Nonce_Enabled = 1.");
// Server error. Continue, and assume nonce required.
}
if (pst.size() == 0) {
LOGE("KCB: PST null for kControlNonceOrEntry.");
return false;
}
if (!usage_entry_) {
usage_entry_ = ce_->usage_table()->FindEntry(pst);
if (usage_entry_) {
if (usage_entry_->status() == kInactive) return false;
} else {
if (!CheckNonce(key_control_block.nonce())) return false;
usage_entry_ = ce_->usage_table()->CreateEntry(pst, this);
}
} else {
if (usage_entry_->status() == kInactive) return false;
}
break; // Usage table not required. Look at nonce enabled bit.
default:
if ((key_control_block.control_bits() & kControlNonceEnabled) &&
(!CheckNonce(key_control_block.nonce()))) {
LOGE("KCB: BAD Nonce");
return false;
}
}
return true;
}
void SessionContext::StartTimer() {
timer_start_ = time(NULL);
}
uint32_t SessionContext::CurrentTimer() {
time_t now = time(NULL);
return now - timer_start_;
}
OEMCryptoResult SessionContext::LoadKeys(
const uint8_t* message, size_t message_length, const uint8_t* signature,
size_t signature_length, const uint8_t* enc_mac_key_iv,
const uint8_t* enc_mac_keys, size_t num_keys,
const OEMCrypto_KeyObject* key_array, const uint8_t* pst,
size_t pst_length) {
// Validate message signature
if (!ValidateMessage(message, message_length, signature, signature_length)) {
return OEMCrypto_ERROR_SIGNATURE_FAILURE;
}
StartTimer();
// Decrypt and install keys in key object
// Each key will have a key control block. They will all have the same nonce.
bool status = true;
std::vector<uint8_t> key_id;
std::vector<uint8_t> enc_key_data;
std::vector<uint8_t> key_data_iv;
std::vector<uint8_t> key_control;
std::vector<uint8_t> key_control_iv;
std::vector<uint8_t> pstv;
if (pst_length > 0) pstv.assign(pst, pst + pst_length);
for (unsigned int i = 0; i < num_keys; i++) {
key_id.assign(key_array[i].key_id,
key_array[i].key_id + key_array[i].key_id_length);
enc_key_data.assign(key_array[i].key_data,
key_array[i].key_data + key_array[i].key_data_length);
key_data_iv.assign(key_array[i].key_data_iv,
key_array[i].key_data_iv + wvcdm::KEY_IV_SIZE);
if (key_array[i].key_control == NULL) {
status = false;
break;
}
key_control.assign(key_array[i].key_control,
key_array[i].key_control + wvcdm::KEY_CONTROL_SIZE);
key_control_iv.assign(key_array[i].key_control_iv,
key_array[i].key_control_iv + wvcdm::KEY_IV_SIZE);
if (!InstallKey(key_id, enc_key_data, key_data_iv, key_control,
key_control_iv, pstv,
key_array[i].cipher_mode == OEMCrypto_CipherMode_CTR)) {
status = false;
break;
}
}
FlushNonces();
if (!status) return OEMCrypto_ERROR_UNKNOWN_FAILURE;
// enc_mac_key can be NULL if license renewal is not supported
if (enc_mac_keys != NULL) {
// V2.1 license protocol: update mac keys after processing license response
const std::vector<uint8_t> enc_mac_keys_str = std::vector<uint8_t>(
enc_mac_keys, enc_mac_keys + 2 * wvcdm::MAC_KEY_SIZE);
const std::vector<uint8_t> enc_mac_key_iv_str = std::vector<uint8_t>(
enc_mac_key_iv, enc_mac_key_iv + wvcdm::KEY_IV_SIZE);
if (!UpdateMacKeys(enc_mac_keys_str, enc_mac_key_iv_str)) {
LOGE("Failed to update mac keys.\n");
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
}
if (pst_length > 0) {
if (!usage_entry_) {
LOGE("Usage table entry not found.\n");
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
if (!usage_entry_->VerifyOrSetMacKeys(mac_key_server_, mac_key_client_)) {
LOGE("Usage table entry does not match.\n");
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
}
return OEMCrypto_SUCCESS;
}
bool SessionContext::InstallKey(const KeyId& key_id,
const std::vector<uint8_t>& key_data,
const std::vector<uint8_t>& key_data_iv,
const std::vector<uint8_t>& key_control,
const std::vector<uint8_t>& key_control_iv,
const std::vector<uint8_t>& pst,
bool ctr_mode) {
// Decrypt encrypted key_data using derived encryption key and offered iv
std::vector<uint8_t> content_key;
std::vector<uint8_t> key_control_str;
if (!DecryptMessage(encryption_key_, key_data_iv, key_data, &content_key)) {
LOGE("[Installkey(): Could not decrypt key data]");
return false;
}
if (LogCategoryEnabled(kLoggingDumpContentKeys)) {
LOGI((" InstallKey: key_id = " +
wvcdm::b2a_hex(key_id)).c_str());
LOGI((" InstallKey: content_key = " +
wvcdm::b2a_hex(content_key)).c_str());
LOGI((" InstallKey: key_control = " +
wvcdm::b2a_hex(key_control_str)).c_str());
}
// Key control must be supplied by license server
if (key_control.empty()) {
LOGE("[Installkey(): WARNING: No Key Control]");
return false;
}
if (key_control_iv.empty()) {
LOGE("[Installkey(): ERROR: No Key Control IV]");
return false;
}
if (!DecryptMessage(content_key, key_control_iv, key_control,
&key_control_str)) {
LOGE("[Installkey(): ERROR: Could not decrypt content key]");
return false;
}
KeyControlBlock key_control_block(key_control_str);
if (!key_control_block.valid()) {
LOGE("Error parsing key control.");
return false;
}
if ((key_control_block.control_bits() &
kControlRequireAntiRollbackHardware) &&
!ce_->is_anti_rollback_hw_present()) {
LOGE("Anti-rollback hardware is required but hardware not present.");
return false;
}
uint8_t minimum_patch_level =
(key_control_block.control_bits() & kControlSecurityPatchLevelMask) >>
kControlSecurityPatchLevelShift;
if (minimum_patch_level > OEMCrypto_Security_Patch_Level()) {
LOGE("[InstallKey(): security patch level: %d. Minimum:%d]",
OEMCrypto_Security_Patch_Level(), minimum_patch_level);
return false;
}
if (!CheckNonceOrEntry(key_control_block, pst)) {
LOGE("Failed Nonce/PST check.");
return false;
}
Key key(content_key, key_control_block, ctr_mode);
session_keys_.Insert(key_id, key);
return true;
}
bool SessionContext::InstallRSAEncryptedKey(const uint8_t *encrypted_message_key,
size_t encrypted_message_key_length) {
encryption_key_.resize(RSA_size(rsa_key()));
int decrypted_size = RSA_private_decrypt( encrypted_message_key_length,
encrypted_message_key,
&encryption_key_[0], rsa_key(),
RSA_PKCS1_OAEP_PADDING);
if (-1 == decrypted_size) {
LOGE("[RSADeriveKeys(): error decrypting session key.]");
dump_openssl_error();
return false;
}
encryption_key_.resize(decrypted_size);
if (decrypted_size != static_cast<int>(wvcdm::KEY_SIZE)) {
LOGE("[RSADeriveKeys(): error. session key is wrong size: %d.]",
decrypted_size);
dump_openssl_error();
encryption_key_.clear();
return false;
}
return true;
}
OEMCryptoResult SessionContext::RefreshKey(
const KeyId& key_id, const std::vector<uint8_t>& key_control,
const std::vector<uint8_t>& key_control_iv) {
if (key_id.empty()) {
// Key control is not encrypted if key id is NULL
KeyControlBlock key_control_block(key_control);
if (!key_control_block.valid()) {
LOGE("Parse key control error.");
return OEMCrypto_ERROR_INVALID_CONTEXT;
}
if ((key_control_block.control_bits() & kControlNonceEnabled) &&
(!CheckNonce(key_control_block.nonce()))) {
LOGE("KCB: BAD Nonce");
return OEMCrypto_ERROR_INVALID_NONCE;
}
// Apply duration to all keys in this session
session_keys_.UpdateDuration(key_control_block);
return OEMCrypto_SUCCESS;
}
Key* content_key = session_keys_.Find(key_id);
if (NULL == content_key) {
if (LogCategoryEnabled(kLoggingDumpKeyControlBlocks)) {
LOGD("Error: no matching content key.");
}
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
if (key_control.empty()) {
if (LogCategoryEnabled(kLoggingDumpKeyControlBlocks)) {
LOGD("Error: no key_control.");
}
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
const std::vector<uint8_t> content_key_value = content_key->value();
// Decrypt encrypted key control block
std::vector<uint8_t> control;
if (key_control_iv.empty()) {
if (LogCategoryEnabled(kLoggingDumpKeyControlBlocks)) {
LOGD("Key control block is NOT encrypted.");
}
control = key_control;
} else {
if (LogCategoryEnabled(kLoggingDumpKeyControlBlocks)) {
LOGD("Key control block is encrypted.");
}
if (!DecryptMessage(content_key_value, key_control_iv, key_control,
&control)) {
if (LogCategoryEnabled(kLoggingDumpKeyControlBlocks)) {
LOGD("Error decrypting key control block.");
}
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
}
KeyControlBlock key_control_block(control);
if (!key_control_block.valid()) {
if (LogCategoryEnabled(kLoggingDumpKeyControlBlocks)) {
LOGD("Parse key control error.");
}
return OEMCrypto_ERROR_INVALID_CONTEXT;
}
if ((key_control_block.control_bits() & kControlNonceEnabled) &&
(!CheckNonce(key_control_block.nonce()))) {
LOGE("KCB: BAD Nonce");
return OEMCrypto_ERROR_INVALID_NONCE;
}
content_key->UpdateDuration(key_control_block);
return OEMCrypto_SUCCESS;
}
bool SessionContext::DecryptRSAKey(const uint8_t* enc_rsa_key,
size_t enc_rsa_key_length,
const uint8_t* enc_rsa_key_iv,
uint8_t* pkcs8_rsa_key) {
// Decrypt rsa key with keybox.
uint8_t iv_buffer[wvcdm::KEY_IV_SIZE];
memcpy(iv_buffer, enc_rsa_key_iv, wvcdm::KEY_IV_SIZE);
AES_KEY aes_key;
AES_set_decrypt_key(&encryption_key_[0], 128, &aes_key);
AES_cbc_encrypt(enc_rsa_key, pkcs8_rsa_key, enc_rsa_key_length,
&aes_key, iv_buffer, AES_DECRYPT);
return true;
}
bool SessionContext::EncryptRSAKey(const uint8_t* pkcs8_rsa_key,
size_t enc_rsa_key_length,
const uint8_t* enc_rsa_key_iv,
uint8_t* enc_rsa_key) {
// Encrypt rsa key with keybox.
uint8_t iv_buffer[wvcdm::KEY_IV_SIZE];
memcpy(iv_buffer, enc_rsa_key_iv, wvcdm::KEY_IV_SIZE);
AES_KEY aes_key;
AES_set_encrypt_key(&encryption_key_[0], 128, &aes_key);
AES_cbc_encrypt(pkcs8_rsa_key, enc_rsa_key, enc_rsa_key_length,
&aes_key, iv_buffer, AES_ENCRYPT);
return true;
}
bool SessionContext::LoadRSAKey(const uint8_t* pkcs8_rsa_key,
size_t rsa_key_length) {
rsa_key_.reset();
if (rsa_key_length < 8) {
LOGE("[LoadRSAKey(): Very Short Buffer]");
return false;
}
if ((memcmp(pkcs8_rsa_key, "SIGN", 4) == 0)) {
uint32_t* schemes_n = (uint32_t*)(pkcs8_rsa_key + 4);
allowed_schemes_ = htonl(*schemes_n);
pkcs8_rsa_key += 8;
rsa_key_length -= 8;
} else {
allowed_schemes_ = kSign_RSASSA_PSS;
}
return rsa_key_.LoadPkcs8RsaKey(pkcs8_rsa_key, rsa_key_length);
}
OEMCryptoResult SessionContext::Generic_Encrypt(const uint8_t* in_buffer,
size_t buffer_length,
const uint8_t* iv,
OEMCrypto_Algorithm algorithm,
uint8_t* out_buffer) {
// Check there is a content key
if (current_content_key() == NULL) {
LOGE("[Generic_Encrypt(): OEMCrypto_ERROR_NO_CONTENT_KEY]");
return OEMCrypto_ERROR_NO_CONTENT_KEY;
}
const std::vector<uint8_t>& key = current_content_key()->value();
const KeyControlBlock& control = current_content_key()->control();
// Set the AES key.
if (static_cast<int>(key.size()) != AES_BLOCK_SIZE) {
LOGE("[Generic_Encrypt(): CONTENT_KEY has wrong size: %d", key.size());
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
if (!(control.control_bits() & kControlAllowEncrypt)) {
LOGE("[Generic_Encrypt(): control bit says not allowed.");
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
if (control.duration() > 0) {
if (control.duration() < CurrentTimer()) {
LOGE("[Generic_Encrypt(): key expired.");
return OEMCrypto_ERROR_KEY_EXPIRED;
}
}
if (control.control_bits() & kControlReplayMask) {
if (!IsUsageEntryValid()) {
LOGE("[Generic_Encrypt(): usage entry not valid]");
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
}
if (algorithm != OEMCrypto_AES_CBC_128_NO_PADDING) {
LOGE("[Generic_Encrypt(): algorithm bad.");
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
if (buffer_length % AES_BLOCK_SIZE != 0) {
LOGE("[Generic_Encrypt(): buffers size bad.");
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
const uint8_t* key_u8 = &key[0];
AES_KEY aes_key;
if (AES_set_encrypt_key(key_u8, AES_BLOCK_SIZE * 8, &aes_key) != 0) {
LOGE("[Generic_Encrypt(): FAILURE]");
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
uint8_t iv_buffer[wvcdm::KEY_IV_SIZE];
memcpy(iv_buffer, iv, wvcdm::KEY_IV_SIZE);
AES_cbc_encrypt(in_buffer, out_buffer, buffer_length,
&aes_key, iv_buffer, AES_ENCRYPT);
return OEMCrypto_SUCCESS;
}
OEMCryptoResult SessionContext::Generic_Decrypt(const uint8_t* in_buffer,
size_t buffer_length,
const uint8_t* iv,
OEMCrypto_Algorithm algorithm,
uint8_t* out_buffer) {
// Check there is a content key
if (current_content_key() == NULL) {
LOGE("[Generic_Decrypt(): OEMCrypto_ERROR_NO_CONTENT_KEY]");
return OEMCrypto_ERROR_NO_CONTENT_KEY;
}
const std::vector<uint8_t>& key = current_content_key()->value();
const KeyControlBlock& control = current_content_key()->control();
// Set the AES key.
if (static_cast<int>(key.size()) != AES_BLOCK_SIZE) {
LOGE("[Generic_Decrypt(): CONTENT_KEY has wrong size.");
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
if (!(control.control_bits() & kControlAllowDecrypt)) {
LOGE("[Generic_Decrypt(): control bit says not allowed.");
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
if (control.control_bits() & kControlDataPathSecure) {
if (!ce_->closed_platform()) {
LOGE("[Generic_Decrypt(): control bit says secure path only.");
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
}
if (control.duration() > 0) {
if (control.duration() < CurrentTimer()) {
LOGE("[Generic_Decrypt(): key expired.");
return OEMCrypto_ERROR_KEY_EXPIRED;
}
}
if (control.control_bits() & kControlReplayMask) {
if (!IsUsageEntryValid()) {
LOGE("[Generic_Decrypt(): usage entry not valid]");
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
}
if (algorithm != OEMCrypto_AES_CBC_128_NO_PADDING) {
LOGE("[Generic_Decrypt(): bad algorithm.");
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
if (buffer_length % AES_BLOCK_SIZE != 0) {
LOGE("[Generic_Decrypt(): bad buffer size.");
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
const uint8_t* key_u8 = &key[0];
AES_KEY aes_key;
if (AES_set_decrypt_key(key_u8, AES_BLOCK_SIZE * 8, &aes_key) != 0) {
LOGE("[Generic_Decrypt(): FAILURE]");
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
uint8_t iv_buffer[wvcdm::KEY_IV_SIZE];
memcpy(iv_buffer, iv, wvcdm::KEY_IV_SIZE);
AES_cbc_encrypt(in_buffer, out_buffer, buffer_length,
&aes_key, iv_buffer, AES_DECRYPT);
return OEMCrypto_SUCCESS;
}
OEMCryptoResult SessionContext::Generic_Sign(const uint8_t* in_buffer,
size_t buffer_length,
OEMCrypto_Algorithm algorithm,
uint8_t* signature,
size_t* signature_length) {
// Check there is a content key
if (current_content_key() == NULL) {
LOGE("[Generic_Sign(): OEMCrypto_ERROR_NO_CONTENT_KEY]");
return OEMCrypto_ERROR_NO_CONTENT_KEY;
}
if (*signature_length < SHA256_DIGEST_LENGTH) {
*signature_length = SHA256_DIGEST_LENGTH;
LOGE("[Generic_Sign(): bad signature length.");
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
const std::vector<uint8_t>& key = current_content_key()->value();
const KeyControlBlock& control = current_content_key()->control();
if (static_cast<int>(key.size()) != SHA256_DIGEST_LENGTH) {
LOGE("[Generic_Sign(): CONTENT_KEY has wrong size; %d", key.size());
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
if (!(control.control_bits() & kControlAllowSign)) {
LOGE("[Generic_Sign(): control bit says not allowed.");
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
if (control.duration() > 0) {
if (control.duration() < CurrentTimer()) {
LOGE("[Generic_Sign(): key expired.");
return OEMCrypto_ERROR_KEY_EXPIRED;
}
}
if (control.control_bits() & kControlReplayMask) {
if (!IsUsageEntryValid()) {
LOGE("[Generic_Sign(): usage entry not valid]");
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
}
if (algorithm != OEMCrypto_HMAC_SHA256) {
LOGE("[Generic_Sign(): bad algorithm.");
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
unsigned int md_len = *signature_length;
if (HMAC(EVP_sha256(), &key[0], key.size(),
in_buffer, buffer_length, signature, &md_len)) {
*signature_length = md_len;
return OEMCrypto_SUCCESS;
}
LOGE("[Generic_Sign(): hmac failed.");
dump_openssl_error();
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
OEMCryptoResult SessionContext::Generic_Verify(const uint8_t* in_buffer,
size_t buffer_length,
OEMCrypto_Algorithm algorithm,
const uint8_t* signature,
size_t signature_length) {
// Check there is a content key
if (current_content_key() == NULL) {
LOGE("[Decrypt_Verify(): OEMCrypto_ERROR_NO_CONTENT_KEY]");
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
if (signature_length < SHA256_DIGEST_LENGTH) {
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
const std::vector<uint8_t>& key = current_content_key()->value();
const KeyControlBlock& control = current_content_key()->control();
if (static_cast<int>(key.size()) != SHA256_DIGEST_LENGTH) {
LOGE("[Generic_Verify(): CONTENT_KEY has wrong size: %d", key.size());
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
if (!(control.control_bits() & kControlAllowVerify)) {
LOGE("[Generic_Verify(): control bit says not allowed.");
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
if (control.duration() > 0) {
if (control.duration() < CurrentTimer()) {
LOGE("[Generic_Verify(): key expired.");
return OEMCrypto_ERROR_KEY_EXPIRED;
}
}
if (control.control_bits() & kControlReplayMask) {
if (!IsUsageEntryValid()) {
LOGE("[Generic_Verify(): usage entry not valid]");
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
}
if (algorithm != OEMCrypto_HMAC_SHA256) {
LOGE("[Generic_Verify(): bad algorithm.");
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
unsigned int md_len = signature_length;
uint8_t computed_signature[SHA256_DIGEST_LENGTH];
if (HMAC(EVP_sha256(), &key[0], key.size(),
in_buffer, buffer_length, computed_signature, &md_len)) {
if (0 == memcmp(signature, computed_signature, SHA256_DIGEST_LENGTH)) {
return OEMCrypto_SUCCESS;
} else {
return OEMCrypto_ERROR_SIGNATURE_FAILURE;
}
}
LOGE("[Generic_Verify(): HMAC failed.");
dump_openssl_error();
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
bool SessionContext::UpdateMacKeys(const std::vector<uint8_t>& enc_mac_keys,
const std::vector<uint8_t>& iv) {
// Decrypt mac key from enc_mac_key using device_keya
std::vector<uint8_t> mac_keys;
if (!DecryptMessage(encryption_key_, iv, enc_mac_keys, &mac_keys)) {
return false;
}
mac_key_server_ = std::vector<uint8_t>(mac_keys.begin(),
mac_keys.begin()+wvcdm::MAC_KEY_SIZE);
mac_key_client_ = std::vector<uint8_t>(mac_keys.begin()+wvcdm::MAC_KEY_SIZE,
mac_keys.end());
return true;
}
bool SessionContext::QueryKeyControlBlock(const KeyId& key_id, uint32_t* data) {
const Key* content_key = session_keys_.Find(key_id);
if (LogCategoryEnabled(kLoggingTraceDecryption)){
LOGI(( "Select Key: key_id = " +
wvcdm::b2a_hex(key_id) ).c_str());
if (content_key) {
LOGI(( "Select Key: key = " +
wvcdm::b2a_hex(content_key->value()) ).c_str());
} else {
LOGI("Select Key: key = null.");
}
}
if (NULL == content_key) {
LOGE("[QueryKeyControlBlock(): No key matches key id]");
return false;
}
data[0] = 0; // verification optional.
data[1] = htonl(content_key->control().duration());
data[2] = 0; // nonce optional.
data[3] = htonl(content_key->control().control_bits());
return true;
}
OEMCryptoResult SessionContext::SelectContentKey(const KeyId& key_id) {
const Key* content_key = session_keys_.Find(key_id);
if (LogCategoryEnabled(kLoggingTraceDecryption)){
LOGI(( " Select Key: key_id = " +
wvcdm::b2a_hex(key_id) ).c_str());
LOGI(( " Select Key: key = " +
wvcdm::b2a_hex(content_key->value()) ).c_str());
}
if (NULL == content_key) {
LOGE("[SelectContentKey(): No key matches key id]");
return OEMCrypto_ERROR_NO_CONTENT_KEY;
}
current_content_key_ = content_key;
const KeyControlBlock& control = current_content_key()->control();
if (control.duration() > 0) {
if (control.duration() < CurrentTimer()) {
LOGE("[SelectContentKey(): KEY_EXPIRED]");
return OEMCrypto_ERROR_KEY_EXPIRED;
}
}
return OEMCrypto_SUCCESS;
}
void SessionContext::AddNonce(uint32_t nonce) {
nonce_table_.AddNonce(nonce);
}
bool SessionContext::CheckNonce(uint32_t nonce) {
return nonce_table_.CheckNonce(nonce);
}
void SessionContext::FlushNonces() {
nonce_table_.Flush();
}
bool SessionContext::IsUsageEntryValid() {
if (!usage_entry_) return false;
return usage_entry_->UpdateTime();
}
void SessionContext::ReleaseUsageEntry() { usage_entry_ = NULL; }
CryptoEngine::CryptoEngine(wvcdm::FileSystem* file_system)
: use_test_keybox_(false),
file_system_(file_system),
usage_table_(new UsageTable(this)) {
ERR_load_crypto_strings();
if ((provisioning_method() == OEMCrypto_DrmCertificate) &&
!rsa_key_.LoadPkcs8RsaKey(kPrivateKey, kPrivateKeySize)) {
// This error message is OK in unit tests which use test certificate.
LOGE("FATAL ERROR: Platform uses a baked-in certificate instead of a "
"keybox, but the certificate could not be loaded.");
}
}
CryptoEngine::~CryptoEngine() {
sessions_.clear();
if (usage_table_) delete usage_table_;
}
void CryptoEngine::Terminate() {}
KeyboxError CryptoEngine::ValidateKeybox() { return keybox().Validate(); }
bool CryptoEngine::LoadTestRSAKey() {
return rsa_key_.LoadPkcs8RsaKey(kTestRSAPKCS8PrivateKeyInfo2_2048,
sizeof(kTestRSAPKCS8PrivateKeyInfo2_2048));
}
SessionId CryptoEngine::CreateSession() {
wvcdm::AutoLock lock(session_table_lock_);
static int unique_id = 1;
SessionId sid = (SessionId)++unique_id;
SessionContext* sctx = new SessionContext(this, sid, rsa_key_);
sessions_[sid] = sctx;
return sid;
}
bool CryptoEngine::DestroySession(SessionId sid) {
SessionContext* sctx = FindSession(sid);
wvcdm::AutoLock lock(session_table_lock_);
if (sctx) {
sessions_.erase(sid);
delete sctx;
return true;
} else {
return false;
}
}
SessionContext* CryptoEngine::FindSession(SessionId sid) {
wvcdm::AutoLock lock(session_table_lock_);
ActiveSessions::iterator it = sessions_.find(sid);
if (it != sessions_.end()) {
return it->second;
}
return NULL;
}
// Internal utility function to decrypt the message
bool SessionContext::DecryptMessage(const std::vector<uint8_t>& key,
const std::vector<uint8_t>& iv,
const std::vector<uint8_t>& message,
std::vector<uint8_t>* decrypted) {
if (key.empty() || iv.empty() || message.empty() || !decrypted) {
LOGE("[DecryptMessage(): OEMCrypto_ERROR_INVALID_CONTEXT]");
return false;
}
decrypted->resize(message.size());
uint8_t iv_buffer[16];
memcpy(iv_buffer, &iv[0], 16);
AES_KEY aes_key;
AES_set_decrypt_key(&key[0], 128, &aes_key);
AES_cbc_encrypt(&message[0], &(decrypted->front()), message.size(), &aes_key,
iv_buffer, AES_DECRYPT);
return true;
}
OEMCryptoResult SessionContext::DecryptCENC(
const uint8_t* iv, size_t block_offset,
const OEMCrypto_CENCEncryptPatternDesc* pattern, const uint8_t* cipher_data,
size_t cipher_data_length, bool is_encrypted, uint8_t* clear_data,
OEMCryptoBufferType buffer_type) {
// If the data is clear, we do not need a current key selected.
if (!is_encrypted) {
if (buffer_type != OEMCrypto_BufferType_Direct) {
memcpy(reinterpret_cast<uint8_t*>(clear_data), cipher_data,
cipher_data_length);
return OEMCrypto_SUCCESS;
}
// For reference implementation, we quietly drop the clear direct video.
return OEMCrypto_SUCCESS;
}
// Check there is a content key
if (current_content_key() == NULL) {
LOGE("[DecryptCTR(): OEMCrypto_ERROR_NO_CONTENT_KEY]");
return OEMCrypto_ERROR_DECRYPT_FAILED;
}
const KeyControlBlock& control = current_content_key()->control();
if (control.control_bits() & kControlDataPathSecure) {
if (!ce_->closed_platform() && buffer_type == OEMCrypto_BufferType_Clear) {
LOGE("[DecryptCTR(): Secure key with insecure buffer]");
return OEMCrypto_ERROR_DECRYPT_FAILED;
}
}
if (control.duration() > 0) {
if (control.duration() < CurrentTimer()) {
LOGE("[DecryptCTR(): KEY_EXPIRED]");
return OEMCrypto_ERROR_KEY_EXPIRED;
}
}
if (control.control_bits() & kControlReplayMask) {
if (!IsUsageEntryValid()) {
LOGE("[DecryptCTR(): usage entry not valid]");
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
}
if (!ce_->local_display()) { // Only look at HDCP if the display is not
// local.
if (control.control_bits() & kControlHDCPRequired) {
uint8_t required_hdcp =
(control.control_bits() & kControlHDCPVersionMask) >>
kControlHDCPVersionShift;
// For reference implementation, we pretend we can handle the current
// HDCP version.
if (required_hdcp > ce_->current_hdcp_capability() ||
ce_->current_hdcp_capability() == 0) {
return OEMCrypto_ERROR_INSUFFICIENT_HDCP;
}
}
}
const std::vector<uint8_t>& content_key = current_content_key()->value();
// Set the AES key.
if (static_cast<int>(content_key.size()) != AES_BLOCK_SIZE) {
LOGE("[DecryptCTR(): CONTENT_KEY has wrong size: %d", content_key.size());
return OEMCrypto_ERROR_DECRYPT_FAILED;
}
const uint8_t* key_u8 = &content_key[0];
if (buffer_type == OEMCrypto_BufferType_Direct) {
// For reference implementation, we quietly drop the decrypted direct video.
return OEMCrypto_SUCCESS;
}
if (buffer_type == OEMCrypto_BufferType_Secure) {
// For reference implementation, we also quietly drop secure data.
return OEMCrypto_SUCCESS;
}
if (!current_content_key()->ctr_mode()) {
if (block_offset > 0) return OEMCrypto_ERROR_INVALID_CONTEXT;
return DecryptCBC(key_u8, iv, pattern, cipher_data, cipher_data_length,
clear_data);
}
if (pattern->skip > 0) {
return PatternDecryptCTR(key_u8, iv, block_offset, pattern, cipher_data,
cipher_data_length, clear_data);
}
return DecryptCTR(key_u8, iv, block_offset, cipher_data, cipher_data_length,
clear_data);
}
OEMCryptoResult SessionContext::DecryptCBC(
const uint8_t* key, const uint8_t* initial_iv,
const OEMCrypto_CENCEncryptPatternDesc* pattern, const uint8_t* cipher_data,
size_t cipher_data_length, uint8_t* clear_data) {
AES_KEY aes_key;
AES_set_decrypt_key(&key[0], AES_BLOCK_SIZE * 8, &aes_key);
uint8_t iv[AES_BLOCK_SIZE];
memcpy(iv, &initial_iv[0], AES_BLOCK_SIZE);
size_t l = 0;
size_t pattern_offset = pattern->offset;
while (l < cipher_data_length) {
size_t size =
std::min(cipher_data_length - l, static_cast<size_t>(AES_BLOCK_SIZE));
size_t pattern_length = pattern->encrypt + pattern->skip;
bool skip_block = (pattern_offset >= pattern->encrypt)
&& (pattern_length>0);
if (pattern_length > 0) {
pattern_offset = (pattern_offset + 1) % pattern_length;
}
if (skip_block || (size < AES_BLOCK_SIZE)) {
memcpy(&clear_data[l], &cipher_data[l], size);
} else {
uint8_t aes_output[AES_BLOCK_SIZE];
AES_decrypt(&cipher_data[l], aes_output, &aes_key);
for (size_t n = 0; n < AES_BLOCK_SIZE; n++) {
clear_data[l + n] = aes_output[n] ^ iv[n];
}
memcpy(iv, &cipher_data[l], AES_BLOCK_SIZE);
}
l += size;
}
return OEMCrypto_SUCCESS;
}
OEMCryptoResult SessionContext::PatternDecryptCTR(
const uint8_t* key, const uint8_t* initial_iv, size_t block_offset,
const OEMCrypto_CENCEncryptPatternDesc* pattern, const uint8_t* cipher_data,
size_t cipher_data_length, uint8_t* clear_data) {
AES_KEY aes_key;
AES_set_encrypt_key(&key[0], AES_BLOCK_SIZE * 8, &aes_key);
uint8_t iv[AES_BLOCK_SIZE];
memcpy(iv, &initial_iv[0], AES_BLOCK_SIZE);
size_t l = 0;
size_t pattern_offset = pattern->offset;
while (l < cipher_data_length) {
size_t size =
std::min(cipher_data_length - l, AES_BLOCK_SIZE - block_offset);
size_t pattern_length = pattern->encrypt + pattern->skip;
bool skip_block = (pattern_offset >= pattern->encrypt)
&& (pattern_length>0);
if (pattern_length > 0) {
pattern_offset = (pattern_offset + 1) % pattern_length;
}
if (skip_block) {
memcpy(&clear_data[l], &cipher_data[l], size);
} else {
uint8_t aes_output[AES_BLOCK_SIZE];
AES_encrypt(iv, aes_output, &aes_key);
for (size_t n = 0; n < size; n++) {
clear_data[l + n] = aes_output[n + block_offset] ^ cipher_data[l + n];
}
ctr128_inc64(iv);
}
l += size;
block_offset = 0;
}
return OEMCrypto_SUCCESS;
}
// This is a special case of PatternDecryptCTR with no skip pattern. It uses
// more optimized versions of openssl's implementation of AES CTR mode.
OEMCryptoResult SessionContext::DecryptCTR(const uint8_t* key_u8,
const uint8_t* iv,
size_t block_offset,
const uint8_t* cipher_data,
size_t cipher_data_length,
uint8_t* clear_data) {
// Local copy (will be modified).
// Allocated as 64-bit ints to enforce 64-bit alignment for later access as a
// 64-bit value.
uint64_t aes_iv[2];
assert(sizeof(aes_iv) == AES_BLOCK_SIZE);
// The double-cast is needed to comply with strict aliasing rules.
uint8_t* aes_iv_u8 =
reinterpret_cast<uint8_t*>(reinterpret_cast<void*>(aes_iv));
memcpy(aes_iv_u8, &iv[0], AES_BLOCK_SIZE);
// The CENC spec specifies we increment only the low 64 bits of the IV
// counter, and leave the high 64 bits alone. This is different from the
// OpenSSL implementation, which increments the entire 128 bit iv. That is
// why we implement the CTR loop ourselves.
size_t l = 0;
if (block_offset > 0 && l < cipher_data_length) {
// Encrypt the IV.
uint8_t ecount_buf[AES_BLOCK_SIZE];
AES_KEY aes_key;
if (AES_set_encrypt_key(key_u8, AES_BLOCK_SIZE * 8, &aes_key) != 0) {
LOGE("[DecryptCTR(): FAILURE]");
return OEMCrypto_ERROR_DECRYPT_FAILED;
}
AES_encrypt(aes_iv_u8, ecount_buf, &aes_key);
for (int n = block_offset; n < AES_BLOCK_SIZE && l < cipher_data_length;
++n, ++l) {
clear_data[l] = cipher_data[l] ^ ecount_buf[n];
}
ctr128_inc64(aes_iv_u8);
block_offset = 0;
}
uint64_t remaining = cipher_data_length - l;
int out_len = 0;
while (remaining) {
EVP_CIPHER_CTX ctx;
EVP_CIPHER_CTX_init(&ctx);
EVP_CIPHER_CTX_set_padding(&ctx, 0);
if (!EVP_DecryptInit_ex(&ctx, EVP_aes_128_ctr(), NULL, key_u8, aes_iv_u8)) {
LOGE("[DecryptCTR(): EVP_INIT ERROR]");
return OEMCrypto_ERROR_DECRYPT_FAILED;
}
// Test the MSB of the counter portion of the initialization vector. If the
// value is 0xFF the counter is near wrapping. In this case we calculate
// the number of bytes we can safely decrypt before the counter wraps.
uint64_t decrypt_length = 0;
if (aes_iv_u8[8] == 0xFF) {
uint64_t bottom_64_bits = wvcdm::ntohll64(aes_iv[1]);
uint64_t bytes_before_iv_wrap = (~bottom_64_bits + 1) * AES_BLOCK_SIZE;
decrypt_length =
bytes_before_iv_wrap < remaining ? bytes_before_iv_wrap : remaining;
} else {
decrypt_length = remaining;
}
if (!EVP_DecryptUpdate(&ctx, &clear_data[l], &out_len, &cipher_data[l],
decrypt_length)) {
LOGE("[DecryptCTR(): EVP_UPDATE_ERROR]");
return OEMCrypto_ERROR_DECRYPT_FAILED;
}
l += decrypt_length;
remaining = cipher_data_length - l;
int final;
if (!EVP_DecryptFinal_ex(
&ctx, &clear_data[cipher_data_length - remaining], & final)) {
LOGE("[DecryptCTR(): EVP_FINAL_ERROR]");
return OEMCrypto_ERROR_DECRYPT_FAILED;
}
EVP_CIPHER_CTX_cleanup(&ctx);
// If remaining is not zero, reset the iv before the second pass.
if (remaining) {
memcpy(aes_iv_u8, &iv[0], AES_BLOCK_SIZE);
memset(&aes_iv_u8[8], 0, AES_BLOCK_SIZE / 2);
}
}
return OEMCrypto_SUCCESS;
}
void NonceTable::AddNonce(uint32_t nonce) {
int new_slot = -1;
int oldest_slot = -1;
// Flush any nonces that have been checked but not flushed.
// After flush, nonces will be either valid or invalid.
Flush();
for (int i = 0; i < kTableSize; ++i) {
// Increase age of all valid nonces.
if (kNTStateValid == state_[i]) {
++age_[i];
if (-1 == oldest_slot) {
oldest_slot = i;
} else {
if (age_[i] > age_[oldest_slot]) {
oldest_slot = i;
}
}
} else {
if (-1 == new_slot) {
age_[i] = 0;
nonces_[i] = nonce;
state_[i] = kNTStateValid;
new_slot = i;
}
}
}
if (-1 == new_slot) {
// reuse oldest
// assert (oldest_slot != -1)
int i = oldest_slot;
age_[i] = 0;
nonces_[i] = nonce;
state_[i] = kNTStateValid;
}
}
bool NonceTable::CheckNonce(uint32_t nonce) {
for (int i = 0; i < kTableSize; ++i) {
if (kNTStateInvalid != state_[i]) {
if (nonce == nonces_[i]) {
state_[i] = kNTStateFlushPending;
return true;
}
}
}
return false;
}
void NonceTable::Flush() {
for (int i = 0; i < kTableSize; ++i) {
if (kNTStateFlushPending == state_[i]) {
state_[i] = kNTStateInvalid;
}
}
}
} // namespace wvoec_mock