Files
android/libwvdrmengine/oemcrypto/test/oemcrypto_provisioning_test.cpp
Ian Benz 35cf9c2f99 Fix OEMCrypto test issues identified by Coverity
Change-Id: Ic9f4982bf022292d10a0a88f10648a46077ec0cf
2024-02-01 13:40:51 -08:00

1391 lines
60 KiB
C++

// Copyright 2023 Google LLC. All Rights Reserved. This file and proprietary
// source code may only be used and distributed under the Widevine
// License Agreement.
//
#include "oemcrypto_provisioning_test.h"
#include "log.h"
#include "platform.h"
#include "test_sleep.h"
namespace wvoec {
// This test is used to print the device ID to stdout.
TEST_F(OEMCryptoKeyboxTest, NormalGetDeviceId) {
OEMCryptoResult sts;
uint8_t dev_id[128] = {0};
size_t dev_id_len = 128;
sts = OEMCrypto_GetDeviceID(dev_id, &dev_id_len);
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
cout << " NormalGetDeviceId: dev_id = "
<< MaybeHex(dev_id, dev_id_len) << " len = " << dev_id_len << endl;
}
TEST_F(OEMCryptoKeyboxTest, GetDeviceIdShortBuffer) {
OEMCryptoResult sts;
uint8_t dev_id[128];
for (int i = 0; i < 128; ++i) {
dev_id[i] = 0x55;
}
dev_id[127] = '\0';
size_t dev_id_len = 0;
sts = OEMCrypto_GetDeviceID(dev_id, &dev_id_len);
ASSERT_EQ(OEMCrypto_ERROR_SHORT_BUFFER, sts);
// On short buffer error, function should return minimum buffer length
ASSERT_GT(dev_id_len, 0u);
// Should also return short buffer if passed a zero length and a null buffer.
dev_id_len = 0;
sts = OEMCrypto_GetDeviceID(nullptr, &dev_id_len);
ASSERT_EQ(OEMCrypto_ERROR_SHORT_BUFFER, sts);
// On short buffer error, function should return minimum buffer length
ASSERT_GT(dev_id_len, 0u);
}
TEST_F(OEMCryptoKeyboxTest, NormalGetKeyData) {
OEMCryptoResult sts;
uint8_t key_data[256];
size_t key_data_len = sizeof(key_data);
sts = OEMCrypto_GetKeyData(key_data, &key_data_len);
uint32_t* data = reinterpret_cast<uint32_t*>(key_data);
printf(" NormalGetKeyData: system_id = %u = 0x%04X, version=%u\n",
htonl(data[1]), htonl(data[1]), htonl(data[0]));
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
}
TEST_F(OEMCryptoKeyboxTest, GetKeyDataNullPointer) {
OEMCryptoResult sts;
uint8_t key_data[256];
sts = OEMCrypto_GetKeyData(key_data, nullptr);
ASSERT_NE(OEMCrypto_SUCCESS, sts);
}
// This test makes sure the installed keybox is valid. It doesn't really check
// that it is a production keybox. That must be done by an integration test.
TEST_F(OEMCryptoKeyboxTest, ProductionKeyboxValid) {
ASSERT_EQ(OEMCrypto_SUCCESS, OEMCrypto_IsKeyboxValid());
}
// This tests GenerateDerivedKeys with an 8k context.
TEST_F(OEMCryptoKeyboxTest, GenerateDerivedKeysFromKeyboxLargeBuffer) {
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
const size_t max_size = GetResourceValue(kLargeMessageSize);
vector<uint8_t> mac_context(max_size);
vector<uint8_t> enc_context(max_size);
// Stripe the data so the two vectors are not identical, and not all zeroes.
for (size_t i = 0; i < max_size; i++) {
mac_context[i] = i % 0x100;
enc_context[i] = (3 * i) % 0x100;
}
ASSERT_EQ(OEMCrypto_SUCCESS,
OEMCrypto_GenerateDerivedKeys(
s.session_id(), mac_context.data(), mac_context.size(),
enc_context.data(), enc_context.size()));
}
// This verifies that the device really does claim to have a certificate.
// It should be filtered out for devices that have a keybox.
TEST_F(OEMCryptoProv30Test, DeviceClaimsOEMCertificate) {
ASSERT_EQ(OEMCrypto_OEMCertificate, OEMCrypto_GetProvisioningMethod());
}
TEST_F(OEMCryptoProv30Test, GetDeviceId) {
OEMCryptoResult sts;
std::vector<uint8_t> dev_id(128, 0);
size_t dev_id_len = dev_id.size();
sts = OEMCrypto_GetDeviceID(dev_id.data(), &dev_id_len);
if (sts == OEMCrypto_ERROR_SHORT_BUFFER) {
ASSERT_GT(dev_id_len, 0u);
dev_id.resize(dev_id_len);
sts = OEMCrypto_GetDeviceID(dev_id.data(), &dev_id_len);
}
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
dev_id.resize(dev_id_len);
cout << " NormalGetDeviceId: dev_id = " << MaybeHex(dev_id)
<< " len = " << dev_id_len << endl;
}
// The OEM certificate must be valid.
TEST_F(OEMCryptoProv30Test, CertValidAPI15) {
ASSERT_EQ(OEMCrypto_SUCCESS, OEMCrypto_IsKeyboxOrOEMCertValid());
}
TEST_F(OEMCryptoProv30Test, OEMCertValid) {
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
bool kVerify = true;
ASSERT_NO_FATAL_FAILURE(s.LoadOEMCert(kVerify)); // Load and verify.
}
/** This verifies that the OEM Certificate cannot be used with
* GenerateRSASignature.
*/
TEST_F(OEMCryptoProv30Test, OEMCertForbidGenerateRSASignature1) {
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
ASSERT_NO_FATAL_FAILURE(s.LoadOEMCert());
DisallowForbiddenPadding(s.session_id(), kSign_PKCS1_Block1, 80);
}
/** This verifies that the OEM Certificate cannot be used with
* GenerateRSASignature.
*/
TEST_F(OEMCryptoProv30Test, OEMCertForbidGenerateRSASignature2) {
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
ASSERT_NO_FATAL_FAILURE(s.LoadOEMCert());
DisallowForbiddenPadding(s.session_id(), kSign_RSASSA_PSS, 80);
}
// Calling OEMCrypto_GetOEMPublicCertificate should not change the session's
// private key.
TEST_F(OEMCryptoProv30Test, GetCertOnlyAPI16) {
if (wrapped_drm_key_.size() == 0) {
// If we don't have a wrapped key yet, create one.
// This wrapped key will be shared by all sessions in the test.
ASSERT_NO_FATAL_FAILURE(CreateWrappedDRMKey());
}
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
// Install the DRM Cert's RSA key.
ASSERT_NO_FATAL_FAILURE(s.LoadWrappedRsaDrmKey(wrapped_drm_key_));
ASSERT_NO_FATAL_FAILURE(s.SetTestRsaPublicKey());
// Request the OEM Cert. -- This should NOT load the OEM Private key.
vector<uint8_t> public_cert;
size_t public_cert_length = 0;
ASSERT_EQ(OEMCrypto_ERROR_SHORT_BUFFER,
OEMCrypto_GetOEMPublicCertificate(nullptr, &public_cert_length));
ASSERT_LT(0u, public_cert_length);
public_cert.resize(public_cert_length);
ASSERT_EQ(OEMCrypto_SUCCESS, OEMCrypto_GetOEMPublicCertificate(
public_cert.data(), &public_cert_length));
// Derive keys from the session key -- this should use the DRM Cert's key.
// It should NOT use the OEM Private key because that key should not have
// been loaded.
ASSERT_NO_FATAL_FAILURE(s.GenerateDerivedKeysFromSessionKey());
// Now fill a message and try to load it.
LicenseRoundTrip license_messages(&s);
license_messages.set_control(0);
ASSERT_NO_FATAL_FAILURE(license_messages.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_SUCCESS, license_messages.LoadResponse());
}
/** This verifies that the OEM Certificate cannot be used with
* GenerateRSASignature.
*/
TEST_F(OEMCryptoProv40Test, OEMCertForbidGenerateRSASignature1) {
// Create an OEM Cert and save it for later.
Session s1;
ASSERT_NO_FATAL_FAILURE(s1.open());
ASSERT_NO_FATAL_FAILURE(CreateProv4OEMKey(&s1));
ASSERT_EQ(s1.IsPublicKeySet(), true);
s1.close();
Session s2;
ASSERT_NO_FATAL_FAILURE(s2.open());
ASSERT_EQ(OEMCrypto_SUCCESS,
OEMCrypto_InstallOemPrivateKey(
s2.session_id(), oem_key_type_,
reinterpret_cast<const uint8_t*>(wrapped_oem_key_.data()),
wrapped_oem_key_.size()));
DisallowForbiddenPadding(s2.session_id(), kSign_PKCS1_Block1, 80);
}
/** This verifies that the OEM Certificate cannot be used with
* GenerateRSASignature.
*/
TEST_F(OEMCryptoProv40Test, OEMCertForbidGenerateRSASignature2) {
// Create an OEM Cert and save it for later.
Session s1;
ASSERT_NO_FATAL_FAILURE(s1.open());
ASSERT_NO_FATAL_FAILURE(CreateProv4OEMKey(&s1));
ASSERT_EQ(s1.IsPublicKeySet(), true);
s1.close();
Session s2;
ASSERT_NO_FATAL_FAILURE(s2.open());
ASSERT_EQ(OEMCrypto_SUCCESS,
OEMCrypto_InstallOemPrivateKey(
s2.session_id(), oem_key_type_,
reinterpret_cast<const uint8_t*>(wrapped_oem_key_.data()),
wrapped_oem_key_.size()));
DisallowForbiddenPadding(s2.session_id(), kSign_RSASSA_PSS, 80);
}
// This verifies that the device really does claim to have BCC.
// It should be filtered out for devices that have a keybox or factory OEM
// cert.
TEST_F(OEMCryptoProv40Test, DeviceClaimsBootCertificateChain) {
ASSERT_EQ(OEMCrypto_GetProvisioningMethod(), OEMCrypto_BootCertificateChain);
}
// Verifies that short buffer error returns when the buffer is short.
TEST_F(OEMCryptoProv40Test, GetBootCertificateChainShortBuffer) {
std::vector<uint8_t> bcc;
size_t bcc_size = 0;
std::vector<uint8_t> additional_signature;
size_t additional_signature_size = 0;
ASSERT_EQ(OEMCrypto_GetBootCertificateChain(bcc.data(), &bcc_size,
additional_signature.data(),
&additional_signature_size),
OEMCrypto_ERROR_SHORT_BUFFER);
ASSERT_NE(bcc_size, 0uL);
}
// Verifies BCC can be successfully returned.
TEST_F(OEMCryptoProv40Test, GetBootCertificateChainSuccess) {
std::vector<uint8_t> bcc;
size_t bcc_size = 0;
std::vector<uint8_t> additional_signature;
size_t additional_signature_size = 0;
ASSERT_EQ(OEMCrypto_GetBootCertificateChain(bcc.data(), &bcc_size,
additional_signature.data(),
&additional_signature_size),
OEMCrypto_ERROR_SHORT_BUFFER);
bcc.resize(bcc_size);
additional_signature.resize(additional_signature_size);
ASSERT_EQ(OEMCrypto_GetBootCertificateChain(bcc.data(), &bcc_size,
additional_signature.data(),
&additional_signature_size),
OEMCrypto_SUCCESS);
}
// Verifies that short buffer error returns when the buffer is short.
TEST_F(OEMCryptoProv40Test, GenerateCertificateKeyPairShortBuffer) {
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
std::vector<uint8_t> public_key;
size_t public_key_size = 0;
std::vector<uint8_t> public_key_signature;
size_t public_key_signature_size = 0;
std::vector<uint8_t> wrapped_private_key;
size_t wrapped_private_key_size = 0;
OEMCrypto_PrivateKeyType key_type;
ASSERT_EQ(
OEMCrypto_GenerateCertificateKeyPair(
s.session_id(), public_key.data(), &public_key_size,
public_key_signature.data(), &public_key_signature_size,
wrapped_private_key.data(), &wrapped_private_key_size, &key_type),
OEMCrypto_ERROR_SHORT_BUFFER);
ASSERT_NE(public_key_size, 0uL);
ASSERT_NE(public_key_signature_size, 0uL);
ASSERT_NE(wrapped_private_key_size, 0uL);
}
// Verifies a pair of key can be successfully returned.
TEST_F(OEMCryptoProv40Test, GenerateCertificateKeyPairSuccess) {
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
std::vector<uint8_t> public_key;
size_t public_key_size = 0;
std::vector<uint8_t> public_key_signature;
size_t public_key_signature_size = 0;
std::vector<uint8_t> wrapped_private_key;
size_t wrapped_private_key_size = 0;
OEMCrypto_PrivateKeyType key_type;
ASSERT_EQ(
OEMCrypto_GenerateCertificateKeyPair(
s.session_id(), public_key.data(), &public_key_size,
public_key_signature.data(), &public_key_signature_size,
wrapped_private_key.data(), &wrapped_private_key_size, &key_type),
OEMCrypto_ERROR_SHORT_BUFFER);
public_key.resize(public_key_size);
public_key_signature.resize(public_key_signature_size);
wrapped_private_key.resize(wrapped_private_key_size);
ASSERT_EQ(
OEMCrypto_GenerateCertificateKeyPair(
s.session_id(), public_key.data(), &public_key_size,
public_key_signature.data(), &public_key_signature_size,
wrapped_private_key.data(), &wrapped_private_key_size, &key_type),
OEMCrypto_SUCCESS);
public_key.resize(public_key_size);
public_key_signature.resize(public_key_signature_size);
wrapped_private_key.resize(wrapped_private_key_size);
// Parse the public key generated to make sure it is correctly formatted.
ASSERT_NO_FATAL_FAILURE(s.SetPublicKeyFromSubjectPublicKey(
key_type, public_key.data(), public_key_size));
}
// Verifies the generated key pairs are different on each call.
TEST_F(OEMCryptoProv40Test, GenerateCertificateKeyPairsAreDifferent) {
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
// Large buffer to make sure it is large enough.
size_t public_key_size1 = 10000;
std::vector<uint8_t> public_key1(public_key_size1);
size_t public_key_signature_size1 = 10000;
std::vector<uint8_t> public_key_signature1(public_key_signature_size1);
size_t wrapped_private_key_size1 = 10000;
std::vector<uint8_t> wrapped_private_key1(wrapped_private_key_size1);
OEMCrypto_PrivateKeyType key_type1;
ASSERT_EQ(
OEMCrypto_GenerateCertificateKeyPair(
s.session_id(), public_key1.data(), &public_key_size1,
public_key_signature1.data(), &public_key_signature_size1,
wrapped_private_key1.data(), &wrapped_private_key_size1, &key_type1),
OEMCrypto_SUCCESS);
EXPECT_NE(public_key_size1, 0UL);
EXPECT_NE(public_key_signature_size1, 0UL);
EXPECT_NE(wrapped_private_key_size1, 0UL);
public_key1.resize(public_key_size1);
public_key_signature1.resize(public_key_signature_size1);
wrapped_private_key1.resize(wrapped_private_key_size1);
size_t public_key_size2 = 10000;
std::vector<uint8_t> public_key2(public_key_size2);
size_t public_key_signature_size2 = 10000;
std::vector<uint8_t> public_key_signature2(public_key_signature_size2);
size_t wrapped_private_key_size2 = 10000;
std::vector<uint8_t> wrapped_private_key2(wrapped_private_key_size2);
OEMCrypto_PrivateKeyType key_type2;
ASSERT_EQ(
OEMCrypto_GenerateCertificateKeyPair(
s.session_id(), public_key2.data(), &public_key_size2,
public_key_signature2.data(), &public_key_signature_size2,
wrapped_private_key2.data(), &wrapped_private_key_size2, &key_type2),
OEMCrypto_SUCCESS);
EXPECT_NE(public_key_size2, 0UL);
EXPECT_NE(public_key_signature_size2, 0UL);
EXPECT_NE(wrapped_private_key_size2, 0UL);
public_key2.resize(public_key_size2);
public_key_signature2.resize(public_key_signature_size2);
wrapped_private_key2.resize(wrapped_private_key_size2);
EXPECT_NE(public_key1, public_key2);
EXPECT_NE(public_key_signature1, public_key_signature2);
EXPECT_NE(wrapped_private_key1, wrapped_private_key2);
}
TEST_F(OEMCryptoProv40Test, GetDeviceInformationAPI18) {
std::vector<uint8_t> device_info;
size_t device_info_length = 0;
OEMCryptoResult sts =
OEMCrypto_GetDeviceInformation(device_info.data(), &device_info_length);
ASSERT_EQ(sts, OEMCrypto_ERROR_SHORT_BUFFER);
ASSERT_NE(device_info_length, 0uL);
device_info.resize(device_info_length);
ASSERT_EQ(
OEMCrypto_GetDeviceInformation(device_info.data(), &device_info_length),
OEMCrypto_SUCCESS);
EXPECT_NE(device_info_length, 0uL);
}
TEST_F(OEMCryptoProv40Test, GetDeviceSignedCsrPayloadAPI18) {
std::vector<uint8_t> challenge(64, 0xaa);
// TODO: add cppbor support for oemcrypto tests for all targets. Before that,
// use hex values which are equivalent of the commented cppbor statement.
// std::vector<uint8_t> device_info = cppbor::Map()
// .add("manufacturer", "google")
// .add("fused", 0)
// .add("other", "ignored")
// .canonicalize()
// .encode();
//
std::vector<uint8_t> device_info = {
0xa3, 0x65, 0x66, 0x75, 0x73, 0x65, 0x64, 0x0, 0x65, 0x6f, 0x74,
0x68, 0x65, 0x72, 0x67, 0x69, 0x67, 0x6e, 0x6f, 0x72, 0x65, 0x64,
0x6c, 0x6d, 0x61, 0x6e, 0x75, 0x66, 0x61, 0x63, 0x74, 0x75, 0x72,
0x65, 0x72, 0x66, 0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65};
std::vector<uint8_t> signed_csr_payload;
size_t signed_csr_payload_length = 0;
OEMCryptoResult sts = OEMCrypto_GetDeviceSignedCsrPayload(
challenge.data(), challenge.size(), device_info.data(),
device_info.size(), signed_csr_payload.data(),
&signed_csr_payload_length);
ASSERT_EQ(sts, OEMCrypto_ERROR_SHORT_BUFFER);
ASSERT_NE(signed_csr_payload_length, 0uL);
signed_csr_payload.resize(signed_csr_payload_length);
ASSERT_EQ(OEMCrypto_GetDeviceSignedCsrPayload(
challenge.data(), challenge.size(), device_info.data(),
device_info.size(), signed_csr_payload.data(),
&signed_csr_payload_length),
OEMCrypto_SUCCESS);
EXPECT_NE(signed_csr_payload_length, 0uL);
}
TEST_F(OEMCryptoProv40Test, GetDeviceSignedCsrPayloadInvalid) {
std::vector<uint8_t> signed_csr_payload;
size_t signed_csr_payload_length = 0;
std::vector<uint8_t> challenge(64, 0xaa);
std::vector<uint8_t> device_info = {
0xa3, 0x65, 0x66, 0x75, 0x73, 0x65, 0x64, 0x0, 0x65, 0x6f, 0x74,
0x68, 0x65, 0x72, 0x67, 0x69, 0x67, 0x6e, 0x6f, 0x72, 0x65, 0x64,
0x6c, 0x6d, 0x61, 0x6e, 0x75, 0x66, 0x61, 0x63, 0x74, 0x75, 0x72,
0x65, 0x72, 0x66, 0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65};
std::vector<uint8_t> challenge_empty;
OEMCryptoResult sts = OEMCrypto_GetDeviceSignedCsrPayload(
challenge_empty.data(), challenge_empty.size(), device_info.data(),
device_info.size(), signed_csr_payload.data(),
&signed_csr_payload_length);
if (sts == OEMCrypto_ERROR_NOT_IMPLEMENTED) return;
ASSERT_EQ(sts, OEMCrypto_ERROR_INVALID_CONTEXT);
// Oversized challenge
std::vector<uint8_t> challenge_long(65, 0xaa);
sts = OEMCrypto_GetDeviceSignedCsrPayload(
challenge_long.data(), challenge_long.size(), device_info.data(),
device_info.size(), signed_csr_payload.data(),
&signed_csr_payload_length);
ASSERT_EQ(sts, OEMCrypto_ERROR_INVALID_CONTEXT);
std::vector<uint8_t> device_empty;
sts = OEMCrypto_GetDeviceSignedCsrPayload(
challenge.data(), challenge.size(), device_empty.data(),
device_empty.size(), signed_csr_payload.data(),
&signed_csr_payload_length);
ASSERT_EQ(sts, OEMCrypto_ERROR_INVALID_CONTEXT);
}
// Verifies that an OEM private key can be installed.
TEST_F(OEMCryptoProv40Test, InstallOemPrivateKeySuccess) {
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
// First generate a key pair.
// Large buffer to make sure it is large enough.
size_t public_key_size = 10000;
std::vector<uint8_t> public_key(public_key_size);
size_t public_key_signature_size = 10000;
std::vector<uint8_t> public_key_signature(public_key_signature_size);
size_t wrapped_private_key_size = 10000;
std::vector<uint8_t> wrapped_private_key(wrapped_private_key_size);
OEMCrypto_PrivateKeyType key_type;
ASSERT_EQ(
OEMCrypto_GenerateCertificateKeyPair(
s.session_id(), public_key.data(), &public_key_size,
public_key_signature.data(), &public_key_signature_size,
wrapped_private_key.data(), &wrapped_private_key_size, &key_type),
OEMCrypto_SUCCESS);
public_key.resize(public_key_size);
public_key_signature.resize(public_key_signature_size);
wrapped_private_key.resize(wrapped_private_key_size);
// Install the generated private key.
ASSERT_EQ(OEMCrypto_InstallOemPrivateKey(s.session_id(), key_type,
wrapped_private_key.data(),
wrapped_private_key_size),
OEMCrypto_SUCCESS);
}
// If data is empty or random, the API should return non-success status.
TEST_F(OEMCryptoProv40Test, InstallOemPrivateKeyInvalidDataFail) {
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
// Empty key fails.
std::vector<uint8_t> wrapped_private_key;
OEMCrypto_PrivateKeyType key_type = OEMCrypto_RSA_Private_Key;
ASSERT_NE(OEMCrypto_InstallOemPrivateKey(s.session_id(), key_type,
wrapped_private_key.data(),
wrapped_private_key.size()),
OEMCrypto_SUCCESS);
// Random key data fails.
wrapped_private_key = {1, 2, 3};
ASSERT_NE(OEMCrypto_InstallOemPrivateKey(s.session_id(), key_type,
wrapped_private_key.data(),
wrapped_private_key.size()),
OEMCrypto_SUCCESS);
}
// Verifies that an OEM private key can be installed, and used by
// GenerateCertificateKeyPair call.
TEST_F(OEMCryptoProv40Test, InstallOemPrivateKeyCanBeUsed) {
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
// First generate a key pair.
size_t public_key_size1 = 10000;
std::vector<uint8_t> public_key1(public_key_size1);
size_t public_key_signature_size1 = 10000;
std::vector<uint8_t> public_key_signature1(public_key_signature_size1);
size_t wrapped_private_key_size1 = 10000;
std::vector<uint8_t> wrapped_private_key1(wrapped_private_key_size1);
OEMCrypto_PrivateKeyType key_type1;
ASSERT_EQ(
OEMCrypto_GenerateCertificateKeyPair(
s.session_id(), public_key1.data(), &public_key_size1,
public_key_signature1.data(), &public_key_signature_size1,
wrapped_private_key1.data(), &wrapped_private_key_size1, &key_type1),
OEMCrypto_SUCCESS);
EXPECT_NE(public_key_size1, 0UL);
EXPECT_NE(public_key_signature_size1, 0UL);
EXPECT_NE(wrapped_private_key_size1, 0UL);
public_key1.resize(public_key_size1);
public_key_signature1.resize(public_key_signature_size1);
wrapped_private_key1.resize(wrapped_private_key_size1);
// Install the generated private key.
ASSERT_EQ(OEMCrypto_InstallOemPrivateKey(s.session_id(), key_type1,
wrapped_private_key1.data(),
wrapped_private_key_size1),
OEMCrypto_SUCCESS);
// Now calling GenerateCertificateKeyPair should use wrapped_private_key to
// sign the newly generated public key.
size_t public_key_size2 = 10000;
std::vector<uint8_t> public_key2(public_key_size2);
size_t public_key_signature_size2 = 10000;
std::vector<uint8_t> public_key_signature2(public_key_signature_size2);
size_t wrapped_private_key_size2 = 10000;
std::vector<uint8_t> wrapped_private_key2(wrapped_private_key_size2);
OEMCrypto_PrivateKeyType key_type2;
ASSERT_EQ(
OEMCrypto_GenerateCertificateKeyPair(
s.session_id(), public_key2.data(), &public_key_size2,
public_key_signature2.data(), &public_key_signature_size2,
wrapped_private_key2.data(), &wrapped_private_key_size2, &key_type2),
OEMCrypto_SUCCESS);
EXPECT_NE(public_key_size2, 0UL);
EXPECT_NE(public_key_signature_size2, 0UL);
EXPECT_NE(wrapped_private_key_size2, 0UL);
public_key2.resize(public_key_size2);
public_key_signature2.resize(public_key_signature_size2);
wrapped_private_key2.resize(wrapped_private_key_size2);
// Verify public_key_signature2 with public_key1.
if (key_type2 == OEMCrypto_PrivateKeyType::OEMCrypto_RSA_Private_Key) {
ASSERT_NO_FATAL_FAILURE(s.SetRsaPublicKeyFromSubjectPublicKey(
public_key1.data(), public_key1.size()));
ASSERT_NO_FATAL_FAILURE(
s.VerifyRsaSignature(public_key2, public_key_signature2.data(),
public_key_signature2.size(), kSign_RSASSA_PSS));
} else if (key_type2 == OEMCrypto_PrivateKeyType::OEMCrypto_ECC_Private_Key) {
ASSERT_NO_FATAL_FAILURE(s.SetEccPublicKeyFromSubjectPublicKey(
public_key1.data(), public_key1.size()));
ASSERT_NO_FATAL_FAILURE(s.VerifyEccSignature(public_key2,
public_key_signature2.data(),
public_key_signature2.size()));
}
}
/** Verify that the private key from an OEM Cert cannot be loaded as a DRM
* cert.
*/
TEST_F(OEMCryptoProv40Test, OEMPrivateKeyCannotBeDRMKey) {
// Create an OEM Cert and save it for later.
Session s1;
ASSERT_NO_FATAL_FAILURE(s1.open());
ASSERT_NO_FATAL_FAILURE(CreateProv4OEMKey(&s1));
ASSERT_EQ(s1.IsPublicKeySet(), true);
s1.close();
const std::vector<uint8_t> wrapped_oem_key1 = wrapped_oem_key_;
// Now create a new OEM cert, load the second key, and try to load key1
// as the DRM key.
Session s2;
ASSERT_NO_FATAL_FAILURE(s2.open());
ASSERT_NO_FATAL_FAILURE(CreateProv4OEMKey(&s2));
s2.close();
// Load the current key as the OEM key in session 3.
Session s3;
ASSERT_NO_FATAL_FAILURE(s3.open());
// Now try to load key 1 as a DRM key. That should fail.
ASSERT_EQ(OEMCrypto_ERROR_INVALID_KEY,
OEMCrypto_LoadDRMPrivateKey(s3.session_id(), oem_key_type_,
wrapped_oem_key1.data(),
wrapped_oem_key1.size()));
}
/** The private key for a DRM Cert cannot be loaded as an OEM Certificate. */
TEST_F(OEMCryptoProv40Test, DRMPrivateKeyCannotBeOEMKey) {
// Create a DRM cert and save it for later.
Session s1;
// Make sure the drm private key exists.
ASSERT_NO_FATAL_FAILURE(s1.open());
ASSERT_NO_FATAL_FAILURE(InstallTestDrmKey(&s1));
ASSERT_NE(wrapped_drm_key_.size(), 0u);
// Now try to load the drm private key as an OEM key.
Session s2;
ASSERT_NO_FATAL_FAILURE(s2.open());
ASSERT_EQ(OEMCrypto_ERROR_INVALID_KEY,
OEMCrypto_InstallOemPrivateKey(
s2.session_id(), drm_key_type_,
reinterpret_cast<const uint8_t*>(wrapped_drm_key_.data()),
wrapped_drm_key_.size()));
}
TEST_F(OEMCryptoProv40Test, GetDeviceId) {
OEMCryptoResult sts;
std::vector<uint8_t> dev_id;
size_t dev_id_len = dev_id.size();
sts = OEMCrypto_GetDeviceID(dev_id.data(), &dev_id_len);
if (sts == OEMCrypto_ERROR_SHORT_BUFFER) {
ASSERT_GT(dev_id_len, 0u);
dev_id.resize(dev_id_len);
sts = OEMCrypto_GetDeviceID(dev_id.data(), &dev_id_len);
}
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
dev_id.resize(dev_id_len);
cout << " NormalGetDeviceId: dev_id = " << MaybeHex(dev_id)
<< " len = " << dev_id_len << endl;
// Device id should be stable. Query again.
std::vector<uint8_t> dev_id2(dev_id_len);
sts = OEMCrypto_GetDeviceID(dev_id2.data(), &dev_id_len);
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
ASSERT_EQ(dev_id2, dev_id);
}
// Verifies provisioning stage 1 OEM cert provisioning round trip works
TEST_F(OEMCryptoProv40Test, ProvisionOemCert) {
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
ASSERT_NO_FATAL_FAILURE(CreateProv4OEMKey(&s));
ASSERT_EQ(s.IsPublicKeySet(), true);
}
// Verifies both provisioning stages OEM and DRM cert provisioning round trip
// works
TEST_F(OEMCryptoProv40Test, ProvisionDrmCert) {
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
ASSERT_NO_FATAL_FAILURE(InstallTestDrmKey(&s));
ASSERT_EQ(s.IsPublicKeySet(), true);
}
TEST_P(OEMCryptoProv40CastTest, ProvisionCastWorks) {
// Generate an OEM key first, to load into next session
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
size_t public_key_size = 10000;
std::vector<uint8_t> public_key(public_key_size);
size_t public_key_signature_size = 10000;
std::vector<uint8_t> public_key_signature(public_key_signature_size);
size_t wrapped_private_key_size = 10000;
std::vector<uint8_t> wrapped_private_key(wrapped_private_key_size);
OEMCrypto_PrivateKeyType key_type;
ASSERT_EQ(
OEMCrypto_GenerateCertificateKeyPair(
s.session_id(), public_key.data(), &public_key_size,
public_key_signature.data(), &public_key_signature_size,
wrapped_private_key.data(), &wrapped_private_key_size, &key_type),
OEMCrypto_SUCCESS);
public_key.resize(public_key_size);
public_key_signature.resize(public_key_signature_size);
wrapped_private_key.resize(wrapped_private_key_size);
ASSERT_NO_FATAL_FAILURE(s.close());
// Install OEM key and get cast RSA
Session s1;
ASSERT_NO_FATAL_FAILURE(s1.open());
ASSERT_EQ(OEMCrypto_InstallOemPrivateKey(s1.session_id(), key_type,
wrapped_private_key.data(),
wrapped_private_key_size),
OEMCrypto_SUCCESS);
ASSERT_NO_FATAL_FAILURE(CreateProv4CastKey(&s1, GetParam()));
}
INSTANTIATE_TEST_SUITE_P(Prov4CastProvisioningBasic, OEMCryptoProv40CastTest,
testing::Values(true, false));
// Verify that you cannot use GenerateRSASignature with a normal DRM Cert.
// that function needs a cast cert.
TEST_F(OEMCryptoLoadsCertificate, ForbidRSASignatureForDRMKey1) {
DisallowForbiddenPadding(session_.session_id(), kSign_RSASSA_PSS, 80);
}
TEST_F(OEMCryptoLoadsCertificate, ForbidRSASignatureForDRMKey2) {
DisallowForbiddenPadding(session_.session_id(), kSign_PKCS1_Block1, 80);
}
TEST_F(OEMCryptoLoadsCertificate, PrepAndSignLicenseRequestCounterAPI18) {
// TODO(b/197141970): Need to revisit OEMCryptoLoadsCert* tests for
// provisioning 4. Disabled here temporarily.
if (global_features.provisioning_method == OEMCrypto_BootCertificateChain) {
GTEST_SKIP() << "Test for non Prov 4.0 devices only.";
}
ASSERT_NO_FATAL_FAILURE(CreateWrappedDRMKey());
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
ASSERT_NO_FATAL_FAILURE(s.LoadWrappedRsaDrmKey(wrapped_drm_key_));
s.GenerateNonce();
size_t core_message_length = 100;
std::vector<uint8_t> message(128, 0);
std::vector<uint8_t> signature(256, 0);
size_t signature_length = signature.size();
OEMCryptoResult result = OEMCrypto_PrepAndSignLicenseRequest(
s.session_id(), message.data(), message.size(), &core_message_length,
signature.data(), &signature_length);
ASSERT_EQ(OEMCrypto_SUCCESS, result);
}
// This test verifies that we can create a wrapped RSA key, and then reload it.
TEST_F(OEMCryptoLoadsCertificate, LoadRSASessionKey) {
// TODO(b/197141970): Need to revisit OEMCryptoLoadsCert* tests for
// provisioning 4. Disabled here temporarily.
if (global_features.provisioning_method == OEMCrypto_BootCertificateChain) {
GTEST_SKIP() << "Test for non Prov 4.0 devices only.";
}
ASSERT_NO_FATAL_FAILURE(CreateWrappedDRMKey());
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
ASSERT_NO_FATAL_FAILURE(s.LoadWrappedRsaDrmKey(wrapped_drm_key_));
}
TEST_F(OEMCryptoLoadsCertificate, SignProvisioningRequest) {
// TODO(b/197141970): Need to revisit OEMCryptoLoadsCert* tests for
// provisioning 4. Disabled here temporarily.
if (global_features.provisioning_method == OEMCrypto_BootCertificateChain) {
GTEST_SKIP() << "Test for non Prov 4.0 devices only.";
}
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
if (global_features.provisioning_method == OEMCrypto_OEMCertificate) {
s.LoadOEMCert(true);
} else {
EXPECT_EQ(global_features.provisioning_method, OEMCrypto_Keybox);
s.GenerateDerivedKeysFromKeybox(keybox_);
}
ProvisioningRoundTrip provisioning_messages(&s, encoded_rsa_key_);
ASSERT_NO_FATAL_FAILURE(provisioning_messages.SignAndVerifyRequest());
}
// This tests a large message size. The size is larger than we required in v15.
TEST_F(OEMCryptoLoadsCertificate, SignLargeProvisioningRequestAPI16) {
// TODO(b/197141970): Need to revisit OEMCryptoLoadsCert* tests for
// provisioning 4. Disabled here temporarily.
if (global_features.provisioning_method == OEMCrypto_BootCertificateChain) {
GTEST_SKIP() << "Test for non Prov 4.0 devices only.";
}
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
if (global_features.provisioning_method == OEMCrypto_OEMCertificate) {
s.LoadOEMCert(true);
} else {
EXPECT_EQ(global_features.provisioning_method, OEMCrypto_Keybox);
s.GenerateDerivedKeysFromKeybox(keybox_);
}
ProvisioningRoundTrip provisioning_messages(&s, encoded_rsa_key_);
const size_t max_size = GetResourceValue(kLargeMessageSize);
provisioning_messages.set_message_size(max_size);
ASSERT_NO_FATAL_FAILURE(provisioning_messages.SignAndVerifyRequest());
}
// This creates a wrapped RSA key, and then does the sanity check that the
// unencrypted key is not found in the wrapped key. The wrapped key should be
// encrypted.
TEST_F(OEMCryptoLoadsCertificate, CertificateProvision) {
// TODO(b/197141970): Need to revisit OEMCryptoLoadsCert* tests for
// provisioning 4. Disabled here temporarily.
if (global_features.provisioning_method == OEMCrypto_BootCertificateChain) {
GTEST_SKIP() << "Test for non Prov 4.0 devices only.";
}
Session s;
ProvisioningRoundTrip provisioning_messages(&s, encoded_rsa_key_);
provisioning_messages.PrepareSession(keybox_);
ASSERT_NO_FATAL_FAILURE(provisioning_messages.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(provisioning_messages.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(provisioning_messages.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_SUCCESS, provisioning_messages.LoadResponse());
// We should not be able to find the rsa key in the wrapped key. It should
// be encrypted.
EXPECT_EQ(nullptr, find(provisioning_messages.wrapped_rsa_key(),
provisioning_messages.encoded_rsa_key()));
}
// Verify that RewrapDeviceRSAKey checks pointers are within the provisioning
// message.
TEST_F(OEMCryptoLoadsCertificate, CertificateProvisionBadRange1_API16) {
// TODO(b/197141970): Need to revisit OEMCryptoLoadsCert* tests for
// provisioning 4. Disabled here temporarily.
if (global_features.provisioning_method == OEMCrypto_BootCertificateChain) {
GTEST_SKIP() << "Test for non Prov 4.0 devices only.";
}
Session s;
ProvisioningRoundTrip provisioning_messages(&s, encoded_rsa_key_);
provisioning_messages.PrepareSession(keybox_);
ASSERT_NO_FATAL_FAILURE(provisioning_messages.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(provisioning_messages.CreateDefaultResponse());
// Encrypt and sign once, so that we can use the size of the response.
ASSERT_NO_FATAL_FAILURE(provisioning_messages.EncryptAndSignResponse());
provisioning_messages.core_response().enc_private_key.offset =
provisioning_messages.encrypted_response_buffer().size() + 1;
ASSERT_NO_FATAL_FAILURE(provisioning_messages.EncryptAndSignResponse());
ASSERT_NE(OEMCrypto_SUCCESS, provisioning_messages.LoadResponse());
provisioning_messages.VerifyLoadFailed();
}
// Verify that RewrapDeviceRSAKey checks pointers are within the provisioning
// message.
TEST_F(OEMCryptoLoadsCertificate, CertificateProvisionBadRange2_API16) {
// TODO(b/197141970): Need to revisit OEMCryptoLoadsCert* tests for
// provisioning 4. Disabled here temporarily.
if (global_features.provisioning_method == OEMCrypto_BootCertificateChain) {
GTEST_SKIP() << "Test for non Prov 4.0 devices only.";
}
Session s;
ProvisioningRoundTrip provisioning_messages(&s, encoded_rsa_key_);
provisioning_messages.PrepareSession(keybox_);
ASSERT_NO_FATAL_FAILURE(provisioning_messages.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(provisioning_messages.CreateDefaultResponse());
// Encrypt and sign once, so that we can use the size of the response.
ASSERT_NO_FATAL_FAILURE(provisioning_messages.EncryptAndSignResponse());
provisioning_messages.core_response().enc_private_key_iv.offset =
provisioning_messages.encrypted_response_buffer().size() + 1;
ASSERT_NO_FATAL_FAILURE(provisioning_messages.EncryptAndSignResponse());
ASSERT_NE(OEMCrypto_SUCCESS, provisioning_messages.LoadResponse());
provisioning_messages.VerifyLoadFailed();
}
// Verify that RewrapDeviceRSAKey checks pointers are within the provisioning
// message.
TEST_F(OEMCryptoLoadsCertificate, CertificateProvisionBadRange3_API16) {
// TODO(b/197141970): Need to revisit OEMCryptoLoadsCert* tests for
// provisioning 4. Disabled here temporarily.
if (global_features.provisioning_method == OEMCrypto_BootCertificateChain) {
GTEST_SKIP() << "Test for non Prov 4.0 devices only.";
}
Session s;
ProvisioningRoundTrip provisioning_messages(&s, encoded_rsa_key_);
provisioning_messages.PrepareSession(keybox_);
ASSERT_NO_FATAL_FAILURE(provisioning_messages.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(provisioning_messages.CreateDefaultResponse());
// Encrypt and sign once, so that we can use the size of the response.
ASSERT_NO_FATAL_FAILURE(provisioning_messages.EncryptAndSignResponse());
// If the offset is before the end, but the offset+length is bigger, then
// the message should be rejected.
provisioning_messages.core_response().enc_private_key.offset =
provisioning_messages.encrypted_response_buffer().size() - 5;
ASSERT_NO_FATAL_FAILURE(provisioning_messages.EncryptAndSignResponse());
ASSERT_NE(OEMCrypto_SUCCESS, provisioning_messages.LoadResponse());
provisioning_messages.VerifyLoadFailed();
}
// Verify that RewrapDeviceRSAKey checks pointers are within the provisioning
// message.
TEST_F(OEMCryptoLoadsCertificate, CertificateProvisionBadRange4_API16) {
// TODO(b/197141970): Need to revisit OEMCryptoLoadsCert* tests for
// provisioning 4. Disabled here temporarily.
if (global_features.provisioning_method == OEMCrypto_BootCertificateChain) {
GTEST_SKIP() << "Test for non Prov 4.0 devices only.";
}
Session s;
ProvisioningRoundTrip provisioning_messages(&s, encoded_rsa_key_);
provisioning_messages.PrepareSession(keybox_);
ASSERT_NO_FATAL_FAILURE(provisioning_messages.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(provisioning_messages.CreateDefaultResponse());
// Encrypt and sign once, so that we can use the size of the response.
ASSERT_NO_FATAL_FAILURE(provisioning_messages.EncryptAndSignResponse());
// If the offset is before the end, but the offset+length is bigger, then
// the message should be rejected.
provisioning_messages.core_response().enc_private_key_iv.offset =
provisioning_messages.encrypted_response_buffer().size() - 5;
ASSERT_NO_FATAL_FAILURE(provisioning_messages.EncryptAndSignResponse());
ASSERT_NE(OEMCrypto_SUCCESS, provisioning_messages.LoadResponse());
provisioning_messages.VerifyLoadFailed();
}
// Verify that RewrapDeviceRSAKey checks pointers are within the provisioning
// message.
TEST_F(OEMCryptoLoadsCertificate, CertificateProvisionBadRange5Prov30_API16) {
// TODO(b/197141970): Need to revisit OEMCryptoLoadsCert* tests for
// provisioning 4. Disabled here temporarily.
if (global_features.provisioning_method == OEMCrypto_BootCertificateChain) {
GTEST_SKIP() << "Test for non Prov 4.0 devices only.";
}
if (global_features.provisioning_method != OEMCrypto_OEMCertificate) {
GTEST_SKIP() << "Test for Prov 3.0 devices only.";
}
Session s;
ProvisioningRoundTrip provisioning_messages(&s, encoded_rsa_key_);
provisioning_messages.PrepareSession(keybox_);
ASSERT_NO_FATAL_FAILURE(provisioning_messages.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(provisioning_messages.CreateDefaultResponse());
// Encrypt and sign once, so that we can use the size of the response.
ASSERT_NO_FATAL_FAILURE(provisioning_messages.EncryptAndSignResponse());
// If the offset is before the end, but the offset+length is bigger, then
// the message should be rejected.
provisioning_messages.core_response().encrypted_message_key.offset =
provisioning_messages.encrypted_response_buffer().size() + 1;
ASSERT_NO_FATAL_FAILURE(provisioning_messages.EncryptAndSignResponse());
ASSERT_NE(OEMCrypto_SUCCESS, provisioning_messages.LoadResponse());
provisioning_messages.VerifyLoadFailed();
}
// Test that RewrapDeviceRSAKey verifies the message signature.
// TODO(b/144186970): This test should also run on Prov 3.0 devices.
TEST_F(OEMCryptoLoadsCertificate,
CertificateProvisionBadSignatureKeyboxTestAPI16) {
if (global_features.provisioning_method != OEMCrypto_Keybox) {
GTEST_SKIP() << "Test for Prov 2.0 devices only.";
}
// TODO(b/197141970): Need to revisit OEMCryptoLoadsCert* tests for
// provisioning 4. Disabled here temporarily.
if (global_features.provisioning_method == OEMCrypto_BootCertificateChain) {
GTEST_SKIP() << "Test for non Prov 4.0 devices only.";
}
if (global_features.provisioning_method != OEMCrypto_Keybox) {
GTEST_SKIP() << "Test for Prov 2.0 devices only.";
}
Session s;
ProvisioningRoundTrip provisioning_messages(&s, encoded_rsa_key_);
provisioning_messages.PrepareSession(keybox_);
ASSERT_NO_FATAL_FAILURE(provisioning_messages.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(provisioning_messages.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(provisioning_messages.EncryptAndSignResponse());
provisioning_messages.response_signature()[4] ^= 42; // bad signature.
ASSERT_EQ(OEMCrypto_ERROR_SIGNATURE_FAILURE,
provisioning_messages.LoadResponse());
provisioning_messages.VerifyLoadFailed();
}
// Test that RewrapDeviceRSAKey verifies the nonce is current.
TEST_F(OEMCryptoLoadsCertificate, CertificateProvisionBadNonce_API16) {
// TODO(b/197141970): Need to revisit OEMCryptoLoadsCert* tests for
// provisioning 4. Disabled here temporarily.
if (global_features.provisioning_method == OEMCrypto_BootCertificateChain) {
GTEST_SKIP() << "Test for non Prov 4.0 devices only.";
}
Session s;
ProvisioningRoundTrip provisioning_messages(&s, encoded_rsa_key_);
provisioning_messages.PrepareSession(keybox_);
ASSERT_NO_FATAL_FAILURE(provisioning_messages.SignAndVerifyRequest());
provisioning_messages.core_request().nonce ^= 42; // bad nonce.
ASSERT_NO_FATAL_FAILURE(provisioning_messages.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(provisioning_messages.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_ERROR_INVALID_NONCE,
provisioning_messages.LoadResponse());
provisioning_messages.VerifyLoadFailed();
}
// Test that RewrapDeviceRSAKey verifies the RSA key is valid.
TEST_F(OEMCryptoLoadsCertificate, CertificateProvisionBadRSAKey) {
// TODO(b/197141970): Need to revisit OEMCryptoLoadsCert* tests for
// provisioning 4. Disabled here temporarily.
if (global_features.provisioning_method == OEMCrypto_BootCertificateChain) {
GTEST_SKIP() << "Test for non Prov 4.0 devices only.";
}
Session s;
ProvisioningRoundTrip provisioning_messages(&s, encoded_rsa_key_);
provisioning_messages.PrepareSession(keybox_);
ASSERT_NO_FATAL_FAILURE(provisioning_messages.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(provisioning_messages.CreateDefaultResponse());
provisioning_messages.response_data().rsa_key[4] ^= 42; // bad key.
ASSERT_NO_FATAL_FAILURE(provisioning_messages.EncryptAndSignResponse());
ASSERT_NE(OEMCrypto_SUCCESS, provisioning_messages.LoadResponse());
provisioning_messages.VerifyLoadFailed();
}
// Test that RewrapDeviceRSAKey verifies the RSA key is valid.
// TODO(b/144186970): This test should also run on Prov 3.0 devices.
TEST_F(OEMCryptoLoadsCertificate,
CertificateProvisionBadRSAKeyKeyboxTestAPI16) {
if (global_features.provisioning_method != OEMCrypto_Keybox) {
GTEST_SKIP() << "Test for Prov 2.0 devices only.";
}
if (global_features.provisioning_method != OEMCrypto_Keybox) {
GTEST_SKIP() << "Test for Prov 2.0 devices only.";
}
// TODO(b/197141970): Need to revisit OEMCryptoLoadsCert* tests for
// provisioning 4. Disabled here temporarily.
if (global_features.provisioning_method == OEMCrypto_BootCertificateChain) {
GTEST_SKIP() << "Test for non Prov 4.0 devices only.";
}
Session s;
ProvisioningRoundTrip provisioning_messages(&s, encoded_rsa_key_);
provisioning_messages.PrepareSession(keybox_);
ASSERT_NO_FATAL_FAILURE(provisioning_messages.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(provisioning_messages.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(provisioning_messages.EncryptAndSignResponse());
size_t rsa_offset =
provisioning_messages.core_response().enc_private_key.offset;
// Offsets are relative to the message body, after the core message.
rsa_offset += provisioning_messages.serialized_core_message().size();
rsa_offset += 4; // Change the middle of the key.
provisioning_messages.encrypted_response_buffer()[rsa_offset] ^= 42;
ASSERT_EQ(OEMCrypto_ERROR_SIGNATURE_FAILURE,
provisioning_messages.LoadResponse());
provisioning_messages.VerifyLoadFailed();
}
// Test that RewrapDeviceRSAKey accepts the maximum message size.
TEST_F(OEMCryptoLoadsCertificate, CertificateProvisionLargeBuffer) {
// TODO(b/197141970): Need to revisit OEMCryptoLoadsCert* tests for
// provisioning 4. Disabled here temporarily.
if (global_features.provisioning_method == OEMCrypto_BootCertificateChain) {
GTEST_SKIP() << "Test for non Prov 4.0 devices only.";
}
Session s;
ProvisioningRoundTrip provisioning_messages(&s, encoded_rsa_key_);
const size_t max_size = GetResourceValue(kLargeMessageSize);
provisioning_messages.set_message_size(max_size);
provisioning_messages.PrepareSession(keybox_);
ASSERT_NO_FATAL_FAILURE(provisioning_messages.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(provisioning_messages.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(provisioning_messages.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_SUCCESS, provisioning_messages.LoadResponse());
// We should not be able to find the rsa key in the wrapped key. It should
// be encrypted.
EXPECT_EQ(nullptr, find(provisioning_messages.wrapped_rsa_key(),
provisioning_messages.encoded_rsa_key()));
}
// Test that a wrapped RSA key can be loaded.
TEST_F(OEMCryptoLoadsCertificate, LoadWrappedRSAKey) {
// TODO(b/197141970): Need to revisit OEMCryptoLoadsCert* tests for
// provisioning 4. Disabled here temporarily.
if (global_features.provisioning_method == OEMCrypto_BootCertificateChain) {
GTEST_SKIP() << "Test for non Prov 4.0 devices only.";
}
ASSERT_NO_FATAL_FAILURE(CreateWrappedDRMKey());
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
ASSERT_NO_FATAL_FAILURE(s.LoadWrappedRsaDrmKey(wrapped_drm_key_));
}
class OEMCryptoLoadsCertVariousKeys : public OEMCryptoLoadsCertificate {
public:
void SetUp() override {
OEMCryptoLoadsCertificate::SetUp();
// TODO(b/197141970): Need to revisit OEMCryptoLoadsCert* tests for
// provisioning 4. Disabled here temporarily.
if (global_features.provisioning_method == OEMCrypto_BootCertificateChain) {
GTEST_SKIP() << "Test for non Prov 4.0 devices only.";
}
}
void TestKey(const uint8_t* key, size_t key_length) {
encoded_rsa_key_.assign(key, key + key_length);
ASSERT_NO_FATAL_FAILURE(CreateWrappedDRMKey());
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
ASSERT_NO_FATAL_FAILURE(s.SetRsaPublicKeyFromPrivateKeyInfo(
encoded_rsa_key_.data(), encoded_rsa_key_.size()));
ASSERT_NO_FATAL_FAILURE(s.LoadWrappedRsaDrmKey(wrapped_drm_key_));
LicenseRoundTrip license_messages(&s);
ASSERT_NO_FATAL_FAILURE(license_messages.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_SUCCESS, license_messages.LoadResponse());
ASSERT_NO_FATAL_FAILURE(s.TestDecryptCTR());
}
};
// Test a 3072 bit RSA key certificate.
TEST_F(OEMCryptoLoadsCertVariousKeys, TestLargeRSAKey3072) {
if (!global_features.supports_rsa_3072) {
GTEST_SKIP() << "OEMCrypto does not support RSA 3072";
}
TestKey(kTestRSAPKCS8PrivateKeyInfo3_3072,
sizeof(kTestRSAPKCS8PrivateKeyInfo3_3072));
}
// Test an RSA key certificate which has a private key generated using the
// Carmichael totient.
TEST_F(OEMCryptoLoadsCertVariousKeys, TestCarmichaelRSAKey) {
TestKey(kTestKeyRSACarmichael_2048, sizeof(kTestKeyRSACarmichael_2048));
}
TEST_F(OEMCryptoLoadsCertVariousKeys, TestCarmichaelNonZeroNormalDer) {
TestKey(kCarmichaelNonZeroNormalDer, kCarmichaelNonZeroNormalDerLen);
}
TEST_F(OEMCryptoLoadsCertVariousKeys, TestCarmichaelNonZeroShortDer) {
TestKey(kCarmichaelNonZeroShortDer, kCarmichaelNonZeroShortDerLen);
}
TEST_F(OEMCryptoLoadsCertVariousKeys, TestCarmichaelZeroNormalDer) {
TestKey(kCarmichaelZeroNormalDer, kCarmichaelZeroNormalDerLen);
}
TEST_F(OEMCryptoLoadsCertVariousKeys, TestCarmichaelZeroShortDer) {
TestKey(kCarmichaelZeroShortDer, kCarmichaelZeroShortDerLen);
}
TEST_F(OEMCryptoLoadsCertVariousKeys, TestDualNonZeroNormalDer) {
TestKey(kDualNonZeroNormalDer, kDualNonZeroNormalDerLen);
}
TEST_F(OEMCryptoLoadsCertVariousKeys, TestDualNonZeroShortDer) {
TestKey(kDualNonZeroShortDer, kDualNonZeroShortDerLen);
}
TEST_F(OEMCryptoLoadsCertVariousKeys, TestDualZeroNormalDer) {
TestKey(kDualZeroNormalDer, kDualZeroNormalDerLen);
}
TEST_F(OEMCryptoLoadsCertVariousKeys, TestDualZeroShortDer) {
TestKey(kDualZeroShortDer, kDualZeroShortDerLen);
}
TEST_F(OEMCryptoLoadsCertVariousKeys, TestEulerNonZeroNormalDer) {
TestKey(kEulerNonZeroNormalDer, kEulerNonZeroNormalDerLen);
}
TEST_F(OEMCryptoLoadsCertVariousKeys, TestEulerZeroNormalDer) {
TestKey(kEulerZeroNormalDer, kEulerZeroNormalDerLen);
}
// This tests that two sessions can use different RSA keys simultaneously.
TEST_F(OEMCryptoLoadsCertificate, TestMultipleRSAKeys) {
// TODO(b/197141970): Need to revisit OEMCryptoLoadsCert* tests for
// provisioning 4. Disabled here temporarily.
if (global_features.provisioning_method == OEMCrypto_BootCertificateChain) {
GTEST_SKIP() << "Test for non Prov 4.0 devices only.";
}
ASSERT_NO_FATAL_FAILURE(CreateWrappedDRMKey());
Session s1; // Session s1 loads the default rsa key, but doesn't use it
// until after s2 uses its key.
ASSERT_NO_FATAL_FAILURE(s1.open());
ASSERT_NO_FATAL_FAILURE(s1.SetRsaPublicKeyFromPrivateKeyInfo(
encoded_rsa_key_.data(), encoded_rsa_key_.size()));
ASSERT_NO_FATAL_FAILURE(s1.LoadWrappedRsaDrmKey(wrapped_drm_key_));
Session s2; // Session s2 uses a different rsa key.
encoded_rsa_key_.assign(kTestRSAPKCS8PrivateKeyInfo4_2048,
kTestRSAPKCS8PrivateKeyInfo4_2048 +
sizeof(kTestRSAPKCS8PrivateKeyInfo4_2048));
ASSERT_NO_FATAL_FAILURE(CreateWrappedDRMKey());
ASSERT_NO_FATAL_FAILURE(s2.open());
ASSERT_NO_FATAL_FAILURE(s2.SetRsaPublicKeyFromPrivateKeyInfo(
encoded_rsa_key_.data(), encoded_rsa_key_.size()));
ASSERT_NO_FATAL_FAILURE(s2.LoadWrappedRsaDrmKey(wrapped_drm_key_));
LicenseRoundTrip license_messages2(&s2);
ASSERT_NO_FATAL_FAILURE(license_messages2.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages2.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages2.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_SUCCESS, license_messages2.LoadResponse());
ASSERT_NO_FATAL_FAILURE(s2.TestDecryptCTR());
s2.close();
// After s2 has loaded its rsa key, we continue using s1's key.
LicenseRoundTrip license_messages1(&s1);
ASSERT_NO_FATAL_FAILURE(license_messages1.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages1.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages1.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_SUCCESS, license_messages1.LoadResponse());
ASSERT_NO_FATAL_FAILURE(s1.TestDecryptCTR());
}
// This tests the maximum number of DRM private keys that OEMCrypto can load
TEST_F(OEMCryptoLoadsCertificate, TestMaxDRMKeys) {
// TODO(b/197141970): Need to revisit OEMCryptoLoadsCert* tests for
// provisioning 4. Disabled here temporarily.
if (global_features.provisioning_method == OEMCrypto_BootCertificateChain) {
GTEST_SKIP() << "Test for non Prov 4.0 devices only.";
}
const size_t max_total_keys = GetResourceValue(kMaxTotalDRMPrivateKeys);
std::vector<std::unique_ptr<Session>> sessions;
std::vector<std::unique_ptr<LicenseRoundTrip>> licenses;
// It should be able to load up to kMaxTotalDRMPrivateKeys keys
for (size_t i = 0; i < max_total_keys; i++) {
sessions.push_back(std::unique_ptr<Session>(new Session()));
licenses.push_back(std::unique_ptr<LicenseRoundTrip>(
new LicenseRoundTrip(sessions[i].get())));
const size_t key_index = i % kTestRSAPKCS8PrivateKeys_2048.size();
encoded_rsa_key_.assign(kTestRSAPKCS8PrivateKeys_2048[key_index].begin(),
kTestRSAPKCS8PrivateKeys_2048[key_index].end());
ASSERT_NO_FATAL_FAILURE(CreateWrappedDRMKey());
ASSERT_NO_FATAL_FAILURE(sessions[i]->open());
ASSERT_NO_FATAL_FAILURE(InstallTestDrmKey(sessions[i].get()));
}
// Attempts to load one more key than the kMaxTotalDRMPrivateKeys
if (global_features.provisioning_method == OEMCrypto_BootCertificateChain) {
Session s;
const size_t buffer_size = 5000; // Make sure it is large enough.
std::vector<uint8_t> public_key(buffer_size);
size_t public_key_size = buffer_size;
std::vector<uint8_t> public_key_signature(buffer_size);
size_t public_key_signature_size = buffer_size;
std::vector<uint8_t> wrapped_private_key(buffer_size);
size_t wrapped_private_key_size = buffer_size;
OEMCrypto_PrivateKeyType key_type;
OEMCryptoResult result = OEMCrypto_GenerateCertificateKeyPair(
s.session_id(), public_key.data(), &public_key_size,
public_key_signature.data(), &public_key_signature_size,
wrapped_private_key.data(), &wrapped_private_key_size, &key_type);
// Key creation is allowed to fail due to resource restriction
if (result != OEMCrypto_SUCCESS) {
ASSERT_TRUE(result == OEMCrypto_ERROR_INSUFFICIENT_RESOURCES ||
result == OEMCrypto_ERROR_TOO_MANY_KEYS);
}
} else {
Session s;
encoded_rsa_key_.assign(kTestRSAPKCS8PrivateKeyInfo2_2048,
kTestRSAPKCS8PrivateKeyInfo2_2048 +
sizeof(kTestRSAPKCS8PrivateKeyInfo2_2048));
Session ps;
ProvisioningRoundTrip provisioning_messages(&ps, encoded_rsa_key_);
provisioning_messages.PrepareSession(keybox_);
ASSERT_NO_FATAL_FAILURE(provisioning_messages.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(provisioning_messages.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(provisioning_messages.EncryptAndSignResponse());
OEMCryptoResult result = provisioning_messages.LoadResponse();
// Key loading is allowed to fail due to resource restriction
if (result != OEMCrypto_SUCCESS) {
ASSERT_TRUE(result == OEMCrypto_ERROR_INSUFFICIENT_RESOURCES ||
result == OEMCrypto_ERROR_TOO_MANY_KEYS);
}
}
// Verifies that the DRM keys which are already loaded should still function
for (size_t i = 0; i < licenses.size(); i++) {
ASSERT_NO_FATAL_FAILURE(licenses[i]->SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(licenses[i]->CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(licenses[i]->EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_SUCCESS, licenses[i]->LoadResponse());
ASSERT_NO_FATAL_FAILURE(sessions[i]->TestDecryptCTR());
}
}
// Devices that load certificates, should at least support RSA 2048 keys.
TEST_F(OEMCryptoLoadsCertificate, SupportsCertificatesAPI13) {
// TODO(b/197141970): Need to revisit OEMCryptoLoadsCert* tests for
// provisioning 4. Disabled here temporarily.
if (global_features.provisioning_method == OEMCrypto_BootCertificateChain) {
GTEST_SKIP() << "Test for non Prov 4.0 devices only.";
}
ASSERT_NE(0u,
OEMCrypto_Supports_RSA_2048bit & OEMCrypto_SupportedCertificates())
<< "Supported certificates is only " << OEMCrypto_SupportedCertificates();
}
// This test is not run by default, because it takes a long time and
// is used to measure RSA performance, not test functionality.
TEST_F(OEMCryptoLoadsCertificate, RSAPerformance) {
// TODO(b/197141970): Need to revisit OEMCryptoLoadsCert* tests for
// provisioning 4. Disabled here temporarily.
if (global_features.provisioning_method == OEMCrypto_BootCertificateChain) {
GTEST_SKIP() << "Test for non Prov 4.0 devices only.";
}
const std::chrono::milliseconds kTestDuration(5000);
OEMCryptoResult sts;
std::chrono::steady_clock clock;
wvutil::TestSleep::Sleep(kShortSleep); // Make sure we are not nonce limited.
auto start_time = clock.now();
int count = 15;
for (int i = 0; i < count; i++) { // Only 20 nonce available.
ASSERT_NO_FATAL_FAILURE(CreateWrappedDRMKey());
}
auto delta_time = clock.now() - start_time;
const double provision_time =
delta_time / std::chrono::milliseconds(1) / static_cast<double>(count);
Session session;
ASSERT_NO_FATAL_FAILURE(CreateWrappedDRMKey());
start_time = clock.now();
count = 0;
do {
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
ASSERT_NO_FATAL_FAILURE(s.LoadWrappedRsaDrmKey(wrapped_drm_key_));
const size_t size = 50;
vector<uint8_t> licenseRequest(size);
GetRandBytes(licenseRequest.data(), licenseRequest.size());
size_t signature_length = 0;
sts = OEMCrypto_GenerateRSASignature(s.session_id(), licenseRequest.data(),
licenseRequest.size(), nullptr,
&signature_length, kSign_RSASSA_PSS);
ASSERT_EQ(OEMCrypto_ERROR_SHORT_BUFFER, sts);
ASSERT_NE(static_cast<size_t>(0), signature_length);
if (ShouldGenerateCorpus()) {
const std::string file_name =
GetFileName("oemcrypto_generate_rsa_signature_fuzz_seed_corpus");
OEMCrypto_Generate_RSA_Signature_Fuzz fuzzed_structure;
fuzzed_structure.padding_scheme = kSign_RSASSA_PSS;
fuzzed_structure.signature_length = signature_length;
// Cipher mode and algorithm.
AppendToFile(file_name, reinterpret_cast<const char*>(&fuzzed_structure),
sizeof(fuzzed_structure));
AppendToFile(file_name,
reinterpret_cast<const char*>(licenseRequest.data()),
licenseRequest.size());
}
std::vector<uint8_t> signature(signature_length, 0);
sts = OEMCrypto_GenerateRSASignature(
s.session_id(), licenseRequest.data(), licenseRequest.size(),
signature.data(), &signature_length, kSign_RSASSA_PSS);
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
count++;
} while (clock.now() - start_time < kTestDuration);
delta_time = clock.now() - start_time;
const double license_request_time =
delta_time / std::chrono::milliseconds(1) / static_cast<double>(count);
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
ASSERT_NO_FATAL_FAILURE(s.LoadWrappedRsaDrmKey(wrapped_drm_key_));
vector<uint8_t> session_key;
vector<uint8_t> enc_session_key;
ASSERT_NO_FATAL_FAILURE(s.SetRsaPublicKeyFromPrivateKeyInfo(
encoded_rsa_key_.data(), encoded_rsa_key_.size()));
ASSERT_TRUE(s.GenerateRsaSessionKey(&session_key, &enc_session_key));
vector<uint8_t> mac_context;
vector<uint8_t> enc_context;
s.FillDefaultContext(&mac_context, &enc_context);
enc_session_key = wvutil::a2b_hex(
"7789c619aa3b9fa3c0a53f57a4abc6"
"02157c8aa57e3c6fb450b0bea22667fb"
"0c3200f9d9d618e397837c720dc2dadf"
"486f33590744b2a4e54ca134ae7dbf74"
"434c2fcf6b525f3e132262f05ea3b3c1"
"198595c0e52b573335b2e8a3debd0d0d"
"d0306f8fcdde4e76476be71342957251"
"e1688c9ca6c1c34ed056d3b989394160"
"cf6937e5ce4d39cc73d11a2e93da21a2"
"fa019d246c852fe960095b32f120c3c2"
"7085f7b64aac344a68d607c0768676ce"
"d4c5b2d057f7601921b453a451e1dea0"
"843ebfef628d9af2784d68e86b730476"
"e136dfe19989de4be30a4e7878efcde5"
"ad2b1254f80c0c5dd3cf111b56572217"
"b9f58fc1dacbf74b59d354a1e62cfa0e"
"bf");
start_time = clock.now();
count = 0;
do {
ASSERT_EQ(OEMCrypto_SUCCESS,
OEMCrypto_DeriveKeysFromSessionKey(
s.session_id(), enc_session_key.data(),
enc_session_key.size(), mac_context.data(),
mac_context.size(), enc_context.data(), enc_context.size()));
count++;
} while (clock.now() - start_time < kTestDuration);
delta_time = clock.now() - start_time;
const double derive_keys_time =
delta_time / std::chrono::milliseconds(1) / static_cast<double>(count);
OEMCrypto_Security_Level level = OEMCrypto_SecurityLevel();
printf(
"PERF:head, security, provision (ms), lic req(ms), derive "
"keys(ms)\n");
printf("PERF:stat, %u, %8.3f, %8.3f, %8.3f\n",
static_cast<unsigned int>(level), provision_time, license_request_time,
derive_keys_time);
}
// Test DeriveKeysFromSessionKey using the maximum size for the HMAC context.
TEST_F(OEMCryptoUsesCertificate, GenerateDerivedKeysLargeBuffer) {
vector<uint8_t> session_key;
vector<uint8_t> enc_session_key;
ASSERT_TRUE(session_.GenerateSessionKey(&session_key, &enc_session_key));
const size_t max_size = GetResourceValue(kLargeMessageSize);
vector<uint8_t> mac_context(max_size);
vector<uint8_t> enc_context(max_size);
// Stripe the data so the two vectors are not identical, and not all zeroes.
for (size_t i = 0; i < max_size; i++) {
mac_context[i] = i % 0x100;
enc_context[i] = (3 * i) % 0x100;
}
ASSERT_EQ(OEMCrypto_SUCCESS,
OEMCrypto_DeriveKeysFromSessionKey(
session_.session_id(), enc_session_key.data(),
enc_session_key.size(), mac_context.data(), mac_context.size(),
enc_context.data(), enc_context.size()));
}
} // namespace wvoec