Files
android/libwvdrmengine/oemcrypto/ref/src/oemcrypto_usage_table_ref.cpp
Rahul Frias 3c350b677f Use vec.data() instead of &vec[0].
[ Merge of http://go/wvgerrit/67984 ]

Getting the address of the first element is invalid when the size is
0.  Calling data() is valid when the size is zero so long as we
don't use the resulting pointer.  This is important when we pass the
pointer to low-level functions like memcpy.

Also, MSVC is stricter about this and doesn't allow indexing the 0-th
element when it is empty.  But GCC/Clang seem to be fine with it so
long as the object isn't used.

Test: WV unit/integration tests

Change-Id: Ic5d11da41dd3a185a63f86a6ea91e9b954fd699a
2018-12-13 12:05:56 -08:00

774 lines
30 KiB
C++

// Copyright 2018 Google LLC. All Rights Reserved. This file and proprietary
// source code may only be used and distributed under the Widevine Master
// License Agreement.
//
// Reference implementation of OEMCrypto APIs
//
#include "oemcrypto_usage_table_ref.h"
#include <string.h>
#include <time.h>
#include <string>
#include <vector>
#include <openssl/aes.h>
#include <openssl/hmac.h>
#include <openssl/rand.h>
#include <openssl/sha.h>
#include "file_store.h"
#include "log.h"
#include "oemcrypto_engine_ref.h"
#include "oemcrypto_old_usage_table_ref.h"
// TODO(fredgc): Setting the device files base bath is currently broken as
// wvcdm::Properties is no longer used by the reference code.
//#include "properties.h"
#include "pst_report.h"
#include "string_conversions.h"
namespace wvoec_ref {
namespace {
const size_t kMagicLength = 8;
const char* kEntryVerification = "USEENTRY";
const char* kHeaderVerification = "USEHEADR";
// Offset into a signed block where we start encrypting. We need to
// skip the signature and the iv.
const size_t kEncryptionOffset = SHA256_DIGEST_LENGTH + SHA256_DIGEST_LENGTH;
// A structure that holds an usage entry and its signature.
struct SignedEntryBlock {
uint8_t signature[SHA256_DIGEST_LENGTH];
uint8_t iv[SHA256_DIGEST_LENGTH];
uint8_t verification[kMagicLength];
StoredUsageEntry data;
};
// This has the data in the header of constant size. There is also an array
// of generation numbers.
struct SignedHeaderBlock {
uint8_t signature[SHA256_DIGEST_LENGTH];
uint8_t iv[SHA256_DIGEST_LENGTH];
uint8_t verification[kMagicLength];
int64_t master_generation;
uint64_t count;
};
} // namespace
UsageTableEntry::UsageTableEntry(UsageTable* table, uint32_t index,
int64_t generation)
: usage_table_(table), recent_decrypt_(false), forbid_report_(true) {
memset(&data_, 0, sizeof(data_));
data_.generation_number = generation;
data_.index = index;
}
UsageTableEntry::~UsageTableEntry() { usage_table_->ReleaseEntry(data_.index); }
OEMCryptoResult UsageTableEntry::SetPST(const uint8_t* pst, size_t pst_length) {
if (pst_length > kMaxPSTLength) return OEMCrypto_ERROR_BUFFER_TOO_LARGE;
data_.pst_length = pst_length;
if (!pst || !pst_length) return OEMCrypto_ERROR_INVALID_CONTEXT;
memcpy(data_.pst, pst, pst_length);
data_.time_of_license_received =
usage_table_->ce_->RollbackCorrectedOfflineTime();
return OEMCrypto_SUCCESS;
}
bool UsageTableEntry::VerifyPST(const uint8_t* pst, size_t pst_length) {
if (pst_length > kMaxPSTLength) return false;
if (data_.pst_length != pst_length) return false;
if (!pst || !pst_length) return false;
return 0 == memcmp(pst, data_.pst, pst_length);
}
bool UsageTableEntry::VerifyMacKeys(const std::vector<uint8_t>& server,
const std::vector<uint8_t>& client) {
return (server.size() == wvoec::MAC_KEY_SIZE) &&
(client.size() == wvoec::MAC_KEY_SIZE) &&
(0 == memcmp(&server[0], data_.mac_key_server, wvoec::MAC_KEY_SIZE)) &&
(0 == memcmp(&client[0], data_.mac_key_client, wvoec::MAC_KEY_SIZE));
}
bool UsageTableEntry::SetMacKeys(const std::vector<uint8_t>& server,
const std::vector<uint8_t>& client) {
if ((server.size() != wvoec::MAC_KEY_SIZE) ||
(client.size() != wvoec::MAC_KEY_SIZE))
return false;
memcpy(data_.mac_key_server, &server[0], wvoec::MAC_KEY_SIZE);
memcpy(data_.mac_key_client, &client[0], wvoec::MAC_KEY_SIZE);
return true;
}
bool UsageTableEntry::CheckForUse() {
if (Inactive()) return false;
recent_decrypt_ = true;
if (data_.status == kUnused) {
data_.status = kActive;
data_.time_of_first_decrypt =
usage_table_->ce_->RollbackCorrectedOfflineTime();
data_.generation_number++;
usage_table_->IncrementGeneration();
}
return true;
}
void UsageTableEntry::Deactivate(const std::vector<uint8_t>& pst) {
if (data_.status == kUnused) {
data_.status = kInactiveUnused;
} else if (data_.status == kActive) {
data_.status = kInactiveUsed;
}
forbid_report_ = true;
data_.generation_number++;
usage_table_->IncrementGeneration();
}
OEMCryptoResult UsageTableEntry::ReportUsage(const std::vector<uint8_t>& pst,
uint8_t* buffer,
size_t* buffer_length) {
if (forbid_report_) return OEMCrypto_ERROR_ENTRY_NEEDS_UPDATE;
if (recent_decrypt_) return OEMCrypto_ERROR_ENTRY_NEEDS_UPDATE;
if (pst.size() == 0 || pst.size() > kMaxPSTLength ||
pst.size() != data_.pst_length) {
LOGE("ReportUsage: bad pst length = %d, should be %d.", pst.size(),
data_.pst_length);
return OEMCrypto_ERROR_WRONG_PST;
}
if (memcmp(&pst[0], data_.pst, data_.pst_length)) {
LOGE("ReportUsage: wrong pst %s, should be %s.", wvcdm::b2a_hex(pst).c_str(),
wvcdm::HexEncode(data_.pst, data_.pst_length).c_str());
return OEMCrypto_ERROR_WRONG_PST;
}
size_t length_needed = wvcdm::Unpacked_PST_Report::report_size(pst.size());
if (*buffer_length < length_needed) {
*buffer_length = length_needed;
return OEMCrypto_ERROR_SHORT_BUFFER;
}
if (!buffer) {
LOGE("ReportUsage: buffer was null pointer.");
return OEMCrypto_ERROR_INVALID_CONTEXT;
}
wvcdm::Unpacked_PST_Report pst_report(buffer);
int64_t now = usage_table_->ce_->RollbackCorrectedOfflineTime();
pst_report.set_seconds_since_license_received(now -
data_.time_of_license_received);
pst_report.set_seconds_since_first_decrypt(now - data_.time_of_first_decrypt);
pst_report.set_seconds_since_last_decrypt(now - data_.time_of_last_decrypt);
pst_report.set_status(data_.status);
pst_report.set_clock_security_level(kSecureTimer);
pst_report.set_pst_length(data_.pst_length);
memcpy(pst_report.pst(), data_.pst, data_.pst_length);
unsigned int md_len = SHA_DIGEST_LENGTH;
if (!HMAC(EVP_sha1(), data_.mac_key_client, wvoec::MAC_KEY_SIZE,
buffer + SHA_DIGEST_LENGTH, length_needed - SHA_DIGEST_LENGTH,
pst_report.signature(), &md_len)) {
LOGE("ReportUsage: could not compute signature.");
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
return OEMCrypto_SUCCESS;
}
void UsageTableEntry::UpdateAndIncrement() {
if (recent_decrypt_) {
data_.time_of_last_decrypt =
usage_table_->ce_->RollbackCorrectedOfflineTime();
recent_decrypt_ = false;
}
data_.generation_number++;
usage_table_->IncrementGeneration();
forbid_report_ = false;
}
OEMCryptoResult UsageTableEntry::SaveData(CryptoEngine* ce,
SessionContext* session,
uint8_t* signed_buffer,
size_t buffer_size) {
// buffer_size was determined by calling function.
if (buffer_size != SignedEntrySize()) return OEMCrypto_ERROR_UNKNOWN_FAILURE;
std::vector<uint8_t> clear_buffer(buffer_size);
memset(&clear_buffer[0], 0, buffer_size);
memset(signed_buffer, 0, buffer_size);
SignedEntryBlock* clear =
reinterpret_cast<SignedEntryBlock*>(&clear_buffer[0]);
SignedEntryBlock* encrypted =
reinterpret_cast<SignedEntryBlock*>(signed_buffer);
clear->data = this->data_; // Copy the current data.
memcpy(clear->verification, kEntryVerification, kMagicLength);
// This should be encrypted and signed with a device specific key.
// For the reference implementation, I'm just going to use the keybox key.
const std::vector<uint8_t>& key = ce->DeviceRootKey();
if (key.empty()) {
LOGE("SaveUsageEntry: DeviceRootKey is unexpectedly empty.");
return OEMCrypto_ERROR_INVALID_CONTEXT;
}
// Encrypt the entry.
RAND_bytes(encrypted->iv, wvoec::KEY_IV_SIZE);
uint8_t iv_buffer[wvoec::KEY_IV_SIZE]; // working iv buffer.
memcpy(iv_buffer, encrypted->iv, wvoec::KEY_IV_SIZE);
AES_KEY aes_key;
AES_set_encrypt_key(&key[0], 128, &aes_key);
AES_cbc_encrypt(
&clear_buffer[kEncryptionOffset], &signed_buffer[kEncryptionOffset],
buffer_size - kEncryptionOffset, &aes_key, iv_buffer, AES_ENCRYPT);
// Sign the entry.
unsigned int sig_length = SHA256_DIGEST_LENGTH;
if (!HMAC(EVP_sha256(), &key[0], key.size(),
&signed_buffer[SHA256_DIGEST_LENGTH],
buffer_size - SHA256_DIGEST_LENGTH, encrypted->signature,
&sig_length)) {
LOGE("SaveUsageEntry: Could not sign entry.");
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
return OEMCrypto_SUCCESS;
}
OEMCryptoResult UsageTableEntry::LoadData(CryptoEngine* ce, uint32_t index,
const std::vector<uint8_t>& buffer) {
if (buffer.size() < SignedEntrySize()) return OEMCrypto_ERROR_SHORT_BUFFER;
if (buffer.size() > SignedEntrySize())
LOGW("LoadUsageTableEntry: buffer is large. %d > %d", buffer.size(),
SignedEntrySize());
std::vector<uint8_t> clear_buffer(buffer.size());
SignedEntryBlock* clear =
reinterpret_cast<SignedEntryBlock*>(&clear_buffer[0]);
const SignedEntryBlock* encrypted =
reinterpret_cast<const SignedEntryBlock*>(&buffer[0]);
// This should be encrypted and signed with a device specific key.
// For the reference implementation, I'm just going to use the keybox key.
const std::vector<uint8_t>& key = ce->DeviceRootKey();
if (key.empty()) {
LOGE("LoadUsageEntry: DeviceRootKey is unexpectedly empty.");
return OEMCrypto_ERROR_INVALID_CONTEXT;
}
// Verify the signature of the usage entry. Sign encrypted into clear buffer.
unsigned int sig_length = SHA256_DIGEST_LENGTH;
if (!HMAC(EVP_sha256(), &key[0], key.size(), &buffer[SHA256_DIGEST_LENGTH],
buffer.size() - SHA256_DIGEST_LENGTH, clear->signature,
&sig_length)) {
LOGE("LoadUsageEntry: Could not sign entry.");
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
if (memcmp(clear->signature, encrypted->signature, SHA256_DIGEST_LENGTH)) {
LOGE("LoadUsageEntry: Signature did not match.");
LOGE("LoadUsageEntry: Invalid signature given: %s",
wvcdm::HexEncode(encrypted->signature, sig_length).c_str());
LOGE("LoadUsageEntry: Invalid signature computed: %s",
wvcdm::HexEncode(clear->signature, sig_length).c_str());
return OEMCrypto_ERROR_SIGNATURE_FAILURE;
}
// Next, decrypt the entry.
uint8_t iv_buffer[wvoec::KEY_IV_SIZE];
memcpy(iv_buffer, encrypted->iv, wvoec::KEY_IV_SIZE);
AES_KEY aes_key;
AES_set_decrypt_key(&key[0], 128, &aes_key);
AES_cbc_encrypt(&buffer[kEncryptionOffset], &clear_buffer[kEncryptionOffset],
buffer.size() - kEncryptionOffset, &aes_key, iv_buffer,
AES_DECRYPT);
// Check the verification string is correct.
if (memcmp(kEntryVerification, clear->verification, kMagicLength)) {
LOGE("LoadUsageEntry: Invalid magic: %s=%8.8s expected: %s=%8.8s",
wvcdm::HexEncode(clear->verification, kMagicLength).c_str(),
clear->verification,
wvcdm::HexEncode(reinterpret_cast<const uint8_t*>(kEntryVerification),
kMagicLength)
.c_str(),
reinterpret_cast<const uint8_t*>(kEntryVerification));
return OEMCrypto_ERROR_BAD_MAGIC;
}
// Check that the index is correct.
if (index != clear->data.index) {
LOGE("LoadUsageEntry: entry says index is %d, not %d", clear->data.index,
index);
return OEMCrypto_ERROR_INVALID_SESSION;
}
if (clear->data.status > kInactiveUnused) {
LOGE("LoadUsageEntry: entry has bad status %d", clear->data.status);
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
this->data_ = clear->data;
return OEMCrypto_SUCCESS;
}
OEMCryptoResult UsageTableEntry::CopyOldUsageEntry(
const std::vector<uint8_t>& pst) {
OldUsageTableEntry* old_entry = usage_table_->FindOldUsageEntry(pst);
if (!old_entry) return OEMCrypto_ERROR_WRONG_PST;
data_.time_of_license_received = old_entry->time_of_license_received_;
data_.time_of_first_decrypt = old_entry->time_of_first_decrypt_;
data_.time_of_last_decrypt = old_entry->time_of_last_decrypt_;
data_.status = old_entry->status_;
if (old_entry->mac_key_server_.size() != wvoec::MAC_KEY_SIZE) {
LOGE("CopyOldEntry: Old entry has bad server mac key.");
} else {
memcpy(data_.mac_key_server, &(old_entry->mac_key_server_[0]),
wvoec::MAC_KEY_SIZE);
}
if (old_entry->mac_key_client_.size() != wvoec::MAC_KEY_SIZE) {
LOGE("CopyOldEntry: Old entry has bad client mac key.");
} else {
memcpy(data_.mac_key_client, &(old_entry->mac_key_client_[0]),
wvoec::MAC_KEY_SIZE);
}
if (pst.size() > kMaxPSTLength) {
LOGE("CopyOldEntry: PST Length was too large. Truncating.");
data_.pst_length = kMaxPSTLength;
} else {
data_.pst_length = pst.size();
}
memcpy(data_.pst, pst.data(), data_.pst_length);
data_.pst[data_.pst_length] = '\0';
return OEMCrypto_SUCCESS;
}
size_t UsageTableEntry::SignedEntrySize() {
size_t base = sizeof(SignedEntryBlock);
// round up to make even number of blocks:
size_t blocks = (base - 1) / wvoec::KEY_IV_SIZE + 1;
return blocks * wvoec::KEY_IV_SIZE;
}
UsageTable::~UsageTable() {
if (old_table_) {
delete old_table_;
old_table_ = NULL;
}
}
size_t UsageTable::SignedHeaderSize(size_t count) {
size_t base = sizeof(SignedHeaderBlock) + count * sizeof(int64_t);
// round up to make even number of blocks:
size_t blocks = (base - 1) / wvoec::KEY_IV_SIZE + 1;
return blocks * wvoec::KEY_IV_SIZE;
}
OEMCryptoResult UsageTable::UpdateUsageEntry(SessionContext* session,
UsageTableEntry* entry,
uint8_t* header_buffer,
size_t* header_buffer_length,
uint8_t* entry_buffer,
size_t* entry_buffer_length) {
size_t signed_header_size = SignedHeaderSize(generation_numbers_.size());
if (*entry_buffer_length < UsageTableEntry::SignedEntrySize() ||
*header_buffer_length < signed_header_size) {
*entry_buffer_length = UsageTableEntry::SignedEntrySize();
*header_buffer_length = signed_header_size;
return OEMCrypto_ERROR_SHORT_BUFFER;
}
*entry_buffer_length = UsageTableEntry::SignedEntrySize();
*header_buffer_length = signed_header_size;
if ((!header_buffer) || (!entry_buffer))
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
entry->UpdateAndIncrement();
generation_numbers_[entry->index()] = entry->generation_number();
OEMCryptoResult result =
entry->SaveData(ce_, session, entry_buffer, *entry_buffer_length);
if (result != OEMCrypto_SUCCESS) return result;
result = SaveUsageTableHeader(header_buffer, *header_buffer_length);
return result;
}
UsageTableEntry* UsageTable::MakeEntry(uint32_t index) {
return new UsageTableEntry(this, index, master_generation_number_);
}
OEMCryptoResult UsageTable::CreateNewUsageEntry(SessionContext* session,
UsageTableEntry** entry,
uint32_t* usage_entry_number) {
if (!header_loaded_) {
LOGE("CreateNewUsageEntry: Header not loaded.");
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
if (!entry) return OEMCrypto_ERROR_UNKNOWN_FAILURE;
if (!usage_entry_number) return OEMCrypto_ERROR_UNKNOWN_FAILURE;
uint32_t index = generation_numbers_.size();
size_t max = ce_->max_usage_table_size();
if (max > 0 && index >= max) {
LOGE("Too many usage entries: %d/%d", index, max);
return OEMCrypto_ERROR_INSUFFICIENT_RESOURCES;
}
UsageTableEntry* new_entry = MakeEntry(index);
generation_numbers_.push_back(master_generation_number_);
sessions_.push_back(session);
master_generation_number_++;
*entry = new_entry;
*usage_entry_number = index;
return OEMCrypto_SUCCESS;
}
OEMCryptoResult UsageTable::LoadUsageEntry(SessionContext* session,
UsageTableEntry** entry,
uint32_t index,
const std::vector<uint8_t>& buffer) {
if (!header_loaded_) {
LOGE("CreateNewUsageEntry: Header not loaded.");
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
if (!entry) return OEMCrypto_ERROR_UNKNOWN_FAILURE;
if (index >= generation_numbers_.size())
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
if (sessions_[index]) {
LOGE("LoadUsageEntry: index %d used by other session.", index);
return OEMCrypto_ERROR_INVALID_SESSION;
}
size_t max = ce_->max_usage_table_size();
if (max > 0 && index >= max) {
LOGE("Too many usage entries: %d/%d", index, max);
return OEMCrypto_ERROR_INSUFFICIENT_RESOURCES;
}
UsageTableEntry* new_entry = MakeEntry(index);
OEMCryptoResult status = new_entry->LoadData(ce_, index, buffer);
if (status != OEMCrypto_SUCCESS) {
delete new_entry;
return status;
}
if (new_entry->generation_number() != generation_numbers_[index]) {
LOGE("Generation SKEW: %ld -> %ld", new_entry->generation_number(),
generation_numbers_[index]);
if ((new_entry->generation_number() + 1 < generation_numbers_[index]) ||
(new_entry->generation_number() - 1 > generation_numbers_[index])) {
delete new_entry;
return OEMCrypto_ERROR_GENERATION_SKEW;
}
status = OEMCrypto_WARNING_GENERATION_SKEW;
}
sessions_[index] = session;
*entry = new_entry;
return status;
}
OEMCryptoResult UsageTable::ShrinkUsageTableHeader(
uint32_t new_table_size, uint8_t* header_buffer,
size_t* header_buffer_length) {
if (new_table_size > generation_numbers_.size()) {
LOGE("OEMCrypto_ShrinkUsageTableHeader: %d > %zd.", new_table_size,
generation_numbers_.size());
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
size_t signed_header_size = SignedHeaderSize(new_table_size);
if (*header_buffer_length < signed_header_size) {
*header_buffer_length = signed_header_size;
return OEMCrypto_ERROR_SHORT_BUFFER;
}
*header_buffer_length = signed_header_size;
if (!header_buffer) {
LOGE("OEMCrypto_ShrinkUsageTableHeader: buffer null.");
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
for (size_t i = new_table_size; i < sessions_.size(); ++i) {
if (sessions_[i]) {
LOGE("ShrinkUsageTableHeader: session open for %d", i);
return OEMCrypto_ERROR_ENTRY_IN_USE;
}
}
generation_numbers_.resize(new_table_size);
sessions_.resize(new_table_size);
master_generation_number_++;
return SaveUsageTableHeader(header_buffer, *header_buffer_length);
}
OEMCryptoResult UsageTable::SaveUsageTableHeader(uint8_t* signed_buffer,
size_t buffer_size) {
if (!SaveGenerationNumber()) return OEMCrypto_ERROR_UNKNOWN_FAILURE;
size_t count = generation_numbers_.size();
// buffer_size was determined by calling function.
if (buffer_size != SignedHeaderSize(count))
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
std::vector<uint8_t> clear_buffer(buffer_size);
memset(&clear_buffer[0], 0, buffer_size);
memset(signed_buffer, 0, buffer_size);
SignedHeaderBlock* clear =
reinterpret_cast<SignedHeaderBlock*>(&clear_buffer[0]);
SignedHeaderBlock* encrypted =
reinterpret_cast<SignedHeaderBlock*>(signed_buffer);
// Pack the clear data into the clear buffer.
memcpy(clear->verification, kHeaderVerification, kMagicLength);
clear->master_generation = master_generation_number_;
clear->count = count;
// This points to the variable size part of the buffer.
int64_t* stored_generations =
reinterpret_cast<int64_t*>(&clear_buffer[sizeof(SignedHeaderBlock)]);
std::copy(generation_numbers_.begin(), generation_numbers_.begin() + count,
stored_generations);
// This should be encrypted and signed with a device specific key.
// For the reference implementation, I'm just going to use the keybox key.
const std::vector<uint8_t>& key = ce_->DeviceRootKey();
if (key.empty()) {
LOGE("SaveUsageTableHeader: DeviceRootKey is unexpectedly empty.");
return OEMCrypto_ERROR_INVALID_CONTEXT;
}
// Encrypt the entry.
RAND_bytes(encrypted->iv, wvoec::KEY_IV_SIZE);
uint8_t iv_buffer[wvoec::KEY_IV_SIZE]; // working iv buffer.
memcpy(iv_buffer, encrypted->iv, wvoec::KEY_IV_SIZE);
AES_KEY aes_key;
AES_set_encrypt_key(&key[0], 128, &aes_key);
AES_cbc_encrypt(
&clear_buffer[kEncryptionOffset], &signed_buffer[kEncryptionOffset],
buffer_size - kEncryptionOffset, &aes_key, iv_buffer, AES_ENCRYPT);
// Sign the entry.
unsigned int sig_length = SHA256_DIGEST_LENGTH;
if (!HMAC(EVP_sha256(), &key[0], key.size(),
&signed_buffer[SHA256_DIGEST_LENGTH],
buffer_size - SHA256_DIGEST_LENGTH, encrypted->signature,
&sig_length)) {
LOGE("SaveUsageHeader: Could not sign entry.");
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
return OEMCrypto_SUCCESS;
}
OEMCryptoResult UsageTable::LoadUsageTableHeader(
const std::vector<uint8_t>& buffer) {
if (!LoadGenerationNumber(false)) return OEMCrypto_ERROR_UNKNOWN_FAILURE;
if (buffer.size() < SignedHeaderSize(0)) return OEMCrypto_ERROR_SHORT_BUFFER;
size_t max = ce_->max_usage_table_size();
if (max > 0 && buffer.size() > SignedHeaderSize(max)) {
LOGE("Header too big: %zd bytes/%zd bytes",
buffer.size(), SignedHeaderSize(max));
return OEMCrypto_ERROR_INSUFFICIENT_RESOURCES;
}
std::vector<uint8_t> clear_buffer(buffer.size());
SignedHeaderBlock* clear =
reinterpret_cast<SignedHeaderBlock*>(&clear_buffer[0]);
const SignedHeaderBlock* encrypted =
reinterpret_cast<const SignedHeaderBlock*>(&buffer[0]);
// This should be encrypted and signed with a device specific key.
// For the reference implementation, I'm just going to use the keybox key.
const std::vector<uint8_t>& key = ce_->DeviceRootKey();
if (key.empty()) {
LOGE("LoadUsageTableHeader: DeviceRootKey is unexpectedly empty.");
return OEMCrypto_ERROR_INVALID_CONTEXT;
}
// Verify the signature of the usage entry. Sign encrypted into clear buffer.
unsigned int sig_length = SHA256_DIGEST_LENGTH;
if (!HMAC(EVP_sha256(), &key[0], key.size(), &buffer[SHA256_DIGEST_LENGTH],
buffer.size() - SHA256_DIGEST_LENGTH, clear->signature,
&sig_length)) {
LOGE("LoadUsageTableHeader: Could not sign entry.");
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
if (memcmp(clear->signature, encrypted->signature, SHA256_DIGEST_LENGTH)) {
LOGE("LoadUsageTableHeader: Signature did not match.");
LOGE("LoadUsageTableHeader: Invalid signature given: %s",
wvcdm::HexEncode(encrypted->signature, sig_length).c_str());
LOGE("LoadUsageTableHeader: Invalid signature computed: %s",
wvcdm::HexEncode(clear->signature, sig_length).c_str());
return OEMCrypto_ERROR_SIGNATURE_FAILURE;
}
// Next, decrypt the entry.
uint8_t iv_buffer[wvoec::KEY_IV_SIZE];
memcpy(iv_buffer, encrypted->iv, wvoec::KEY_IV_SIZE);
AES_KEY aes_key;
AES_set_decrypt_key(&key[0], 128, &aes_key);
AES_cbc_encrypt(&buffer[kEncryptionOffset], &clear_buffer[kEncryptionOffset],
buffer.size() - kEncryptionOffset, &aes_key, iv_buffer,
AES_DECRYPT);
// Check the verification string is correct.
if (memcmp(kHeaderVerification, clear->verification, kMagicLength)) {
LOGE("LoadUsageTableHeader: Invalid magic: %s=%8.8s expected: %s=%8.8s",
wvcdm::HexEncode(clear->verification, kMagicLength).c_str(),
clear->verification,
wvcdm::HexEncode(reinterpret_cast<const uint8_t*>(kHeaderVerification),
kMagicLength)
.c_str(),
reinterpret_cast<const uint8_t*>(kHeaderVerification));
return OEMCrypto_ERROR_BAD_MAGIC;
}
// Check that size is correct, now that we know what it should be.
if (buffer.size() < SignedHeaderSize(clear->count)) {
return OEMCrypto_ERROR_SHORT_BUFFER;
}
if (buffer.size() > SignedHeaderSize(clear->count)) {
LOGW("LoadUsageTableHeader: buffer is large. %d > %d", buffer.size(),
SignedHeaderSize(clear->count));
}
OEMCryptoResult status = OEMCrypto_SUCCESS;
if (clear->master_generation != master_generation_number_) {
LOGE("Generation SKEW: %ld -> %ld", clear->master_generation,
master_generation_number_);
if ((clear->master_generation + 1 < master_generation_number_) ||
(clear->master_generation - 1 > master_generation_number_)) {
return OEMCrypto_ERROR_GENERATION_SKEW;
}
status = OEMCrypto_WARNING_GENERATION_SKEW;
}
int64_t* stored_generations =
reinterpret_cast<int64_t*>(&clear_buffer[0] + sizeof(SignedHeaderBlock));
generation_numbers_.assign(stored_generations,
stored_generations + clear->count);
sessions_.clear();
sessions_.resize(clear->count);
header_loaded_ = true;
return status;
}
OEMCryptoResult UsageTable::MoveEntry(UsageTableEntry* entry,
uint32_t new_index) {
if (new_index >= generation_numbers_.size()) {
LOGE("MoveEntry: index beyond end of usage table %d >= %d", new_index,
generation_numbers_.size());
return OEMCrypto_ERROR_INVALID_CONTEXT;
}
if (sessions_[new_index]) {
LOGE("MoveEntry: session open for %d", new_index);
return OEMCrypto_ERROR_ENTRY_IN_USE;
}
if (!entry) {
LOGE("MoveEntry: null entry");
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
sessions_[new_index] = sessions_[entry->index()];
sessions_[entry->index()] = 0;
entry->set_index(new_index);
generation_numbers_[new_index] = master_generation_number_;
entry->set_generation_number(master_generation_number_);
master_generation_number_++;
return OEMCrypto_SUCCESS;
}
void UsageTable::IncrementGeneration() {
master_generation_number_++;
SaveGenerationNumber();
}
bool UsageTable::SaveGenerationNumber() {
wvcdm::FileSystem* file_system = ce_->file_system();
std::string path;
// Note: this path is OK for a real implementation, but using security level 1
// would be better.
// TODO(jfore, rfrias): Address how this property is presented to the ref.
// For now, the path is empty.
/*if (!Properties::GetDeviceFilesBasePath(kSecurityLevelL3,
&path)) {
LOGE("UsageTable: Unable to get base path");
return false;
}*/
// On a real implementation, you should NOT put the generation number in
// a file in user space. It should be stored in secure memory.
std::string filename = path + "GenerationNumber.dat";
auto file = file_system->Open(
filename, wvcdm::FileSystem::kCreate | wvcdm::FileSystem::kTruncate);
if (!file) {
LOGE("UsageTable: File open failed: %s", path.c_str());
return false;
}
file->Write(reinterpret_cast<char*>(&master_generation_number_),
sizeof(int64_t));
return true;
}
bool UsageTable::LoadGenerationNumber(bool or_make_new_one) {
wvcdm::FileSystem* file_system = ce_->file_system();
std::string path;
// Note: this path is OK for a real implementation, but using security level 1
// would be better.
// TODO(jfore, rfrias): Address how this property is presented to the ref.
// For now, the path is empty.
/*if (!Properties::GetDeviceFilesBasePath(kSecurityLevelL3,
&path)) {
LOGE("UsageTable: Unable to get base path");
return false;
}*/
// On a real implementation, you should NOT put the generation number in
// a file in user space. It should be stored in secure memory.
std::string filename = path + "GenerationNumber.dat";
auto file = file_system->Open(filename, wvcdm::FileSystem::kReadOnly);
if (!file) {
if (or_make_new_one) {
RAND_bytes(reinterpret_cast<uint8_t*>(&master_generation_number_),
sizeof(int64_t));
return true;
}
LOGE("UsageTable: File open failed: %s (clearing table)", path.c_str());
master_generation_number_ = 0;
return false;
}
file->Read(reinterpret_cast<char*>(&master_generation_number_),
sizeof(int64_t));
return true;
}
OEMCryptoResult UsageTable::CreateUsageTableHeader(
uint8_t* header_buffer, size_t* header_buffer_length) {
size_t signed_header_size = SignedHeaderSize(0);
if (*header_buffer_length < signed_header_size) {
*header_buffer_length = signed_header_size;
return OEMCrypto_ERROR_SHORT_BUFFER;
}
*header_buffer_length = signed_header_size;
if (!LoadGenerationNumber(true)) return OEMCrypto_ERROR_UNKNOWN_FAILURE;
// Make sure there are no entries that are currently tied to an open session.
for (size_t i = 0; i < sessions_.size(); ++i) {
if (sessions_[i] != NULL) {
LOGE("CreateUsageTableHeader: index %d used by session.", i);
return OEMCrypto_ERROR_INVALID_SESSION;
}
}
sessions_.clear();
generation_numbers_.clear();
header_loaded_ = true;
return SaveUsageTableHeader(header_buffer, *header_buffer_length);
}
OldUsageTableEntry* UsageTable::FindOldUsageEntry(
const std::vector<uint8_t>& pst) {
if (!old_table_) old_table_ = new OldUsageTable(ce_);
return old_table_->FindEntry(pst);
}
OEMCryptoResult UsageTable::DeleteOldUsageTable() {
if (old_table_) {
old_table_->Clear();
delete old_table_;
old_table_ = NULL;
}
OldUsageTable::DeleteFile(ce_);
return OEMCrypto_SUCCESS;
}
OEMCryptoResult UsageTable::CreateOldUsageEntry(
uint64_t time_since_license_received, uint64_t time_since_first_decrypt,
uint64_t time_since_last_decrypt, OEMCrypto_Usage_Entry_Status status,
uint8_t* server_mac_key, uint8_t* client_mac_key, const uint8_t* pst,
size_t pst_length) {
if (!old_table_) old_table_ = new OldUsageTable(ce_);
std::vector<uint8_t> pstv(pst, pst + pst_length);
OldUsageTableEntry* old_entry = old_table_->CreateEntry(pstv);
int64_t now = ce_->RollbackCorrectedOfflineTime();
old_entry->time_of_license_received_ = now - time_since_license_received;
old_entry->time_of_first_decrypt_ = now - time_since_first_decrypt;
old_entry->time_of_last_decrypt_ = now - time_since_last_decrypt;
old_entry->status_ = status;
old_entry->mac_key_server_.assign(server_mac_key,
server_mac_key + wvoec::MAC_KEY_SIZE);
old_entry->mac_key_client_.assign(client_mac_key,
client_mac_key + wvoec::MAC_KEY_SIZE);
return OEMCrypto_SUCCESS;
}
} // namespace wvoec_ref