Files
android/libwvdrmengine/cdm/core/src/crypto_session.cpp
Adam Stone 795cf8a624 Revise a few metrics and add unit tests.
This is a merge of Widevine cl 39040.

A few of the metrics were not implemented, or implemented incorrectly in
O MR1. This cleans them up

Bug: 64001676

Test: Re-ran unit tests and added some additional tests. GPlay Movies check.

Change-Id: I1e8bcc36fecd76e72d853306075bc46d82f45161
2018-01-25 21:03:07 +00:00

3049 lines
106 KiB
C++

// Copyright 2012 Google Inc. All Rights Reserved.
//
// Crypto - wrapper classes for OEMCrypto interface
//
#include "crypto_session.h"
#include <arpa/inet.h> // needed for ntoh()
#include <string.h>
#include <algorithm>
#include <iostream>
#include <memory>
#include "crypto_key.h"
#include "log.h"
#include "openssl/asn1.h"
#include "openssl/sha.h"
#include "openssl/x509v3.h"
#include "properties.h"
#include "pst_report.h"
#include "string_conversions.h"
#include "usage_table_header.h"
#include "wv_cdm_constants.h"
namespace {
// Encode unsigned integer into a big endian formatted string
std::string EncodeUint32(unsigned int u) {
std::string s;
s.append(1, (u >> 24) & 0xFF);
s.append(1, (u >> 16) & 0xFF);
s.append(1, (u >> 8) & 0xFF);
s.append(1, (u >> 0) & 0xFF);
return s;
}
size_t GetOffset(std::string message, std::string field) {
size_t pos = message.find(field);
if (pos == std::string::npos) {
LOGE("CryptoSession::GetOffset : Cannot find offset for %s", field.c_str());
pos = 0;
}
return pos;
}
void GenerateMacContext(const std::string& input_context,
std::string* deriv_context) {
if (!deriv_context) {
LOGE("CryptoSession::GenerateMacContext : No output destination provided.");
return;
}
const std::string kSigningKeyLabel = "AUTHENTICATION";
const size_t kSigningKeySizeBits = wvcdm::MAC_KEY_SIZE * 8;
deriv_context->assign(kSigningKeyLabel);
deriv_context->append(1, '\0');
deriv_context->append(input_context);
deriv_context->append(EncodeUint32(kSigningKeySizeBits * 2));
}
void GenerateEncryptContext(const std::string& input_context,
std::string* deriv_context) {
if (!deriv_context) {
LOGE(
"CryptoSession::GenerateEncryptContext : No output destination "
"provided.");
return;
}
const std::string kEncryptionKeyLabel = "ENCRYPTION";
const size_t kEncryptionKeySizeBits = wvcdm::KEY_SIZE * 8;
deriv_context->assign(kEncryptionKeyLabel);
deriv_context->append(1, '\0');
deriv_context->append(input_context);
deriv_context->append(EncodeUint32(kEncryptionKeySizeBits));
}
OEMCryptoCipherMode ToOEMCryptoCipherMode(wvcdm::CdmCipherMode cipher_mode) {
return (cipher_mode == wvcdm::kCipherModeCtr) ? OEMCrypto_CipherMode_CTR
: OEMCrypto_CipherMode_CBC;
}
const uint32_t kRsaSignatureLength = 256;
const size_t kMaximumChunkSize = 100 * 1024; // 100 KiB
const size_t kEstimatedInitialUsageTableHeader = 40;
const size_t kOemCryptoApiVersionSupportsBigUsageTables = 13;
// Constants and utility objects relating to OEM Certificates
const int kExtensionOidSize = 64;
const char* const kWidevineSystemIdExtensionOid = "1.3.6.1.4.1.11129.4.1.1";
// Helpers for working with BoringSSL
template <typename T, void (*func)(T*)>
class boringssl_ptr {
public:
explicit boringssl_ptr(T* p = NULL) : ptr_(p) {}
~boringssl_ptr() {
if (ptr_) func(ptr_);
}
T& operator*() const { return *ptr_; }
T* operator->() const { return ptr_; }
T* get() const { return ptr_; }
private:
T* ptr_;
CORE_DISALLOW_COPY_AND_ASSIGN(boringssl_ptr);
};
void DeleteX509Stack(STACK_OF(X509)* stack) {
sk_X509_pop_free(stack, X509_free);
}
}
namespace wvcdm {
Lock CryptoSession::crypto_lock_;
bool CryptoSession::initialized_ = false;
int CryptoSession::session_count_ = 0;
uint64_t CryptoSession::request_id_index_ = 0;
UsageTableHeader* CryptoSession::usage_table_header_l1_ = NULL;
UsageTableHeader* CryptoSession::usage_table_header_l3_ = NULL;
// TODO(jfore, rfrias, gmorgan): This object should be split off into it's own
// module or refactored out.
class DefaultKeySession : public KeySession {
public:
DefaultKeySession(CryptoSessionId oec_session_id,
metrics::CryptoMetrics* metrics)
: KeySession(metrics), oec_session_id_(oec_session_id) {}
virtual ~DefaultKeySession() {}
KeySessionType Type() { return kDefault; }
// Generate Derived Keys for DefaultKeySession
bool GenerateDerivedKeys(const std::string& message) {
std::string mac_deriv_message;
std::string enc_deriv_message;
GenerateMacContext(message, &mac_deriv_message);
GenerateEncryptContext(message, &enc_deriv_message);
LOGV("GenerateDerivedKeys: id=%ld", (uint32_t)oec_session_id_);
OEMCryptoResult sts;
M_TIME(sts = OEMCrypto_GenerateDerivedKeys(
oec_session_id_,
reinterpret_cast<const uint8_t*>(mac_deriv_message.data()),
mac_deriv_message.size(),
reinterpret_cast<const uint8_t*>(enc_deriv_message.data()),
enc_deriv_message.size()),
metrics_, oemcrypto_generate_derived_keys_, sts);
if (OEMCrypto_SUCCESS != sts) {
LOGE("GenerateDerivedKeys: OEMCrypto_GenerateDerivedKeys error=%d", sts);
return false;
}
return true;
}
// Generate Derived Keys (from session key) for DefaultKeySession
bool GenerateDerivedKeys(const std::string& message,
const std::string& session_key) {
std::string mac_deriv_message;
std::string enc_deriv_message;
GenerateMacContext(message, &mac_deriv_message);
GenerateEncryptContext(message, &enc_deriv_message);
LOGV("GenerateDerivedKeys: id=%ld", (uint32_t)oec_session_id_);
OEMCryptoResult sts;
M_TIME(sts = OEMCrypto_DeriveKeysFromSessionKey(
oec_session_id_,
reinterpret_cast<const uint8_t*>(session_key.data()),
session_key.size(),
reinterpret_cast<const uint8_t*>(mac_deriv_message.data()),
mac_deriv_message.size(),
reinterpret_cast<const uint8_t*>(enc_deriv_message.data()),
enc_deriv_message.size()),
metrics_, oemcrypto_derive_keys_from_session_key_, sts);
if (OEMCrypto_SUCCESS != sts) {
LOGE("GenerateDerivedKeys: OEMCrypto_DeriveKeysFromSessionKey err=%d",
sts);
return false;
}
return true;
}
// Load Keys for DefaultKeySession
OEMCryptoResult LoadKeys(const std::string& message,
const std::string& signature,
const std::string& mac_key_iv,
const std::string& mac_key,
const std::vector<CryptoKey>& keys,
const std::string& provider_session_token,
CdmCipherMode* cipher_mode,
const std::string& srm_requirement) {
const uint8_t* msg = reinterpret_cast<const uint8_t*>(message.data());
const uint8_t* enc_mac_key = NULL;
const uint8_t* enc_mac_key_iv = NULL;
if (mac_key.size() >= MAC_KEY_SIZE && mac_key_iv.size() >= KEY_IV_SIZE) {
enc_mac_key = msg + GetOffset(message, mac_key);
enc_mac_key_iv = msg + GetOffset(message, mac_key_iv);
} else {
LOGV("DefaultKeySession::LoadKeys: enc_mac_key not set");
}
std::vector<OEMCrypto_KeyObject_V13> load_keys(keys.size());
for (size_t i = 0; i < keys.size(); ++i) {
const CryptoKey* ki = &keys[i];
OEMCrypto_KeyObject_V13* ko = &load_keys[i];
ko->key_id = msg + GetOffset(message, ki->key_id());
ko->key_id_length = ki->key_id().length();
ko->key_data_iv = msg + GetOffset(message, ki->key_data_iv());
ko->key_data = msg + GetOffset(message, ki->key_data());
ko->key_data_length = ki->key_data().length();
if (ki->HasKeyControl()) {
ko->key_control_iv = msg + GetOffset(message, ki->key_control_iv());
ko->key_control = msg + GetOffset(message, ki->key_control());
} else {
LOGE("For key %d: XXX key has no control block. size=%d", i,
ki->key_control().size());
ko->key_control_iv = NULL;
ko->key_control = NULL;
}
*cipher_mode = ki->cipher_mode();
}
uint8_t* pst = NULL;
if (!provider_session_token.empty()) {
pst = const_cast<uint8_t*>(msg) +
GetOffset(message, provider_session_token);
}
uint8_t* srm_req = NULL;
if (!srm_requirement.empty()) {
srm_req = const_cast<uint8_t*>(msg) + GetOffset(message, srm_requirement);
}
LOGV("LoadKeys: id=%ld", (uint32_t)oec_session_id_);
OEMCryptoResult sts;
M_TIME(sts = OEMCrypto_LoadKeys_Back_Compat(
oec_session_id_, msg, message.size(),
reinterpret_cast<const uint8_t*>(signature.data()),
signature.size(), enc_mac_key_iv, enc_mac_key, keys.size(),
&load_keys[0], pst, provider_session_token.length(), srm_req,
OEMCrypto_ContentLicense),
metrics_, oemcrypto_load_keys_, sts);
return sts;
}
// Select Key for DefaultKeySession
OEMCryptoResult SelectKey(const std::string& key_id,
CdmCipherMode cipher_mode) {
// Crypto session lock already locked.
if (!cached_key_id_.empty() && cached_key_id_ == key_id) {
// Already using the desired key.
return OEMCrypto_SUCCESS;
}
cached_key_id_ = key_id;
const uint8_t* key_id_string =
reinterpret_cast<const uint8_t*>(cached_key_id_.data());
OEMCryptoResult sts;
M_TIME(sts = OEMCrypto_SelectKey(oec_session_id_, key_id_string,
cached_key_id_.size(),
ToOEMCryptoCipherMode(cipher_mode)),
metrics_, oemcrypto_select_key_, sts);
if (OEMCrypto_SUCCESS != sts) {
cached_key_id_.clear();
}
return sts;
}
// Decrypt for DefaultKeySession
OEMCryptoResult Decrypt(
const CdmDecryptionParameters& params,
OEMCrypto_DestBufferDesc& buffer_descriptor,
OEMCrypto_CENCEncryptPatternDesc& pattern_descriptor) {
OEMCryptoResult sts;
M_TIME(sts = OEMCrypto_DecryptCENC(
oec_session_id_, params.encrypt_buffer, params.encrypt_length,
params.is_encrypted, &(*params.iv).front(), params.block_offset,
&buffer_descriptor, &pattern_descriptor, params.subsample_flags),
metrics_, oemcrypto_decrypt_cenc_, sts,
metrics::Pow2Bucket(params.encrypt_length));
return sts;
}
private:
CryptoSessionId oec_session_id_;
KeyId cached_key_id_;
};
// TODO(jfore, rfrias, gmorgan): This object should be split off into it's own
// module or refactored out.
class SubLicenseKeySession : public KeySession {
typedef enum {
kInitializing,
kInitialLicenseLoaded,
kInitialLicenseFailed,
} SubLicenseState;
public:
SubLicenseKeySession(SubLicenseSessionMap& sub_license_oec_sessions,
metrics::CryptoMetrics* metrics,
const std::string& wrapped_private_device_key,
SecurityLevel requested_security_level,
const std::string& group_master_key_id)
: KeySession(metrics),
state_(kInitializing),
wrapped_private_device_key_(wrapped_private_device_key),
sub_license_oec_sessions_(sub_license_oec_sessions),
requested_security_level_(requested_security_level),
group_master_key_id_(group_master_key_id) {}
virtual ~SubLicenseKeySession() {
for (SubLicenseSessionMap::iterator oec_session =
sub_license_oec_sessions_.begin();
oec_session != sub_license_oec_sessions_.end(); oec_session++) {
metrics_->oemcrypto_close_session_.Increment(
OEMCrypto_CloseSession(oec_session->second));
}
sub_license_oec_sessions_.clear();
}
KeySessionType Type() { return kSubLicense; }
// This version of GenerateDerivedKeys is for devices using keyboxes. It is
// not supported using sub licenses.
bool GenerateDerivedKeys(const std::string&) { return false; }
// GenerateDerivedKeys is called for each open oemcrypto session and is only
// called once.
bool GenerateDerivedKeys(const std::string& message,
const std::string& session_key) {
std::string mac_deriv_message;
std::string enc_deriv_message;
GenerateMacContext(message, &mac_deriv_message);
GenerateEncryptContext(message, &enc_deriv_message);
for (SubLicenseSessionMap::iterator it = sub_license_oec_sessions_.begin();
it != sub_license_oec_sessions_.end(); it++) {
LOGV("GenerateDerivedKeys: id=%ld", (uint32_t)it->second);
OEMCryptoResult sts;
M_TIME(
sts = OEMCrypto_DeriveKeysFromSessionKey(
it->second, reinterpret_cast<const uint8_t*>(session_key.data()),
session_key.size(),
reinterpret_cast<const uint8_t*>(mac_deriv_message.data()),
mac_deriv_message.size(),
reinterpret_cast<const uint8_t*>(enc_deriv_message.data()),
enc_deriv_message.size()),
metrics_, oemcrypto_derive_keys_from_session_key_, sts);
if (OEMCrypto_SUCCESS != sts) {
LOGE("GenerateDerivedKeys: OEMCrypto_DeriveKeysFromSessionKey err=%d",
sts);
return false;
}
}
return true;
}
// Load the keys in |keys|. The initial keys are saved for key rotation.
OEMCryptoResult LoadKeys(const std::string& message,
const std::string& signature,
const std::string& mac_key_iv,
const std::string& mac_key,
const std::vector<CryptoKey>& keys,
const std::string& provider_session_token,
CdmCipherMode* cipher_mode,
const std::string& srm_requirement) {
if (state_ == kInitializing) {
state_ = kInitialLicenseLoaded;
keys_ = keys;
OEMCryptoResult sts =
DoLoadKeys(message, signature, mac_key_iv, mac_key, keys,
provider_session_token, cipher_mode, srm_requirement);
if (OEMCrypto_SUCCESS != sts) {
state_ = kInitialLicenseFailed;
}
return sts;
}
return DoSubLicenseLoadKeys(message, signature, mac_key_iv, mac_key,
keys[0], provider_session_token, cipher_mode,
srm_requirement);
}
// Each oemcrypto session contains a single key. Find the right sub session
// and save it's id as the selected oemcrypto session.
OEMCryptoResult SelectKey(const std::string& key_id,
CdmCipherMode cipher_mode) {
for (size_t i = 0; i < keys_.size(); ++i) {
if (keys_[i].key_id() == key_id) {
cached_sub_session_key_id_ = keys_[i].sub_session_key_id();
if (keys_[i].cipher_mode() != cipher_mode) {
SubLicenseSessionMap::iterator it =
sub_license_oec_sessions_.find(cached_sub_session_key_id_);
if (it == sub_license_oec_sessions_.end()) {
return OEMCrypto_ERROR_INVALID_SESSION;
}
OEMCryptoResult status = OEMCrypto_SUCCESS;
M_TIME(status = OEMCrypto_SelectKey(
it->second,
reinterpret_cast<const uint8_t*>(keys_[i].key_id().data()),
keys_[i].key_id().size(),
static_cast<OEMCryptoCipherMode>(cipher_mode)),
metrics_, oemcrypto_select_key_, status);
if (OEMCrypto_SUCCESS != status) {
return status;
}
keys_[i].set_cipher_mode(cipher_mode);
}
}
}
return OEMCrypto_SUCCESS;
}
// Decrypt performs the decryption using the selected oemcrypto session.
// TODO(jfore): Support DecryptInChunks.
OEMCryptoResult Decrypt(
const CdmDecryptionParameters& params,
OEMCrypto_DestBufferDesc& buffer_descriptor,
OEMCrypto_CENCEncryptPatternDesc& pattern_descriptor) {
SubLicenseSessionMap::iterator it =
sub_license_oec_sessions_.find(cached_sub_session_key_id_);
if (it == sub_license_oec_sessions_.end()) {
return OEMCrypto_ERROR_INVALID_SESSION;
}
OEMCryptoResult sts;
M_TIME(sts = OEMCrypto_DecryptCENC(
it->second, params.encrypt_buffer, params.encrypt_length,
params.is_encrypted, &(*params.iv).front(), params.block_offset,
&buffer_descriptor, &pattern_descriptor, params.subsample_flags),
metrics_, oemcrypto_decrypt_cenc_, sts,
metrics::Pow2Bucket(params.encrypt_length));
return sts;
}
private:
// Destroy each open oemcrypto session and relace them with new ones.
OEMCryptoResult ResetCryptoSessions() {
for (SubLicenseSessionMap::iterator it = sub_license_oec_sessions_.begin();
it != sub_license_oec_sessions_.end(); it++) {
OEMCryptoResult sts = OEMCrypto_CloseSession(it->second);
metrics_->oemcrypto_close_session_.Increment(sts);
if (OEMCrypto_SUCCESS != sts) {
return sts;
}
sts = OEMCrypto_OpenSession(&it->second, requested_security_level_);
if (OEMCrypto_SUCCESS != sts) {
return sts;
}
M_TIME(sts = OEMCrypto_LoadDeviceRSAKey(
it->second,
reinterpret_cast<const uint8_t*>(
wrapped_private_device_key_.data()),
wrapped_private_device_key_.size()),
metrics_, oemcrypto_load_device_rsa_key_, sts);
if (OEMCrypto_SUCCESS != sts) {
return sts;
}
}
return OEMCrypto_SUCCESS;
}
// DoLoadKeys loads a single key into each oemcrypto session.
OEMCryptoResult DoLoadKeys(const std::string& message,
const std::string& signature,
const std::string& mac_key_iv,
const std::string& mac_key,
const std::vector<CryptoKey>& keys,
const std::string& provider_session_token,
CdmCipherMode* cipher_mode,
const std::string& srm_requirement) {
const uint8_t* msg = reinterpret_cast<const uint8_t*>(message.data());
const uint8_t* enc_mac_key = NULL;
const uint8_t* enc_mac_key_iv = NULL;
if (mac_key.size() >= MAC_KEY_SIZE && mac_key_iv.size() >= KEY_IV_SIZE) {
enc_mac_key = msg + GetOffset(message, mac_key);
enc_mac_key_iv = msg + GetOffset(message, mac_key_iv);
} else {
LOGV("CryptoSession::LoadKeys: enc_mac_key not set");
}
uint8_t* pst = NULL;
if (!provider_session_token.empty()) {
pst = const_cast<uint8_t*>(msg) +
GetOffset(message, provider_session_token);
}
uint8_t* srm_req = NULL;
if (!srm_requirement.empty()) {
srm_req = const_cast<uint8_t*>(msg) + GetOffset(message, srm_requirement);
}
for (size_t i = 0; i < keys.size(); i++) {
OEMCrypto_KeyObject_V13 key_object;
const CryptoKey& key_data = keys[i];
key_object.key_id = msg + GetOffset(message, key_data.key_id());
key_object.key_id_length = key_data.key_id().length();
key_object.key_data_iv = msg + GetOffset(message, key_data.key_data_iv());
key_object.key_data = msg + GetOffset(message, key_data.key_data());
key_object.key_data_length = key_data.key_data().length();
if (key_data.HasKeyControl()) {
key_object.key_control_iv =
msg + GetOffset(message, key_data.key_control_iv());
key_object.key_control =
msg + GetOffset(message, key_data.key_control());
} else {
LOGE("For key %s: XXX key has no control block. size=%d",
key_data.key_id().c_str(), key_data.key_control().size());
key_object.key_control_iv = NULL;
key_object.key_control = NULL;
}
*cipher_mode = key_data.cipher_mode();
SubLicenseSessionMap::iterator oec_session_id =
sub_license_oec_sessions_.find(key_data.sub_session_key_id());
if (oec_session_id == sub_license_oec_sessions_.end()) {
LOGE("CryptoSession::LoadKeys: Unrecognized sub session %s",
key_data.sub_session_key_id().c_str());
return OEMCrypto_ERROR_INVALID_SESSION;
}
OEMCryptoResult sts;
M_TIME(sts = OEMCrypto_LoadKeys_Back_Compat(
oec_session_id->second, msg, message.size(),
reinterpret_cast<const uint8_t*>(signature.data()),
signature.size(), enc_mac_key_iv, enc_mac_key, 1, &key_object,
pst, provider_session_token.length(), srm_req,
OEMCrypto_ContentLicense),
metrics_, oemcrypto_load_keys_, sts);
if (sts != OEMCrypto_SUCCESS) {
return sts;
}
M_TIME(sts = OEMCrypto_SelectKey(
oec_session_id->second,
reinterpret_cast<const uint8_t*>(key_data.key_id().data()),
key_data.key_id().size(),
static_cast<OEMCryptoCipherMode>(key_data.cipher_mode())),
metrics_, oemcrypto_select_key_, sts);
if (sts != OEMCrypto_SUCCESS) {
return sts;
}
}
keys_ = keys;
return OEMCrypto_SUCCESS;
}
// DoLoadKeys loads a single key into each oemcrypto session.
OEMCryptoResult DoSubLicenseLoadKeys(
const std::string& message, const std::string& signature,
const std::string& mac_key_iv, const std::string& mac_key,
const CryptoKey& key, const std::string& provider_session_token,
CdmCipherMode*, const std::string& srm_requirement) {
SubLicenseSessionMap::iterator it = sub_license_oec_sessions_.end();
size_t key_index = 0;
for (; key_index < keys_.size(); key_index++) {
if (keys_[key_index].track_label() == key.track_label()) {
it = sub_license_oec_sessions_.find(
keys_[key_index].sub_session_key_id());
CryptoKey tmp = key;
tmp.set_sub_session_key_id(keys_[key_index].sub_session_key_id());
tmp.set_sub_session_key(keys_[key_index].sub_session_key());
keys_[key_index] = tmp;
break;
}
}
if (it == sub_license_oec_sessions_.end()) {
return OEMCrypto_SUCCESS;
}
LOGV("GenerateDerivedKeys: id=%ld", (uint32_t)it->second);
std::string mac_deriv_message;
std::string enc_deriv_message;
GenerateMacContext(group_master_key_id_ + key.track_label(),
&mac_deriv_message);
GenerateEncryptContext(group_master_key_id_ + key.track_label(),
&enc_deriv_message);
const uint8_t* msg = reinterpret_cast<const uint8_t*>(message.data());
const uint8_t* enc_mac_key = NULL;
const uint8_t* enc_mac_key_iv = NULL;
if (mac_key.size() >= MAC_KEY_SIZE && mac_key_iv.size() >= KEY_IV_SIZE) {
enc_mac_key = msg + GetOffset(message, mac_key);
enc_mac_key_iv = msg + GetOffset(message, mac_key_iv);
} else {
LOGV("CryptoSession::LoadKeys: enc_mac_key not set");
}
uint8_t* pst = NULL;
if (!provider_session_token.empty()) {
pst = const_cast<uint8_t*>(msg) +
GetOffset(message, provider_session_token);
}
uint8_t* srm_req = NULL;
if (!srm_requirement.empty()) {
srm_req = const_cast<uint8_t*>(msg) + GetOffset(message, srm_requirement);
}
OEMCryptoResult sts;
const std::string& sub_session_key = keys_[key_index].sub_session_key();
LOGE("ssksize = %d", sub_session_key.size());
M_TIME(sts = OEMCrypto_DeriveKeysFromSessionKey(
it->second,
reinterpret_cast<const uint8_t*>(sub_session_key.data()),
sub_session_key.size(),
reinterpret_cast<const uint8_t*>(mac_deriv_message.data()),
mac_deriv_message.size(),
reinterpret_cast<const uint8_t*>(enc_deriv_message.data()),
enc_deriv_message.size()),
metrics_, oemcrypto_derive_keys_from_session_key_, sts);
if (OEMCrypto_SUCCESS != sts) {
LOGE("GenerateDerivedKeys: OEMCrypto_DeriveKeysFromSessionKey err=%d",
sts);
return sts;
}
OEMCrypto_KeyObject_V13 key_object;
key_object.key_id = msg + GetOffset(message, keys_[key_index].key_id());
key_object.key_id_length = keys_[key_index].key_id().length();
key_object.key_data_iv =
msg + GetOffset(message, keys_[key_index].key_data_iv());
key_object.key_data = msg + GetOffset(message, keys_[key_index].key_data());
key_object.key_data_length = keys_[key_index].key_data().length();
if (key.HasKeyControl()) {
key_object.key_control_iv =
msg + GetOffset(message, keys_[key_index].key_control_iv());
key_object.key_control =
msg + GetOffset(message, keys_[key_index].key_control());
}
M_TIME(
sts = OEMCrypto_LoadKeys_Back_Compat(
it->second, msg, message.size(),
reinterpret_cast<const uint8_t*>(signature.data()),
signature.size(), enc_mac_key_iv, enc_mac_key, 1, &key_object, pst,
provider_session_token.length(), srm_req, OEMCrypto_ContentLicense),
metrics_, oemcrypto_load_keys_, sts);
if (sts != OEMCrypto_SUCCESS) {
return sts;
}
M_TIME(
sts = OEMCrypto_SelectKey(
it->second,
reinterpret_cast<const uint8_t*>(keys_[key_index].key_id().data()),
keys_[key_index].key_id().size(),
static_cast<OEMCryptoCipherMode>(keys_[key_index].cipher_mode())),
metrics_, oemcrypto_select_key_, sts);
return sts;
}
SubLicenseState state_;
std::string cached_sub_session_key_id_;
std::string wrapped_private_device_key_;
std::string message_;
std::string session_key_;
std::vector<CryptoKey> keys_;
SubLicenseSessionMap& sub_license_oec_sessions_;
SecurityLevel requested_security_level_;
KeyId group_master_key_id_;
};
CryptoSession::CryptoSession(metrics::CryptoMetrics* metrics)
: metrics_(metrics),
system_id_(-1),
open_(false),
update_usage_table_after_close_session_(false),
is_destination_buffer_type_valid_(false),
requested_security_level_(kLevelDefault),
is_usage_support_type_valid_(false),
usage_support_type_(kUnknownUsageSupport),
usage_table_header_(NULL),
request_id_base_(0),
cipher_mode_(kCipherModeCtr) {
assert(metrics);
Init();
life_span_.Start();
}
CryptoSession::~CryptoSession() {
if (open_) {
Close();
}
Terminate();
M_RECORD(metrics_, crypto_session_life_span_, life_span_.AsMs());
}
bool CryptoSession::GetProvisioningMethod(CdmClientTokenType* token_type) {
OEMCrypto_ProvisioningMethod method =
OEMCrypto_GetProvisioningMethod(requested_security_level_);
metrics_->oemcrypto_provisioning_method_.Record(method);
CdmClientTokenType type;
switch (method) {
case OEMCrypto_OEMCertificate:
type = kClientTokenOemCert;
break;
case OEMCrypto_Keybox:
type = kClientTokenKeybox;
break;
case OEMCrypto_DrmCertificate:
type = kClientTokenDrmCert;
break;
case OEMCrypto_ProvisioningError:
default:
LOGE("OEMCrypto_GetProvisioningMethod failed. %d", method);
metrics_->oemcrypto_provisioning_method_.SetError(method);
return false;
}
*token_type = type;
return true;
}
void CryptoSession::Init() {
LOGV("CryptoSession::Init");
AutoLock auto_lock(crypto_lock_);
session_count_ += 1;
if (!initialized_) {
OEMCryptoResult sts;
M_TIME(sts = OEMCrypto_Initialize(), metrics_, oemcrypto_initialize_, sts);
if (OEMCrypto_SUCCESS != sts) {
LOGE("OEMCrypto_Initialize failed: %d", sts);
return;
}
initialized_ = true;
}
if (!GetProvisioningMethod(&pre_provision_token_type_)) {
initialized_ = false;
}
}
void CryptoSession::Terminate() {
LOGV("CryptoSession::Terminate: initialized_=%d, session_count_=%d",
initialized_, session_count_);
AutoLock auto_lock(crypto_lock_);
if (session_count_ > 0) {
session_count_ -= 1;
} else {
LOGE("CryptoSession::Terminate error, session count: %d", session_count_);
}
if (session_count_ > 0 || !initialized_) return;
OEMCryptoResult sts = OEMCrypto_Terminate();
if (OEMCrypto_SUCCESS != sts) {
LOGE("OEMCrypto_Terminate failed: %d", sts);
}
if (usage_table_header_l1_ != NULL) {
delete usage_table_header_l1_;
usage_table_header_l1_ = NULL;
}
if (usage_table_header_l3_ != NULL) {
delete usage_table_header_l3_;
usage_table_header_l3_ = NULL;
}
initialized_ = false;
}
bool CryptoSession::GetTokenFromKeybox(std::string* token) {
if (token == NULL) {
LOGE("CryptoSession::GetTokenFromKeybox: token not provided");
return false;
}
std::string temp_buffer(KEYBOX_KEY_DATA_SIZE, '\0');
// lock is held by caller
size_t buf_size = temp_buffer.size();
uint8_t* buf = reinterpret_cast<uint8_t*>(&temp_buffer[0]);
OEMCryptoResult status;
M_TIME(
status = OEMCrypto_GetKeyData(buf, &buf_size, requested_security_level_),
metrics_, oemcrypto_get_key_data_, status, metrics::Pow2Bucket(buf_size));
if (OEMCrypto_SUCCESS == status) {
token->swap(temp_buffer);
return true;
}
LOGE("CryptoSession::GetTokenFromKeybox : error %d.", status);
return false;
}
bool CryptoSession::GetTokenFromOemCert(std::string* token) {
if (token == NULL) {
LOGE("CryptoSession::GetTokenFromOemCert: token not provided ");
return false;
}
OEMCryptoResult status;
if (!oem_token_.empty()) {
token->assign(oem_token_);
return true;
}
std::string temp_buffer(CERTIFICATE_DATA_SIZE, '\0');
// lock is held by caller
bool retrying = false;
while (true) {
size_t buf_size = temp_buffer.size();
uint8_t* buf = reinterpret_cast<uint8_t*>(&temp_buffer[0]);
status = OEMCrypto_GetOEMPublicCertificate(oec_session_id_, buf, &buf_size);
metrics_->oemcrypto_get_oem_public_certificate_.Increment(status);
if (OEMCrypto_SUCCESS == status) {
temp_buffer.resize(buf_size);
oem_token_.assign(temp_buffer);
token->assign(temp_buffer);
return true;
}
if (status == OEMCrypto_ERROR_SHORT_BUFFER && !retrying) {
temp_buffer.resize(buf_size);
retrying = true;
continue;
}
LOGE("CryptoSession::GetTokenFromOemCert : error %d.", status);
return false;
}
}
bool CryptoSession::GetProvisioningToken(std::string* token) {
if (!token) {
LOGE("CryptoSession::GetProvisioningToken : No token passed to method.");
metrics_->crypto_session_get_token_.Increment(false);
return false;
}
LOGV("CryptoSession::GetProvisioningToken: Lock");
AutoLock auto_lock(crypto_lock_);
if (!initialized_) {
metrics_->crypto_session_get_token_.Increment(false);
return false;
}
bool result = false;
if (pre_provision_token_type_ == kClientTokenKeybox) {
result = GetTokenFromKeybox(token);
} else if (pre_provision_token_type_ == kClientTokenOemCert) {
result = GetTokenFromOemCert(token);
}
metrics_->crypto_session_get_token_.Increment(result);
return result;
}
CdmSecurityLevel CryptoSession::GetSecurityLevel() {
LOGV("CryptoSession::GetSecurityLevel");
if (!initialized_) {
return kSecurityLevelUninitialized;
}
std::string security_level =
OEMCrypto_SecurityLevel(requested_security_level_);
if ((security_level.size() != 2) || (security_level.at(0) != 'L')) {
return kSecurityLevelUnknown;
}
CdmSecurityLevel cdm_security_level;
switch (security_level.at(1)) {
case '1':
cdm_security_level = kSecurityLevelL1;
break;
case '2':
cdm_security_level = kSecurityLevelL2;
break;
case '3':
cdm_security_level = kSecurityLevelL3;
break;
default:
cdm_security_level = kSecurityLevelUnknown;
break;
}
return cdm_security_level;
}
bool CryptoSession::GetInternalDeviceUniqueId(std::string* device_id) {
if (!device_id) {
LOGE(
"CryptoSession::GetInternalDeviceUniqueId : No buffer passed to "
"method.");
return false;
}
LOGV("CryptoSession::GetInternalDeviceUniqueId: Lock");
AutoLock auto_lock(crypto_lock_);
if (!initialized_) {
return false;
}
if (pre_provision_token_type_ == kClientTokenOemCert) {
return GetTokenFromOemCert(device_id);
} else {
// Device's authentication root is a keybox.
// Or not. If no keybox, let the OEMCrypto call fail.
std::vector<uint8_t> id;
size_t id_length = 32;
id.resize(id_length);
OEMCryptoResult sts =
OEMCrypto_GetDeviceID(&id[0], &id_length, requested_security_level_);
// Increment the count of times this method was called.
metrics_->oemcrypto_get_device_id_.Increment(sts);
if (OEMCrypto_SUCCESS != sts) {
return false;
}
device_id->assign(reinterpret_cast<char*>(&id[0]), id_length);
return true;
}
}
bool CryptoSession::GetExternalDeviceUniqueId(std::string* device_id) {
if (device_id == NULL) {
LOGE("CryptoSession::GetExternalDeviceUniqueId: device_id not provided");
return false;
}
std::string temp;
if (!GetInternalDeviceUniqueId(&temp)) return false;
if (pre_provision_token_type_ == kClientTokenOemCert) {
// To keep the size of the value passed back to the application down, hash
// the large OEM Public Cert to a smaller value.
uint8_t hash[SHA256_DIGEST_LENGTH];
SHA256_CTX ctx;
SHA256_Init(&ctx);
SHA256_Update(&ctx, temp.data(), temp.length());
SHA256_Final(hash, &ctx);
temp.assign(reinterpret_cast<char*>(hash), SHA256_DIGEST_LENGTH);
}
*device_id = temp;
return true;
}
bool CryptoSession::GetApiVersion(uint32_t* version) {
if (!version) {
LOGE("CryptoSession::GetApiVersion: No buffer passed to method.");
return false;
}
if (!initialized_) {
return false;
}
*version = OEMCrypto_APIVersion(requested_security_level_);
// Record the version into the metrics.
metrics_->oemcrypto_api_version_.Record(*version);
return true;
}
bool CryptoSession::GetSystemId(uint32_t* system_id) {
if (!system_id) {
LOGE("CryptoSession::GetSystemId: No buffer passed to method.");
return false;
}
LOGV("CryptoSession::GetSystemId: Lock");
AutoLock auto_lock(crypto_lock_);
if (!initialized_ || !open_) {
return false;
}
*system_id = system_id_;
return true;
}
// This method gets the system id from the keybox key data.
// This method assumes that OEMCrypto has been initialized and that
// the caller has acquired the crypto_lock_ before making this call.
bool CryptoSession::GetSystemIdInternal(uint32_t* system_id) {
if (!system_id) {
LOGE("CryptoSession::GetSystemIdInternal: No system_id passed to method.");
return false;
}
if (pre_provision_token_type_ == kClientTokenKeybox) {
uint8_t buf[KEYBOX_KEY_DATA_SIZE];
size_t buf_size = sizeof(buf);
OEMCryptoResult sts;
M_TIME(
sts = OEMCrypto_GetKeyData(buf, &buf_size, requested_security_level_),
metrics_, oemcrypto_get_key_data_, sts, metrics::Pow2Bucket(buf_size));
if (OEMCrypto_SUCCESS != sts) {
LOGE("CryptoSession::GetSystemIdInternal: "
"OEMCrypto_GetKeyData failed with %d", sts);
return false;
}
// Decode 32-bit int encoded as network-byte-order byte array starting at
// index 4.
uint32_t* id = reinterpret_cast<uint32_t*>(&buf[4]);
*system_id = ntohl(*id);
return true;
} else if (pre_provision_token_type_ == kClientTokenOemCert) {
// Get the OEM Cert
std::string oem_cert;
if (GetTokenFromOemCert(&oem_cert)) {
return ExtractSystemIdFromOemCert(oem_cert, system_id);
} else {
return false;
}
} else if (pre_provision_token_type_ == kClientTokenDrmCert) {
// TODO(blueeyes): Support loading the system id from a pre-provisioned
// Drm certificate.
return true;
} else {
LOGE("CryptoSession::GetSystemIdInternal: "
"Unsupported pre-provision token type %d", pre_provision_token_type_);
return false;
}
}
bool CryptoSession::ExtractSystemIdFromOemCert(const std::string& oem_cert,
uint32_t* system_id) {
// Load the certificate chain into a BoringSSL X509 Stack
const boringssl_ptr<STACK_OF(X509), DeleteX509Stack> x509_stack(
sk_X509_new_null());
if (x509_stack.get() == NULL) {
LOGE("CryptoSession::ExtractSystemIdFromOemCert: "
"Unable to allocate X509 Stack.");
return false;
}
CBS pkcs7;
CBS_init(&pkcs7, reinterpret_cast<const uint8_t*>(oem_cert.data()),
oem_cert.size());
if (!PKCS7_get_certificates(x509_stack.get(), &pkcs7)) {
LOGE("CryptoSession::ExtractSystemIdFromOemCert: "
"Error getting certificate chain.");
return false;
}
STACK_OF(X509)* certs = x509_stack.get();
// Get the Widevine intermediate cert from the stack
if (sk_X509_num(certs) != 2) {
LOGE("CryptoSession::ExtractSystemIdFromOemCert: "
"Expected 2 certificates in chain, got %d",
sk_X509_num(certs));
return false;
}
X509* const intermediate_cert = sk_X509_value(certs, 1);
if (!intermediate_cert) {
LOGE("CryptoSession::ExtractSystemIdFromOemCert: "
"Unable to get intermediate cert.");
return false;
}
// Find the Widevine System ID extension in the intermediate cert
const int extension_count = X509_get_ext_count(intermediate_cert);
for (int i = 0; i < extension_count; ++i) {
X509_EXTENSION* const extension = X509_get_ext(intermediate_cert, i);
if (!extension) {
LOGE("CryptoSession::ExtractSystemIdFromOemCert: "
"Unable to get cert extension %d", i);
continue;
}
ASN1_OBJECT* const extension_object = X509_EXTENSION_get_object(extension);
if (!extension_object) {
LOGE("CryptoSession::ExtractSystemIdFromOemCert: "
"Unable to get object of cert extension %d", i);
continue;
}
char extension_name[kExtensionOidSize + 1];
OBJ_obj2txt(extension_name, kExtensionOidSize, extension_object, 1);
if (strcmp(extension_name, kWidevineSystemIdExtensionOid) != 0) {
// This extension is not the Widevine System ID, so we should move on to
// the next one.
continue;
}
ASN1_OCTET_STRING* const octet_str = X509_EXTENSION_get_data(extension);
if (!octet_str) {
LOGE("CryptoSession::ExtractSystemIdFromOemCert: "
"Unable to get data of Widevine System ID extension.");
return false;
}
const unsigned char* data = octet_str->data;
if (!data) {
LOGE("CryptoSession::ExtractSystemIdFromOemCert: "
"Null data in Widevine System ID extension.");
return false;
}
ASN1_INTEGER* const asn1_integer =
d2i_ASN1_INTEGER(NULL, &data, octet_str->length);
if (!asn1_integer) {
LOGE("CryptoSession::ExtractSystemIdFromOemCert: "
"Unable to decode data in Widevine System ID extension.");
return false;
}
const long system_id_long = ASN1_INTEGER_get(asn1_integer);
ASN1_INTEGER_free(asn1_integer);
if (system_id_long == -1) {
LOGE("CryptoSession::ExtractSystemIdFromOemCert: "
"Unable to decode ASN integer in Widevine System ID extension.");
return false;
}
*system_id = static_cast<uint32_t>(system_id_long);
return true;
}
LOGE("CryptoSession::ExtractSystemIdFromOemCert: "
"Widevine System ID extension not found.");
return false;
}
bool CryptoSession::GetProvisioningId(std::string* provisioning_id) {
if (!provisioning_id) {
LOGE("CryptoSession::GetProvisioningId : No buffer passed to method.");
return false;
}
uint8_t buf[KEYBOX_KEY_DATA_SIZE];
size_t buf_size = sizeof(buf);
LOGV("CryptoSession::GetProvisioningId: Lock");
AutoLock auto_lock(crypto_lock_);
if (!initialized_) {
return false;
}
if (pre_provision_token_type_ == kClientTokenOemCert) {
// OEM Cert devices have no provisioning-unique ID embedded in them, so we
// synthesize one by using the External Device-Unique ID and inverting all
// the bits.
if (!GetExternalDeviceUniqueId(provisioning_id)) return false;
for (size_t i = 0; i < provisioning_id->size(); ++i) {
char value = (*provisioning_id)[i];
(*provisioning_id)[i] = ~value;
}
return true;
} else {
OEMCryptoResult sts;
M_TIME(
sts = OEMCrypto_GetKeyData(buf, &buf_size, requested_security_level_),
metrics_, oemcrypto_get_key_data_, sts, metrics::Pow2Bucket(buf_size));
if (OEMCrypto_SUCCESS != sts) {
return false;
}
provisioning_id->assign(reinterpret_cast<char*>(&buf[8]), 16);
return true;
}
}
uint8_t CryptoSession::GetSecurityPatchLevel() {
uint8_t patch = OEMCrypto_Security_Patch_Level(requested_security_level_);
metrics_->oemcrypto_security_patch_level_.Record(patch);
return patch;
}
CdmResponseType CryptoSession::Open(SecurityLevel requested_security_level) {
LOGD("CryptoSession::Open: Lock: requested_security_level: %s",
requested_security_level == kLevel3
? QUERY_VALUE_SECURITY_LEVEL_L3.c_str()
: QUERY_VALUE_SECURITY_LEVEL_DEFAULT.c_str());
AutoLock auto_lock(crypto_lock_);
if (!initialized_) return UNKNOWN_ERROR;
if (open_) return NO_ERROR;
OEMCrypto_SESSION sid;
requested_security_level_ = requested_security_level;
OEMCryptoResult sts = OEMCrypto_OpenSession(&sid, requested_security_level);
if (OEMCrypto_SUCCESS == sts) {
oec_session_id_ = static_cast<CryptoSessionId>(sid);
LOGV("OpenSession: id= %ld", (uint32_t)oec_session_id_);
open_ = true;
} else if (OEMCrypto_ERROR_TOO_MANY_SESSIONS == sts) {
LOGE("OEMCrypto_Open failed: %d, open sessions: %ld, initialized: %d", sts,
session_count_, (int)initialized_);
return INSUFFICIENT_CRYPTO_RESOURCES;
}
if (!open_) {
LOGE("OEMCrypto_Open failed: %d, open sessions: %ld, initialized: %d", sts,
session_count_, (int)initialized_);
return UNKNOWN_ERROR;
}
// Get System ID and save it.
if (GetSystemIdInternal(&system_id_)) {
metrics_->crypto_session_system_id_.Record(system_id_);
} else {
LOGE("CryptoSession::Open: Failed to fetch system id.");
metrics_->crypto_session_system_id_.SetError(LOAD_SYSTEM_ID_ERROR);
return LOAD_SYSTEM_ID_ERROR;
}
OEMCryptoResult random_sts = OEMCrypto_GetRandom(
reinterpret_cast<uint8_t*>(&request_id_base_), sizeof(request_id_base_));
metrics_->oemcrypto_get_random_.Increment(random_sts);
++request_id_index_;
CdmUsageSupportType usage_support_type;
CdmResponseType result = GetUsageSupportType(&usage_support_type);
if (result == NO_ERROR) {
metrics_->oemcrypto_usage_table_support_.Record(usage_support_type);
if (usage_support_type == kUsageEntrySupport) {
CdmSecurityLevel security_level = GetSecurityLevel();
if (security_level == kSecurityLevelL1 ||
security_level == kSecurityLevelL3) {
UsageTableHeader** header = security_level == kSecurityLevelL1
? &usage_table_header_l1_
: &usage_table_header_l3_;
if (*header == NULL) {
*header = new UsageTableHeader();
// Ignore errors since we do not know when a session is opened,
// if it is intended to be used for offline/usage session related
// or otherwise.
crypto_lock_.Release();
bool is_usage_table_header_inited =
(*header)->Init(security_level, this);
crypto_lock_.Acquire();
if (!is_usage_table_header_inited) {
delete *header;
*header = NULL;
usage_table_header_ = NULL;
return NO_ERROR;
}
}
usage_table_header_ = *header;
}
}
} else {
metrics_->oemcrypto_usage_table_support_.SetError(result);
}
// TODO(gmorgan, jfore): resolve handling of usage records in sublicenses
key_session_.reset(new DefaultKeySession(oec_session_id_, metrics_));
return NO_ERROR;
}
void CryptoSession::Close() {
LOGV("CloseSession: id=%ld open=%s", (uint32_t)oec_session_id_,
open_ ? "true" : "false");
OEMCryptoResult close_sts;
bool update_usage_table = false;
{
AutoLock auto_lock(crypto_lock_);
if (!open_) return;
close_sts = OEMCrypto_CloseSession(oec_session_id_);
metrics_->oemcrypto_close_session_.Increment(close_sts);
if (OEMCrypto_SUCCESS == close_sts) open_ = false;
update_usage_table = update_usage_table_after_close_session_;
}
if (close_sts == OEMCrypto_SUCCESS && update_usage_table &&
usage_support_type_ == kUsageTableSupport) {
UpdateUsageInformation();
}
}
bool CryptoSession::GenerateRequestId(std::string* req_id_str) {
LOGV("CryptoSession::GenerateRequestId: Lock");
AutoLock auto_lock(crypto_lock_);
if (!req_id_str) {
LOGE("CryptoSession::GenerateRequestId: No output destination provided.");
return false;
}
*req_id_str = HexEncode(reinterpret_cast<uint8_t*>(&request_id_base_),
sizeof(request_id_base_)) +
HexEncode(reinterpret_cast<uint8_t*>(&request_id_index_),
sizeof(request_id_index_));
return true;
}
bool CryptoSession::PrepareRequest(const std::string& message,
bool is_provisioning,
std::string* signature) {
LOGV("CryptoSession::PrepareRequest: Lock");
AutoLock auto_lock(crypto_lock_);
if (!signature) {
LOGE("CryptoSession::PrepareRequest : No output destination provided.");
return false;
}
if (is_provisioning && (pre_provision_token_type_ == kClientTokenKeybox)) {
if (!GenerateDerivedKeys(message)) return false;
if (!GenerateSignature(message, signature)) return false;
} else {
if (!GenerateRsaSignature(message, signature)) return false;
}
return true;
}
bool CryptoSession::PrepareRenewalRequest(const std::string& message,
std::string* signature) {
LOGV("CryptoSession::PrepareRenewalRequest: Lock");
AutoLock auto_lock(crypto_lock_);
if (!signature) {
LOGE(
"CryptoSession::PrepareRenewalRequest : No output destination "
"provided.");
return false;
}
if (!GenerateSignature(message, signature)) {
return false;
}
return true;
}
CdmResponseType CryptoSession::LoadKeys(
const std::string& message, const std::string& signature,
const std::string& mac_key_iv, const std::string& mac_key,
const std::vector<CryptoKey>& keys,
const std::string& provider_session_token,
const std::string& srm_requirement) {
LOGV("CryptoSession::LoadKeys: Lock");
AutoLock auto_lock(crypto_lock_);
LOGV("LoadKeys: id=%ld", (uint32_t)oec_session_id_);
OEMCryptoResult sts = key_session_->LoadKeys(
message, signature, mac_key_iv, mac_key, keys, provider_session_token,
&cipher_mode_, srm_requirement);
CdmResponseType result = KEY_ADDED;
if (OEMCrypto_SUCCESS == sts) {
if (!provider_session_token.empty())
update_usage_table_after_close_session_ = true;
result = KEY_ADDED;
} else if (OEMCrypto_ERROR_TOO_MANY_KEYS == sts) {
LOGE("CryptoSession::LoadKeys: OEMCrypto_LoadKeys error=%d", sts);
result = INSUFFICIENT_CRYPTO_RESOURCES;
} else if (OEMCrypto_ERROR_USAGE_TABLE_UNRECOVERABLE == sts) {
// Handle vendor specific error
LOGE("CryptoSession::LoadKeys: OEMCrypto_LoadKeys error=%d", sts);
result = NEED_PROVISIONING;
} else {
LOGE("CryptoSession::LoadKeys: OEMCrypto_LoadKeys error=%d", sts);
result = LOAD_KEY_ERROR;
}
// Leaving critical section
crypto_lock_.Release();
if (!provider_session_token.empty() &&
usage_support_type_ == kUsageTableSupport) {
UpdateUsageInformation();
}
return result;
}
bool CryptoSession::LoadCertificatePrivateKey(std::string& wrapped_key) {
LOGV("CryptoSession::LoadCertificatePrivateKey: Lock");
AutoLock auto_lock(crypto_lock_);
// Call OEMCrypto_GetOEMPublicCertificate before OEMCrypto_LoadDeviceRSAKey
// so it caches the OEMCrypto Public Key and then throw away result
std::string temp_buffer(CERTIFICATE_DATA_SIZE, '\0');
size_t buf_size = temp_buffer.size();
uint8_t* buf = reinterpret_cast<uint8_t*>(&temp_buffer[0]);
OEMCryptoResult sts =
OEMCrypto_GetOEMPublicCertificate(oec_session_id_, buf, &buf_size);
metrics_->oemcrypto_get_oem_public_certificate_.Increment(sts);
LOGV("LoadDeviceRSAKey: id=%ld", (uint32_t)oec_session_id_);
M_TIME(
sts = OEMCrypto_LoadDeviceRSAKey(
oec_session_id_, reinterpret_cast<const uint8_t*>(wrapped_key.data()),
wrapped_key.size()),
metrics_, oemcrypto_load_device_rsa_key_, sts);
if (OEMCrypto_SUCCESS != sts) {
LOGE("LoadCertificatePrivateKey: OEMCrypto_LoadDeviceRSAKey error=%d", sts);
return false;
}
wrapped_key_ = wrapped_key;
return true;
}
bool CryptoSession::RefreshKeys(const std::string& message,
const std::string& signature, int num_keys,
const CryptoKey* key_array) {
LOGV("CryptoSession::RefreshKeys: Lock");
AutoLock auto_lock(crypto_lock_);
const uint8_t* msg = reinterpret_cast<const uint8_t*>(message.data());
std::vector<OEMCrypto_KeyRefreshObject> load_key_array(num_keys);
for (int i = 0; i < num_keys; ++i) {
const CryptoKey* ki = &key_array[i];
OEMCrypto_KeyRefreshObject* ko = &load_key_array[i];
if (ki->key_id().empty()) {
ko->key_id = NULL;
} else {
ko->key_id = msg + GetOffset(message, ki->key_id());
}
if (ki->HasKeyControl()) {
if (ki->key_control_iv().empty()) {
ko->key_control_iv = NULL;
} else {
ko->key_control_iv = msg + GetOffset(message, ki->key_control_iv());
}
ko->key_control = msg + GetOffset(message, ki->key_control());
} else {
ko->key_control_iv = NULL;
ko->key_control = NULL;
}
}
LOGV("RefreshKeys: id=%ld", static_cast<uint32_t>(oec_session_id_));
OEMCryptoResult refresh_sts;
M_TIME(refresh_sts = OEMCrypto_RefreshKeys(
oec_session_id_, msg, message.size(),
reinterpret_cast<const uint8_t*>(signature.data()),
signature.size(), num_keys, &load_key_array[0]),
metrics_, oemcrypto_refresh_keys_, refresh_sts);
return OEMCrypto_SUCCESS == refresh_sts;
}
CdmResponseType CryptoSession::SelectKey(const std::string& key_id,
CdmCipherMode cipher_mode) {
// Crypto session lock already locked.
OEMCryptoResult sts = key_session_->SelectKey(key_id, cipher_mode);
switch (sts) {
case OEMCrypto_SUCCESS:
return NO_ERROR;
case OEMCrypto_ERROR_KEY_EXPIRED:
return NEED_KEY;
case OEMCrypto_ERROR_INSUFFICIENT_HDCP:
return INSUFFICIENT_OUTPUT_PROTECTION;
case OEMCrypto_ERROR_ANALOG_OUTPUT:
return ANALOG_OUTPUT_ERROR;
case OEMCrypto_ERROR_INVALID_SESSION:
return INVALID_SESSION_1;
case OEMCrypto_ERROR_NO_DEVICE_KEY:
return NO_DEVICE_KEY_1;
case OEMCrypto_ERROR_NO_CONTENT_KEY:
return NO_CONTENT_KEY_2;
case OEMCrypto_ERROR_INSUFFICIENT_RESOURCES:
return INSUFFICIENT_CRYPTO_RESOURCES_2;
case OEMCrypto_ERROR_UNKNOWN_FAILURE:
return UNKNOWN_SELECT_KEY_ERROR_1;
case OEMCrypto_ERROR_CONTROL_INVALID:
case OEMCrypto_ERROR_KEYBOX_INVALID:
default:
return UNKNOWN_SELECT_KEY_ERROR_2;
}
}
bool CryptoSession::GenerateDerivedKeys(const std::string& message) {
return key_session_->GenerateDerivedKeys(message);
}
bool CryptoSession::GenerateDerivedKeys(const std::string& message,
const std::string& session_key) {
return key_session_->GenerateDerivedKeys(message, session_key);
}
bool CryptoSession::GenerateSignature(const std::string& message,
std::string* signature) {
LOGV("GenerateSignature: id=%ld", (uint32_t)oec_session_id_);
if (!signature) {
LOGE("GenerateSignature: null signature string");
return false;
}
OEMCryptoResult sts;
size_t length = signature->size();
// At most two attempts.
// The first attempt may fail due to buffer too short
for (int i = 0; i < 2; ++i) {
M_TIME(sts = OEMCrypto_GenerateSignature(
oec_session_id_,
reinterpret_cast<const uint8_t*>(message.data()), message.size(),
reinterpret_cast<uint8_t*>(const_cast<char*>(signature->data())),
&length),
metrics_, oemcrypto_generate_signature_, sts,
metrics::Pow2Bucket(length));
if (OEMCrypto_SUCCESS == sts) {
// Trim signature buffer and done
signature->resize(length);
return true;
}
if (OEMCrypto_ERROR_SHORT_BUFFER != sts) {
break;
}
// Retry with proper-sized signature buffer
signature->resize(length);
}
LOGE("GenerateSignature: OEMCrypto_GenerateSignature err=%d", sts);
return false;
}
bool CryptoSession::GenerateRsaSignature(const std::string& message,
std::string* signature) {
LOGV("GenerateRsaSignature: id=%ld", (uint32_t)oec_session_id_);
if (!signature) {
LOGE("GenerateRsaSignature: null signature string");
return false;
}
OEMCryptoResult sts;
signature->resize(kRsaSignatureLength);
size_t length = signature->size();
// At most two attempts.
// The first attempt may fail due to buffer too short
for (int i = 0; i < 2; ++i) {
M_TIME(sts = OEMCrypto_GenerateRSASignature(
oec_session_id_,
reinterpret_cast<const uint8_t*>(message.data()), message.size(),
reinterpret_cast<uint8_t*>(const_cast<char*>(signature->data())),
&length, kSign_RSASSA_PSS),
metrics_, oemcrypto_generate_rsa_signature_, sts,
metrics::Pow2Bucket(length));
if (OEMCrypto_SUCCESS == sts) {
// Trim signature buffer and done
signature->resize(length);
return true;
}
if (OEMCrypto_ERROR_SHORT_BUFFER != sts) {
break;
}
// Retry with proper-sized signature buffer
signature->resize(length);
}
LOGE("GenerateRsaSignature: OEMCrypto_GenerateRSASignature err=%d", sts);
return false;
}
CdmResponseType CryptoSession::Decrypt(const CdmDecryptionParameters& params) {
if (!is_destination_buffer_type_valid_) {
if (!SetDestinationBufferType()) return UNKNOWN_ERROR;
}
OEMCrypto_DestBufferDesc buffer_descriptor;
buffer_descriptor.type =
params.is_secure ? destination_buffer_type_ : OEMCrypto_BufferType_Clear;
if (params.is_secure &&
buffer_descriptor.type == OEMCrypto_BufferType_Clear) {
return SECURE_BUFFER_REQUIRED;
}
switch (buffer_descriptor.type) {
case OEMCrypto_BufferType_Clear:
buffer_descriptor.buffer.clear.address =
static_cast<uint8_t*>(params.decrypt_buffer) +
params.decrypt_buffer_offset;
buffer_descriptor.buffer.clear.max_length =
params.decrypt_buffer_length - params.decrypt_buffer_offset;
break;
case OEMCrypto_BufferType_Secure:
buffer_descriptor.buffer.secure.handle = params.decrypt_buffer;
buffer_descriptor.buffer.secure.offset = params.decrypt_buffer_offset;
buffer_descriptor.buffer.secure.max_length = params.decrypt_buffer_length;
break;
case OEMCrypto_BufferType_Direct:
buffer_descriptor.type = OEMCrypto_BufferType_Direct;
buffer_descriptor.buffer.direct.is_video = params.is_video;
break;
}
OEMCryptoResult sts = OEMCrypto_ERROR_NOT_IMPLEMENTED;
if (!params.is_encrypted &&
params.subsample_flags ==
(OEMCrypto_FirstSubsample | OEMCrypto_LastSubsample)) {
M_TIME(
sts = OEMCrypto_CopyBuffer(requested_security_level_,
params.encrypt_buffer, params.encrypt_length,
&buffer_descriptor, params.subsample_flags),
metrics_, oemcrypto_copy_buffer_, sts,
metrics::Pow2Bucket(params.encrypt_length));
if (sts == OEMCrypto_ERROR_BUFFER_TOO_LARGE &&
params.encrypt_length > kMaximumChunkSize) {
// OEMCrypto_CopyBuffer rejected the buffer as too large, so chunk it up
// into 100 KiB sections.
sts = CopyBufferInChunks(params, buffer_descriptor);
}
}
if (params.is_encrypted && params.cipher_mode != cipher_mode_) {
return INCORRECT_CRYPTO_MODE;
}
if (params.is_encrypted || sts == OEMCrypto_ERROR_NOT_IMPLEMENTED) {
OEMCrypto_CENCEncryptPatternDesc pattern_descriptor;
pattern_descriptor.encrypt = params.pattern_descriptor.encrypt_blocks;
pattern_descriptor.skip = params.pattern_descriptor.skip_blocks;
pattern_descriptor.offset = 0; // Deprecated field
AutoLock auto_lock(crypto_lock_);
// Check if key needs to be selected
if (params.is_encrypted) {
CdmResponseType result = SelectKey(*params.key_id, params.cipher_mode);
if (result != NO_ERROR) return result;
}
sts = key_session_->Decrypt(params, buffer_descriptor, pattern_descriptor);
if (sts == OEMCrypto_ERROR_BUFFER_TOO_LARGE) {
// OEMCrypto_DecryptCENC rejected the buffer as too large, so chunk it
// up into sections no more than 100 KiB. The exact chunk size needs to
// be an even number of pattern repetitions long or else the pattern
// will get out of sync.
const size_t pattern_length =
(pattern_descriptor.encrypt + pattern_descriptor.skip) *
kAes128BlockSize;
const size_t chunk_size =
pattern_length > 0
? kMaximumChunkSize - (kMaximumChunkSize % pattern_length)
: kMaximumChunkSize;
if (params.encrypt_length > chunk_size) {
sts = DecryptInChunks(params, buffer_descriptor, pattern_descriptor,
chunk_size);
}
}
}
switch (sts) {
case OEMCrypto_SUCCESS:
return NO_ERROR;
case OEMCrypto_ERROR_INSUFFICIENT_RESOURCES:
return INSUFFICIENT_CRYPTO_RESOURCES;
case OEMCrypto_ERROR_KEY_EXPIRED:
return NEED_KEY;
case OEMCrypto_ERROR_INVALID_SESSION:
return SESSION_NOT_FOUND_FOR_DECRYPT;
case OEMCrypto_ERROR_DECRYPT_FAILED:
case OEMCrypto_ERROR_UNKNOWN_FAILURE:
return DECRYPT_ERROR;
case OEMCrypto_ERROR_INSUFFICIENT_HDCP:
return INSUFFICIENT_OUTPUT_PROTECTION;
case OEMCrypto_ERROR_ANALOG_OUTPUT:
return ANALOG_OUTPUT_ERROR;
default:
return UNKNOWN_ERROR;
}
}
bool CryptoSession::UsageInformationSupport(bool* has_support) {
LOGV("UsageInformationSupport: id=%ld", (uint32_t)oec_session_id_);
if (!initialized_) return false;
*has_support = OEMCrypto_SupportsUsageTable(requested_security_level_);
return true;
}
CdmResponseType CryptoSession::UpdateUsageInformation() {
LOGV("CryptoSession::UpdateUsageInformation: id=%ld",
(uint32_t)oec_session_id_);
AutoLock auto_lock(crypto_lock_);
if (!initialized_) return UNKNOWN_ERROR;
if (usage_table_header_ != NULL) {
LOGV("UpdateUsageInformation: deprecated for OEMCrypto v13+");
return NO_ERROR;
}
OEMCryptoResult status = OEMCrypto_UpdateUsageTable();
metrics_->oemcrypto_update_usage_table_.Increment(status);
if (status != OEMCrypto_SUCCESS) {
LOGE("CryptoSession::UpdateUsageInformation: error=%ld", status);
return UNKNOWN_ERROR;
}
return NO_ERROR;
}
CdmResponseType CryptoSession::DeactivateUsageInformation(
const std::string& provider_session_token) {
LOGV("DeactivateUsageInformation: id=%ld", (uint32_t)oec_session_id_);
AutoLock auto_lock(crypto_lock_);
uint8_t* pst = reinterpret_cast<uint8_t*>(
const_cast<char*>(provider_session_token.data()));
// TODO(fredgc or rfrias): make sure oec_session_id_ is valid.
OEMCryptoResult status = OEMCrypto_DeactivateUsageEntry(
(uint32_t)oec_session_id_, pst, provider_session_token.length());
metrics_->oemcrypto_deactivate_usage_entry_.Increment(status);
switch (status) {
case OEMCrypto_SUCCESS:
return NO_ERROR;
case OEMCrypto_ERROR_INVALID_CONTEXT:
LOGE("CryptoSession::DeactivateUsageInformation: invalid context error");
return KEY_CANCELED;
default:
LOGE("CryptoSession::DeactivateUsageInformation: error=%ld", status);
return UNKNOWN_ERROR;
}
}
CdmResponseType CryptoSession::GenerateUsageReport(
const std::string& provider_session_token, std::string* usage_report,
UsageDurationStatus* usage_duration_status, int64_t* seconds_since_started,
int64_t* seconds_since_last_played) {
LOGV("GenerateUsageReport: id=%ld", (uint32_t)oec_session_id_);
if (NULL == usage_report) {
LOGE("CryptoSession::GenerateUsageReport: usage_report parameter is null");
return UNKNOWN_ERROR;
}
AutoLock auto_lock(crypto_lock_);
uint8_t* pst = reinterpret_cast<uint8_t*>(
const_cast<char*>(provider_session_token.data()));
size_t usage_length = 0;
OEMCryptoResult status = OEMCrypto_ReportUsage(
oec_session_id_, pst, provider_session_token.length(), NULL,
&usage_length);
metrics_->oemcrypto_report_usage_.Increment(status);
if (OEMCrypto_SUCCESS != status) {
if (OEMCrypto_ERROR_SHORT_BUFFER != status) {
LOGE("CryptoSession::GenerateUsageReport: Report Usage error=%ld",
status);
return UNKNOWN_ERROR;
}
}
std::vector<uint8_t> buffer(usage_length);
status = OEMCrypto_ReportUsage(oec_session_id_, pst,
provider_session_token.length(), &buffer[0],
&usage_length);
metrics_->oemcrypto_report_usage_.Increment(status);
if (OEMCrypto_SUCCESS != status) {
LOGE("CryptoSession::GenerateUsageReport: Report Usage error=%ld", status);
return UNKNOWN_ERROR;
}
if (usage_length != buffer.size()) {
buffer.resize(usage_length);
}
(*usage_report) =
std::string(reinterpret_cast<const char*>(&buffer[0]), buffer.size());
Unpacked_PST_Report pst_report(&buffer[0]);
*usage_duration_status = kUsageDurationsInvalid;
if (usage_length < pst_report.report_size()) {
LOGE("CryptoSession::GenerateUsageReport: usage report too small=%ld",
usage_length);
return NO_ERROR; // usage report available but no duration information
}
if (kUnused == pst_report.status()) {
*usage_duration_status = kUsageDurationPlaybackNotBegun;
return NO_ERROR;
}
LOGV("OEMCrypto_PST_Report.status: %d\n", pst_report.status());
LOGV("OEMCrypto_PST_Report.clock_security_level: %d\n",
pst_report.clock_security_level());
LOGV("OEMCrypto_PST_Report.pst_length: %d\n", pst_report.pst_length());
LOGV("OEMCrypto_PST_Report.padding: %d\n", pst_report.padding());
LOGV("OEMCrypto_PST_Report.seconds_since_license_received: %lld\n",
pst_report.seconds_since_license_received());
LOGV("OEMCrypto_PST_Report.seconds_since_first_decrypt: %lld\n",
pst_report.seconds_since_first_decrypt());
LOGV("OEMCrypto_PST_Report.seconds_since_last_decrypt: %lld\n",
pst_report.seconds_since_last_decrypt());
LOGV("OEMCrypto_PST_Report: %s\n", b2a_hex(*usage_report).c_str());
if (kInactiveUnused == pst_report.status()) {
*usage_duration_status = kUsageDurationPlaybackNotBegun;
return NO_ERROR;
}
// Before OEMCrypto v13, When usage report state is inactive, we have to
// deduce whether the license was ever used.
if (kInactive == pst_report.status() &&
(0 > pst_report.seconds_since_first_decrypt() ||
pst_report.seconds_since_license_received() <
pst_report.seconds_since_first_decrypt())) {
*usage_duration_status = kUsageDurationPlaybackNotBegun;
return NO_ERROR;
}
*usage_duration_status = kUsageDurationsValid;
*seconds_since_started = pst_report.seconds_since_first_decrypt();
*seconds_since_last_played = pst_report.seconds_since_last_decrypt();
return NO_ERROR;
}
CdmResponseType CryptoSession::ReleaseUsageInformation(
const std::string& message, const std::string& signature,
const std::string& provider_session_token) {
LOGV("ReleaseUsageInformation: id=%ld", (uint32_t)oec_session_id_);
{
AutoLock auto_lock(crypto_lock_);
if (usage_table_header_ != NULL) {
LOGW("ReleaseUsageInformation: deprecated for OEMCrypto v13+");
return NO_ERROR;
}
const uint8_t* msg = reinterpret_cast<const uint8_t*>(message.data());
const uint8_t* sig = reinterpret_cast<const uint8_t*>(signature.data());
const uint8_t* pst = msg + GetOffset(message, provider_session_token);
OEMCryptoResult status = OEMCrypto_DeleteUsageEntry(
oec_session_id_, pst, provider_session_token.length(), msg,
message.length(), sig, signature.length());
metrics_->oemcrypto_delete_usage_entry_.Increment(status);
if (OEMCrypto_SUCCESS != status) {
LOGE("CryptoSession::ReleaseUsageInformation: Report Usage error=%ld",
status);
return UNKNOWN_ERROR;
}
}
if (usage_support_type_ == kUsageTableSupport) UpdateUsageInformation();
return NO_ERROR;
}
CdmResponseType CryptoSession::DeleteUsageInformation(
const std::string& provider_session_token) {
CdmResponseType response = NO_ERROR;
LOGV("CryptoSession::DeleteUsageInformation");
OEMCryptoResult status;
{
AutoLock auto_lock(crypto_lock_);
status = OEMCrypto_ForceDeleteUsageEntry(
reinterpret_cast<const uint8_t*>(provider_session_token.c_str()),
provider_session_token.length());
metrics_->oemcrypto_force_delete_usage_entry_.Increment(status);
if (OEMCrypto_SUCCESS != status) {
LOGE(
"CryptoSession::DeleteUsageInformation: Delete Usage Table error "
"= %ld",
status);
response = UNKNOWN_ERROR;
}
}
if (usage_support_type_ == kUsageTableSupport) UpdateUsageInformation();
return response;
}
CdmResponseType CryptoSession::DeleteMultipleUsageInformation(
const std::vector<std::string>& provider_session_tokens) {
LOGV("CryptoSession::DeleteMultipleUsageInformation");
CdmResponseType response = NO_ERROR;
{
AutoLock auto_lock(crypto_lock_);
for (size_t i = 0; i < provider_session_tokens.size(); ++i) {
OEMCryptoResult status = OEMCrypto_ForceDeleteUsageEntry(
reinterpret_cast<const uint8_t*>(provider_session_tokens[i].c_str()),
provider_session_tokens[i].length());
metrics_->oemcrypto_force_delete_usage_entry_.Increment(status);
if (OEMCrypto_SUCCESS != status) {
LOGW(
"CryptoSession::DeleteMultipleUsageInformation: "
"Delete Usage Table error =%ld",
status);
response = UNKNOWN_ERROR;
}
}
}
if (usage_support_type_ == kUsageTableSupport) UpdateUsageInformation();
return response;
}
CdmResponseType CryptoSession::DeleteAllUsageReports() {
LOGV("DeleteAllUsageReports");
OEMCryptoResult status;
{
AutoLock auto_lock(crypto_lock_);
status = OEMCrypto_DeleteOldUsageTable();
metrics_->oemcrypto_delete_usage_table_.Increment(status);
if (OEMCrypto_SUCCESS != status) {
LOGE(
"CryptoSession::DeleteAllUsageReports: Delete Usage Table error "
"=%ld",
status);
}
}
if (usage_support_type_ == kUsageTableSupport) UpdateUsageInformation();
return NO_ERROR;
}
bool CryptoSession::IsAntiRollbackHwPresent() {
bool is_present =
OEMCrypto_IsAntiRollbackHwPresent(requested_security_level_);
metrics_->oemcrypto_is_anti_rollback_hw_present_.Record(is_present);
return is_present;
}
bool CryptoSession::GenerateNonce(uint32_t* nonce) {
if (!nonce) {
LOGE("input parameter is null");
return false;
}
LOGV("CryptoSession::GenerateNonce: Lock");
AutoLock auto_lock(crypto_lock_);
OEMCryptoResult result = OEMCrypto_GenerateNonce(oec_session_id_, nonce);
metrics_->oemcrypto_generate_nonce_.Increment(result);
return OEMCrypto_SUCCESS == result;
}
bool CryptoSession::SetDestinationBufferType() {
if (Properties::oem_crypto_use_secure_buffers()) {
if (GetSecurityLevel() == kSecurityLevelL1) {
destination_buffer_type_ = OEMCrypto_BufferType_Secure;
} else {
destination_buffer_type_ = OEMCrypto_BufferType_Clear;
}
} else if (Properties::oem_crypto_use_fifo()) {
destination_buffer_type_ = OEMCrypto_BufferType_Direct;
} else if (Properties::oem_crypto_use_userspace_buffers()) {
destination_buffer_type_ = OEMCrypto_BufferType_Clear;
} else {
return false;
}
is_destination_buffer_type_valid_ = true;
return true;
}
bool CryptoSession::RewrapCertificate(const std::string& signed_message,
const std::string& signature,
const std::string& nonce,
const std::string& private_key,
const std::string& iv,
const std::string& wrapping_key,
std::string* wrapped_private_key) {
LOGV("CryptoSession::RewrapCertificate, session id=%ld",
static_cast<uint32_t>(oec_session_id_));
if (pre_provision_token_type_ == kClientTokenKeybox) {
return RewrapDeviceRSAKey(signed_message, signature, nonce, private_key, iv,
wrapped_private_key);
} else if (pre_provision_token_type_ == kClientTokenOemCert) {
return RewrapDeviceRSAKey30(signed_message, nonce, private_key, iv,
wrapping_key, wrapped_private_key);
} else {
LOGE(
"CryptoSession::RewrapCertificate, Bad pre-provision type=%d: "
"session id=%ld",
pre_provision_token_type_, static_cast<uint32_t>(oec_session_id_));
return false;
}
}
bool CryptoSession::RewrapDeviceRSAKey(const std::string& message,
const std::string& signature,
const std::string& nonce,
const std::string& enc_rsa_key,
const std::string& rsa_key_iv,
std::string* wrapped_rsa_key) {
LOGV("CryptoSession::RewrapDeviceRSAKey, session id=%ld",
static_cast<uint32_t>(oec_session_id_));
const uint8_t* signed_msg = reinterpret_cast<const uint8_t*>(message.data());
const uint8_t* msg_rsa_key = NULL;
const uint8_t* msg_rsa_key_iv = NULL;
const uint32_t* msg_nonce = NULL;
if (enc_rsa_key.size() >= MAC_KEY_SIZE && rsa_key_iv.size() >= KEY_IV_SIZE) {
msg_rsa_key = signed_msg + GetOffset(message, enc_rsa_key);
msg_rsa_key_iv = signed_msg + GetOffset(message, rsa_key_iv);
msg_nonce = reinterpret_cast<const uint32_t*>(signed_msg +
GetOffset(message, nonce));
}
// Gets wrapped_rsa_key_length by passing NULL as uint8_t* wrapped_rsa_key
// and 0 as wrapped_rsa_key_length.
size_t wrapped_rsa_key_length = 0;
OEMCryptoResult status;
M_TIME(status = OEMCrypto_RewrapDeviceRSAKey(
oec_session_id_, signed_msg, message.size(),
reinterpret_cast<const uint8_t*>(signature.data()),
signature.size(), msg_nonce, msg_rsa_key, enc_rsa_key.size(),
msg_rsa_key_iv, NULL, &wrapped_rsa_key_length),
metrics_, oemcrypto_rewrap_device_rsa_key_, status);
if (status != OEMCrypto_ERROR_SHORT_BUFFER) {
LOGE("OEMCrypto_RewrapDeviceRSAKey fails to get wrapped_rsa_key_length");
return false;
}
wrapped_rsa_key->resize(wrapped_rsa_key_length);
M_TIME(status = OEMCrypto_RewrapDeviceRSAKey(
oec_session_id_, signed_msg, message.size(),
reinterpret_cast<const uint8_t*>(signature.data()),
signature.size(), msg_nonce, msg_rsa_key, enc_rsa_key.size(),
msg_rsa_key_iv, reinterpret_cast<uint8_t*>(&(*wrapped_rsa_key)[0]),
&wrapped_rsa_key_length),
metrics_, oemcrypto_rewrap_device_rsa_key_, status);
wrapped_rsa_key->resize(wrapped_rsa_key_length);
if (OEMCrypto_SUCCESS != status) {
LOGE("OEMCrypto_RewrapDeviceRSAKey fails with %d", status);
return false;
}
return true;
}
bool CryptoSession::RewrapDeviceRSAKey30(const std::string& message,
const std::string& nonce,
const std::string& private_key,
const std::string& iv,
const std::string& wrapping_key,
std::string* wrapped_private_key) {
LOGV("CryptoSession::RewrapDeviceRSAKey30, session id=%ld",
static_cast<uint32_t>(oec_session_id_));
const uint8_t* signed_msg = reinterpret_cast<const uint8_t*>(message.data());
const uint8_t* msg_private_key = NULL;
const uint8_t* msg_iv = NULL;
const uint32_t* msg_nonce = NULL;
const uint8_t* msg_wrapping_key = NULL;
if (private_key.size() >= MAC_KEY_SIZE && iv.size() >= KEY_IV_SIZE) {
msg_private_key = signed_msg + GetOffset(message, private_key);
msg_iv = signed_msg + GetOffset(message, iv);
msg_nonce = reinterpret_cast<const uint32_t*>(signed_msg +
GetOffset(message, nonce));
msg_wrapping_key = signed_msg + GetOffset(message, wrapping_key);
}
// Gets wrapped_rsa_key_length by passing NULL as uint8_t* wrapped_rsa_key
// and 0 as wrapped_rsa_key_length.
size_t wrapped_private_key_length = 0;
OEMCryptoResult status;
M_TIME(
status = OEMCrypto_RewrapDeviceRSAKey30(
oec_session_id_, msg_nonce, msg_wrapping_key, wrapping_key.size(),
msg_private_key, private_key.size(), msg_iv, NULL,
&wrapped_private_key_length),
metrics_,
oemcrypto_rewrap_device_rsa_key_30_,
status);
if (status != OEMCrypto_ERROR_SHORT_BUFFER) {
LOGE("OEMCrypto_RewrapDeviceRSAKey30 failed getting wrapped key length");
return false;
}
wrapped_private_key->resize(wrapped_private_key_length);
M_TIME(
status = OEMCrypto_RewrapDeviceRSAKey30(
oec_session_id_, msg_nonce, msg_wrapping_key, wrapping_key.size(),
msg_private_key, private_key.size(), msg_iv,
reinterpret_cast<uint8_t*>(&(*wrapped_private_key)[0]),
&wrapped_private_key_length),
metrics_,
oemcrypto_rewrap_device_rsa_key_30_,
status);
wrapped_private_key->resize(wrapped_private_key_length);
if (OEMCrypto_SUCCESS != status) {
LOGE("OEMCrypto_RewrapDeviceRSAKey30 fails with %d", status);
return false;
}
return true;
}
bool CryptoSession::GetHdcpCapabilities(HdcpCapability* current,
HdcpCapability* max) {
LOGV("GetHdcpCapabilities: id=%ld", (uint32_t)oec_session_id_);
if (!initialized_) return false;
if (current == NULL || max == NULL) {
LOGE(
"CryptoSession::GetHdcpCapabilities: |current|, |max| cannot be "
"NULL");
return false;
}
OEMCryptoResult status =
OEMCrypto_GetHDCPCapability(requested_security_level_, current, max);
if (OEMCrypto_SUCCESS != status) {
metrics_->oemcrypto_current_hdcp_capability_.SetError(status);
metrics_->oemcrypto_max_hdcp_capability_.SetError(status);
LOGW("OEMCrypto_GetHDCPCapability fails with %d", status);
return false;
}
metrics_->oemcrypto_current_hdcp_capability_.Record(*current);
metrics_->oemcrypto_max_hdcp_capability_.Record(*max);
return true;
}
bool CryptoSession::GetSupportedCertificateTypes(
SupportedCertificateTypes* support) {
LOGV("GetSupportedCertificateTypes: id=%ld", (uint32_t)oec_session_id_);
if (!initialized_) return false;
if (support == NULL) {
LOGE(
"CryptoSession::GetSupportedCertificateTypes: |support| cannot be "
"NULL");
return false;
}
uint32_t oec_support =
OEMCrypto_SupportedCertificates(requested_security_level_);
support->rsa_2048_bit = oec_support & OEMCrypto_Supports_RSA_2048bit;
support->rsa_3072_bit = oec_support & OEMCrypto_Supports_RSA_3072bit;
support->rsa_cast = oec_support & OEMCrypto_Supports_RSA_CAST;
return true;
}
bool CryptoSession::GetRandom(size_t data_length, uint8_t* random_data) {
if (random_data == NULL) {
LOGE("CryptoSession::GetRandom: random data destination not provided");
return false;
}
OEMCryptoResult sts = OEMCrypto_GetRandom(random_data, data_length);
metrics_->oemcrypto_get_random_.Increment(sts);
if (sts != OEMCrypto_SUCCESS) {
LOGE("OEMCrypto_GetRandom fails with %d", sts);
return false;
}
return true;
}
bool CryptoSession::GetNumberOfOpenSessions(size_t* count) {
LOGV("GetNumberOfOpenSessions");
if (!initialized_) return false;
if (count == NULL) {
LOGE("CryptoSession::GetNumberOfOpenSessions: |count| cannot be NULL");
return false;
}
size_t sessions_count;
OEMCryptoResult status = OEMCrypto_GetNumberOfOpenSessions(
requested_security_level_, &sessions_count);
if (OEMCrypto_SUCCESS != status) {
LOGW("OEMCrypto_GetNumberOfOpenSessions fails with %d", status);
metrics_->oemcrypto_number_of_open_sessions_.SetError(status);
return false;
}
metrics_->oemcrypto_number_of_open_sessions_.Record(sessions_count);
*count = sessions_count;
return true;
}
bool CryptoSession::GetMaxNumberOfSessions(size_t* max) {
LOGV("GetMaxNumberOfSessions");
if (!initialized_) return false;
if (max == NULL) {
LOGE("CryptoSession::GetMaxNumberOfSessions: |max| cannot be NULL");
return false;
}
size_t max_sessions;
OEMCryptoResult status = OEMCrypto_GetMaxNumberOfSessions(
requested_security_level_, &max_sessions);
if (OEMCrypto_SUCCESS != status) {
LOGW("OEMCrypto_GetMaxNumberOfSessions fails with %d", status);
metrics_->oemcrypto_max_number_of_sessions_.SetError(status);
return false;
}
metrics_->oemcrypto_max_number_of_sessions_.Record(max_sessions);
*max = max_sessions;
return true;
}
bool CryptoSession::GetSrmVersion(uint16_t* srm_version) {
LOGV("GetSrmVersion");
if (!initialized_) return false;
if (srm_version == NULL) {
LOGE("CryptoSession::GetSrmVersion: |srm_version| cannot be NULL");
return false;
}
OEMCryptoResult status = OEMCrypto_GetCurrentSRMVersion(srm_version);
switch (status) {
case OEMCrypto_SUCCESS:
return true;
case OEMCrypto_ERROR_NOT_IMPLEMENTED:
return false;
default:
LOGW("OEMCrypto_GetCurrentSRMVersion fails with %d", status);
return false;
}
}
bool CryptoSession::IsSrmUpdateSupported() {
LOGV("IsSrmUpdateSupported");
if (!initialized_) return false;
return OEMCrypto_IsSRMUpdateSupported();
}
bool CryptoSession::LoadSrm(const std::string& srm) {
LOGV("LoadSrm");
if (!initialized_) return false;
if (srm.empty()) {
LOGE("CryptoSession::LoadSrm: |srm| cannot be empty");
return false;
}
OEMCryptoResult status = OEMCrypto_LoadSRM(
reinterpret_cast<const uint8_t*>(srm.data()), srm.size());
if (OEMCrypto_SUCCESS != status) {
LOGW("OEMCrypto_LoadSRM fails with %d", status);
return false;
}
return true;
}
CdmResponseType CryptoSession::GenericEncrypt(const std::string& in_buffer,
const std::string& key_id,
const std::string& iv,
CdmEncryptionAlgorithm algorithm,
std::string* out_buffer) {
LOGV("GenericEncrypt: id=%ld", (uint32_t)oec_session_id_);
if (!out_buffer) {
LOGE("CryptoSession::GenericEncrypt: out_buffer not provided");
return PARAMETER_NULL;
}
OEMCrypto_Algorithm oec_algorithm = GenericEncryptionAlgorithm(algorithm);
if (iv.size() != GenericEncryptionBlockSize(algorithm) ||
oec_algorithm == kInvalidAlgorithm) {
return INVALID_PARAMETERS_ENG_13;
}
if (out_buffer->size() < in_buffer.size()) {
out_buffer->resize(in_buffer.size());
}
AutoLock auto_lock(crypto_lock_);
// TODO(jfore): We need to select a key with a cipher mode and algorithm
// doesn't seem to fit. Is it ok to just use a default value here?
// Or do we need to pass it in?
CdmResponseType result = SelectKey(key_id, kCipherModeCbc);
if (result != NO_ERROR) return result;
OEMCryptoResult sts;
M_TIME(
sts = OEMCrypto_Generic_Encrypt(
oec_session_id_, reinterpret_cast<const uint8_t*>(in_buffer.data()),
in_buffer.size(), reinterpret_cast<const uint8_t*>(iv.data()),
oec_algorithm,
reinterpret_cast<uint8_t*>(const_cast<char*>(out_buffer->data()))),
metrics_, oemcrypto_generic_encrypt_, sts,
metrics::Pow2Bucket(in_buffer.size()));
if (OEMCrypto_SUCCESS != sts) {
LOGE("GenericEncrypt: OEMCrypto_Generic_Encrypt err=%d", sts);
if (OEMCrypto_ERROR_KEY_EXPIRED == sts) {
return NEED_KEY;
} else if (OEMCrypto_ERROR_NO_CONTENT_KEY == sts) {
return KEY_NOT_FOUND_3;
} else {
return UNKNOWN_ERROR;
}
}
return NO_ERROR;
}
CdmResponseType CryptoSession::GenericDecrypt(const std::string& in_buffer,
const std::string& key_id,
const std::string& iv,
CdmEncryptionAlgorithm algorithm,
std::string* out_buffer) {
LOGV("GenericDecrypt: id=%ld", (uint32_t)oec_session_id_);
if (!out_buffer) {
LOGE("CryptoSession::GenericDecrypt: out_buffer not provided");
return PARAMETER_NULL;
}
OEMCrypto_Algorithm oec_algorithm = GenericEncryptionAlgorithm(algorithm);
if (iv.size() != GenericEncryptionBlockSize(algorithm) ||
oec_algorithm == kInvalidAlgorithm) {
return INVALID_PARAMETERS_ENG_14;
}
if (out_buffer->size() < in_buffer.size()) {
out_buffer->resize(in_buffer.size());
}
AutoLock auto_lock(crypto_lock_);
// TODO(jfore): We need to select a key with a cipher mode and algorithm
// doesn't seem to fit. Is it ok to just use a default value here?
// Or do we need to pass it in?
CdmResponseType result = SelectKey(key_id, kCipherModeCbc);
if (result != NO_ERROR) return result;
OEMCryptoResult sts;
M_TIME(
sts = OEMCrypto_Generic_Decrypt(
oec_session_id_, reinterpret_cast<const uint8_t*>(in_buffer.data()),
in_buffer.size(), reinterpret_cast<const uint8_t*>(iv.data()),
oec_algorithm,
reinterpret_cast<uint8_t*>(const_cast<char*>(out_buffer->data()))),
metrics_, oemcrypto_generic_decrypt_, sts,
metrics::Pow2Bucket(in_buffer.size()));
if (OEMCrypto_SUCCESS != sts) {
LOGE("GenericDecrypt: OEMCrypto_Generic_Decrypt err=%d", sts);
if (OEMCrypto_ERROR_KEY_EXPIRED == sts) {
return NEED_KEY;
} else if (OEMCrypto_ERROR_NO_CONTENT_KEY == sts) {
return KEY_NOT_FOUND_4;
} else {
return UNKNOWN_ERROR;
}
}
return NO_ERROR;
}
CdmResponseType CryptoSession::GenericSign(const std::string& message,
const std::string& key_id,
CdmSigningAlgorithm algorithm,
std::string* signature) {
LOGV("GenericSign: id=%ld", (uint32_t)oec_session_id_);
if (!signature) {
LOGE("CryptoSession::GenericSign: signature not provided");
return PARAMETER_NULL;
}
OEMCrypto_Algorithm oec_algorithm = GenericSigningAlgorithm(algorithm);
if (oec_algorithm == kInvalidAlgorithm) {
return INVALID_PARAMETERS_ENG_15;
}
OEMCryptoResult sts;
size_t length = signature->size();
AutoLock auto_lock(crypto_lock_);
// TODO(jfore): We need to select a key with a cipher mode and algorithm
// doesn't seem to fit. Is it ok to just use a default value here?
// Or do we need to pass it in?
CdmResponseType result = SelectKey(key_id, kCipherModeCbc);
if (result != NO_ERROR) return result;
// At most two attempts.
// The first attempt may fail due to buffer too short
for (int i = 0; i < 2; ++i) {
M_TIME(
sts = OEMCrypto_Generic_Sign(
oec_session_id_, reinterpret_cast<const uint8_t*>(message.data()),
message.size(), oec_algorithm,
reinterpret_cast<uint8_t*>(const_cast<char*>(signature->data())),
&length),
metrics_, oemcrypto_generic_sign_, sts,
metrics::Pow2Bucket(message.size()));
if (OEMCrypto_SUCCESS == sts) {
// Trim signature buffer and done
signature->resize(length);
return NO_ERROR;
}
if (OEMCrypto_ERROR_SHORT_BUFFER != sts) {
break;
}
// Retry with proper-sized return buffer
signature->resize(length);
}
LOGE("GenericSign: OEMCrypto_Generic_Sign err=%d", sts);
if (OEMCrypto_ERROR_KEY_EXPIRED == sts) {
return NEED_KEY;
} else if (OEMCrypto_ERROR_NO_CONTENT_KEY == sts) {
return KEY_NOT_FOUND_5;
} else {
return UNKNOWN_ERROR;
}
}
CdmResponseType CryptoSession::GenericVerify(const std::string& message,
const std::string& key_id,
CdmSigningAlgorithm algorithm,
const std::string& signature) {
LOGV("GenericVerify: id=%ld", (uint32_t)oec_session_id_);
OEMCrypto_Algorithm oec_algorithm = GenericSigningAlgorithm(algorithm);
if (oec_algorithm == kInvalidAlgorithm) {
return INVALID_PARAMETERS_ENG_16;
}
AutoLock auto_lock(crypto_lock_);
// TODO(jfore): We need to select a key with a cipher mode and algorithm
// doesn't seem to fit. Is it ok to just use a default value here?
// Or do we need to pass it in?
CdmResponseType result = SelectKey(key_id, kCipherModeCbc);
if (result != NO_ERROR) return result;
OEMCryptoResult sts;
M_TIME(
sts = OEMCrypto_Generic_Verify(
oec_session_id_, reinterpret_cast<const uint8_t*>(message.data()),
message.size(), oec_algorithm,
reinterpret_cast<const uint8_t*>(signature.data()), signature.size()),
metrics_, oemcrypto_generic_verify_, sts,
metrics::Pow2Bucket(signature.size()));
if (OEMCrypto_SUCCESS != sts) {
LOGE("GenericVerify: OEMCrypto_Generic_Verify err=%d", sts);
if (OEMCrypto_ERROR_KEY_EXPIRED == sts) {
return NEED_KEY;
} else if (OEMCrypto_ERROR_NO_CONTENT_KEY == sts) {
return KEY_NOT_FOUND_6;
} else {
return UNKNOWN_ERROR;
}
}
return NO_ERROR;
}
CdmResponseType CryptoSession::GetUsageSupportType(
CdmUsageSupportType* usage_support_type) {
LOGV("GetUsageSupportType: id=%ld", (uint32_t)oec_session_id_);
if (usage_support_type == NULL) {
LOGE("GetUsageSupportType: usage_support_type param not provided");
return INVALID_PARAMETERS_ENG_23;
}
if (usage_support_type_ != kUnknownUsageSupport) {
*usage_support_type = usage_support_type_;
return NO_ERROR;
}
bool has_support = false;
if (!UsageInformationSupport(&has_support)) {
LOGE("GetUsageSupportType: UsageInformationSupport failed");
return USAGE_INFORMATION_SUPPORT_FAILED;
}
if (!has_support) {
*usage_support_type = usage_support_type_ = kNonSecureUsageSupport;
return NO_ERROR;
}
uint32_t api_version = 0;
if (!GetApiVersion(&api_version)) {
LOGE("GetUsageSupportType: GetApiVersion failed");
return USAGE_SUPPORT_GET_API_FAILED;
}
*usage_support_type = usage_support_type_ =
(api_version >= kOemCryptoApiVersionSupportsBigUsageTables)
? kUsageEntrySupport
: kUsageTableSupport;
return NO_ERROR;
}
CdmResponseType CryptoSession::CreateUsageTableHeader(
CdmUsageTableHeader* usage_table_header) {
LOGV("CreateUsageTableHeader: id=%ld", (uint32_t)oec_session_id_);
if (usage_table_header == NULL) {
LOGE("CreateUsageTableHeader: usage_table_header param not provided");
return INVALID_PARAMETERS_ENG_17;
}
usage_table_header->resize(kEstimatedInitialUsageTableHeader);
size_t usage_table_header_size = usage_table_header->size();
OEMCryptoResult result = OEMCrypto_CreateUsageTableHeader(
requested_security_level_,
reinterpret_cast<uint8_t*>(const_cast<char*>(usage_table_header->data())),
&usage_table_header_size);
if (result == OEMCrypto_ERROR_SHORT_BUFFER) {
usage_table_header->resize(usage_table_header_size);
result = OEMCrypto_CreateUsageTableHeader(
requested_security_level_,
reinterpret_cast<uint8_t*>(
const_cast<char*>(usage_table_header->data())),
&usage_table_header_size);
}
if (result != OEMCrypto_SUCCESS) {
LOGE("CreateUsageTableHeader: usage table header creation failed: %d",
result);
return CREATE_USAGE_TABLE_ERROR;
}
usage_table_header->resize(usage_table_header_size);
return NO_ERROR;
}
CdmResponseType CryptoSession::LoadUsageTableHeader(
const CdmUsageTableHeader& usage_table_header) {
LOGV("LoadUsageTableHeader: id=%ld", (uint32_t)oec_session_id_);
OEMCryptoResult result = OEMCrypto_LoadUsageTableHeader(
requested_security_level_,
reinterpret_cast<const uint8_t*>(usage_table_header.data()),
usage_table_header.size());
if (result != OEMCrypto_SUCCESS) {
if (result == OEMCrypto_WARNING_GENERATION_SKEW) {
LOGW(
"LoadUsageTableHeader: OEMCrypto_LoadUsageTableHeader warning: "
"generation skew");
} else {
LOGE("LoadUsageTableHeader: OEMCrypto_LoadUsageTableHeader error: %d",
result);
}
}
switch (result) {
case OEMCrypto_SUCCESS:
case OEMCrypto_WARNING_GENERATION_SKEW:
return NO_ERROR;
case OEMCrypto_ERROR_GENERATION_SKEW:
return LOAD_USAGE_HEADER_GENERATION_SKEW;
case OEMCrypto_ERROR_SIGNATURE_FAILURE:
return LOAD_USAGE_HEADER_SIGNATURE_FAILURE;
case OEMCrypto_ERROR_BAD_MAGIC:
return LOAD_USAGE_HEADER_BAD_MAGIC;
case OEMCrypto_ERROR_UNKNOWN_FAILURE:
default:
return LOAD_USAGE_HEADER_UNKNOWN_ERROR;
}
}
CdmResponseType CryptoSession::CreateUsageEntry(uint32_t* entry_number) {
LOGV("CreateUsageEntry: id=%ld", (uint32_t)oec_session_id_);
if (entry_number == NULL) {
LOGE("CreateUsageEntry: entry_number param not provided");
return INVALID_PARAMETERS_ENG_18;
}
OEMCryptoResult result =
OEMCrypto_CreateNewUsageEntry(oec_session_id_, entry_number);
switch (result) {
case OEMCrypto_SUCCESS:
return NO_ERROR;
case OEMCrypto_ERROR_INSUFFICIENT_RESOURCES:
LOGE(
"CreateUsageEntry: OEMCrypto_CreateNewUsageEntry error: "
"Insufficient resources");
return INSUFFICIENT_CRYPTO_RESOURCES_3;
default:
LOGE("CreateUsageEntry: OEMCrypto_CreateNewUsageEntry error: %d", result);
return CREATE_USAGE_ENTRY_UNKNOWN_ERROR;
}
}
CdmResponseType CryptoSession::LoadUsageEntry(
uint32_t entry_number, const CdmUsageEntry& usage_entry) {
LOGV("LoadUsageEntry: id=%ld", (uint32_t)oec_session_id_);
OEMCryptoResult result = OEMCrypto_LoadUsageEntry(
oec_session_id_, entry_number,
reinterpret_cast<const uint8_t*>(usage_entry.data()), usage_entry.size());
if (result != OEMCrypto_SUCCESS) {
if (result == OEMCrypto_WARNING_GENERATION_SKEW) {
LOGW("LoadUsageEntry: OEMCrypto_LoadUsageEntry warning: generation skew");
} else {
LOGE("LoadUsageTableHeader: OEMCrypto_LoadUsageEntry error: %d", result);
}
}
switch (result) {
case OEMCrypto_SUCCESS:
case OEMCrypto_WARNING_GENERATION_SKEW:
return NO_ERROR;
case OEMCrypto_ERROR_GENERATION_SKEW:
return LOAD_USAGE_ENTRY_GENERATION_SKEW;
case OEMCrypto_ERROR_SIGNATURE_FAILURE:
return LOAD_USAGE_ENTRY_SIGNATURE_FAILURE;
default:
return LOAD_USAGE_ENTRY_UNKNOWN_ERROR;
}
}
CdmResponseType CryptoSession::UpdateUsageEntry(
CdmUsageTableHeader* usage_table_header, CdmUsageEntry* usage_entry) {
LOGV("UpdateUsageEntry: id=%ld", (uint32_t)oec_session_id_);
if (usage_table_header == NULL) {
LOGE("UpdateUsageEntry: usage_table_header param not provided");
return INVALID_PARAMETERS_ENG_19;
}
if (usage_entry == NULL) {
LOGE("UpdateUsageEntry: usage_entry param not provided");
return INVALID_PARAMETERS_ENG_20;
}
size_t usage_table_header_len = 0;
size_t usage_entry_len = 0;
OEMCryptoResult result = OEMCrypto_UpdateUsageEntry(
oec_session_id_, NULL, &usage_table_header_len, NULL, &usage_entry_len);
if (result == OEMCrypto_ERROR_SHORT_BUFFER) {
usage_table_header->resize(usage_table_header_len);
usage_entry->resize(usage_entry_len);
result = OEMCrypto_UpdateUsageEntry(
oec_session_id_,
reinterpret_cast<uint8_t*>(
const_cast<char*>(usage_table_header->data())),
&usage_table_header_len,
reinterpret_cast<uint8_t*>(const_cast<char*>(usage_entry->data())),
&usage_entry_len);
}
if (result != OEMCrypto_SUCCESS) {
LOGE("UpdateUsageEntry: OEMCrypto_UpdateUsageEntry error: %d", result);
return UPDATE_USAGE_ENTRY_UNKNOWN_ERROR;
}
usage_table_header->resize(usage_table_header_len);
usage_entry->resize(usage_entry_len);
return NO_ERROR;
}
CdmResponseType CryptoSession::ShrinkUsageTableHeader(
uint32_t new_entry_count, CdmUsageTableHeader* usage_table_header) {
LOGV("ShrinkUsageTableHeader: id=%ld", (uint32_t)oec_session_id_);
if (usage_table_header == NULL) {
LOGE("ShrinkUsageTableHeader: usage_table_header param not provided");
return INVALID_PARAMETERS_ENG_21;
}
size_t usage_table_header_len = 0;
OEMCryptoResult result = OEMCrypto_ShrinkUsageTableHeader(
requested_security_level_, new_entry_count, NULL,
&usage_table_header_len);
if (result == OEMCrypto_ERROR_SHORT_BUFFER) {
usage_table_header->resize(usage_table_header_len);
result = OEMCrypto_ShrinkUsageTableHeader(
requested_security_level_, new_entry_count,
reinterpret_cast<uint8_t*>(
const_cast<char*>(usage_table_header->data())),
&usage_table_header_len);
}
if (result != OEMCrypto_SUCCESS) {
LOGE("ShrinkUsageTableHeader: OEMCrypto_ShrinkUsageTableHeader error: %d",
result);
return SHRINK_USAGE_TABLER_HEADER_UNKNOWN_ERROR;
}
usage_table_header->resize(usage_table_header_len);
return NO_ERROR;
}
CdmResponseType CryptoSession::MoveUsageEntry(uint32_t new_entry_number) {
LOGV("MoveUsageEntry: id=%ld", (uint32_t)oec_session_id_);
OEMCryptoResult result =
OEMCrypto_MoveEntry(oec_session_id_, new_entry_number);
if (result != OEMCrypto_SUCCESS) {
LOGE("MoveUsageEntry: OEMCrypto_MoveEntry error: %d", result);
return MOVE_USAGE_ENTRY_UNKNOWN_ERROR;
}
return NO_ERROR;
}
bool CryptoSession::CreateOldUsageEntry(
uint64_t time_since_license_received, uint64_t time_since_first_decrypt,
uint64_t time_since_last_decrypt, UsageDurationStatus usage_duration_status,
const std::string& server_mac_key, const std::string& client_mac_key,
const std::string& provider_session_token) {
LOGV("CreateOldUsageEntry: Lock");
AutoLock auto_lock(crypto_lock_);
if (server_mac_key.size() < MAC_KEY_SIZE ||
client_mac_key.size() < MAC_KEY_SIZE) {
LOGE(
"CreateOldUsageEntry: Invalid mac key size: server mac key size %d, "
"client mac key size: %d",
server_mac_key.size(), client_mac_key.size());
return false;
}
OEMCrypto_Usage_Entry_Status status = kUnused;
switch (usage_duration_status) {
case kUsageDurationsInvalid:
status = kUnused;
break;
case kUsageDurationPlaybackNotBegun:
status = kInactiveUnused;
break;
case kUsageDurationsValid:
status = kActive;
break;
default:
LOGE("CreateOldUsageEntry: Unrecognized usage duration status: %d",
usage_duration_status);
return false;
}
OEMCryptoResult result = OEMCrypto_CreateOldUsageEntry(
requested_security_level_, time_since_license_received,
time_since_first_decrypt, time_since_last_decrypt, status,
reinterpret_cast<uint8_t*>(const_cast<char*>(server_mac_key.data())),
reinterpret_cast<uint8_t*>(const_cast<char*>(client_mac_key.data())),
reinterpret_cast<const uint8_t*>(provider_session_token.data()),
provider_session_token.size());
if (result != OEMCrypto_SUCCESS) {
LOGE("CreateOldUsageEntry: OEMCrypto_CreateOldUsageEntry error: %d",
result);
return false;
}
return true;
}
CdmResponseType CryptoSession::CopyOldUsageEntry(
const std::string& provider_session_token) {
LOGV("CopyOldUsageEntry: id=%ld", (uint32_t)oec_session_id_);
OEMCryptoResult result = OEMCrypto_CopyOldUsageEntry(
oec_session_id_,
reinterpret_cast<const uint8_t*>(provider_session_token.data()),
provider_session_token.size());
if (result != OEMCrypto_SUCCESS) {
LOGE("CopyOldUsageEntry: OEMCrypto_CopyOldUsageEntry error: %d", result);
return COPY_OLD_USAGE_ENTRY_UNKNOWN_ERROR;
}
return NO_ERROR;
}
CdmResponseType CryptoSession::AddSubSession(
const std::string& sub_session_key_id,
const std::string& group_master_key_id) {
size_t exists = sub_license_oec_sessions_.count(sub_session_key_id);
if (exists > 0) {
// TODO(jfore): Should this be an error if the key exists? If so add a new
// error. If not, perhaps this should just print info message.
LOGE("AddSubSession: SubSession already exists for id: %s",
sub_session_key_id.c_str());
return UNKNOWN_ERROR;
}
CryptoSessionId sid;
OEMCryptoResult sts = OEMCrypto_OpenSession(&sid, requested_security_level_);
if (OEMCrypto_ERROR_TOO_MANY_SESSIONS == sts) {
LOGE("OEMCrypto_Open failed: %d, open sessions: %ld, initialized: %d", sts,
session_count_, (int)initialized_);
return INSUFFICIENT_CRYPTO_RESOURCES;
} else if (OEMCrypto_SUCCESS != sts) {
LOGE("OEMCrypto_Open failed: %d, open sessions: %ld, initialized: %d", sts,
session_count_, (int)initialized_);
return UNKNOWN_ERROR;
}
M_TIME(sts = OEMCrypto_LoadDeviceRSAKey(
sid, reinterpret_cast<const uint8_t*>(wrapped_key_.data()),
wrapped_key_.size()),
metrics_, oemcrypto_load_device_rsa_key_, sts);
if (OEMCrypto_SUCCESS != sts) {
LOGE("LoadDeviceRSAKey failed: %d", sts);
return NEED_PROVISIONING;
}
sub_license_oec_sessions_[sub_session_key_id] = sid;
if (key_session_->Type() != KeySession::kSubLicense) {
key_session_.reset(new SubLicenseKeySession(
sub_license_oec_sessions_, metrics_, wrapped_key_,
requested_security_level_, group_master_key_id));
}
return NO_ERROR;
}
bool CryptoSession::GenerateSubSessionNonce(
const std::string& sub_session_key_id, bool* exists, uint32_t* nonce) {
if (!exists || !nonce) {
LOGE("input parameter is null");
return false;
}
LOGV("CryptoSession::GenerateSubSessionNonce: Lock");
AutoLock auto_lock(crypto_lock_);
SubLicenseSessionMap::iterator it =
sub_license_oec_sessions_.find(sub_session_key_id);
if (it == sub_license_oec_sessions_.end()) {
// A subsession does not exist. Indicate that and return success.
*exists = false;
return false;
}
*exists = true;
OEMCryptoResult result;
result = OEMCrypto_GenerateNonce(it->second, nonce);
return OEMCrypto_SUCCESS == result;
}
OEMCrypto_Algorithm CryptoSession::GenericSigningAlgorithm(
CdmSigningAlgorithm algorithm) {
if (kSigningAlgorithmHmacSha256 == algorithm) {
return OEMCrypto_HMAC_SHA256;
} else {
return kInvalidAlgorithm;
}
}
OEMCrypto_Algorithm CryptoSession::GenericEncryptionAlgorithm(
CdmEncryptionAlgorithm algorithm) {
if (kEncryptionAlgorithmAesCbc128 == algorithm) {
return OEMCrypto_AES_CBC_128_NO_PADDING;
} else {
return kInvalidAlgorithm;
}
}
size_t CryptoSession::GenericEncryptionBlockSize(
CdmEncryptionAlgorithm algorithm) {
if (kEncryptionAlgorithmAesCbc128 == algorithm) {
return kAes128BlockSize;
} else {
return 0;
}
}
OEMCryptoResult CryptoSession::CopyBufferInChunks(
const CdmDecryptionParameters& params,
OEMCrypto_DestBufferDesc buffer_descriptor) {
size_t remaining_encrypt_length = params.encrypt_length;
uint8_t subsample_flags = OEMCrypto_FirstSubsample;
while (remaining_encrypt_length > 0) {
// Calculate the size of the next chunk and its offset into the original
// buffer.
const size_t chunk_size =
std::min(remaining_encrypt_length, kMaximumChunkSize);
const size_t additional_offset =
params.encrypt_length - remaining_encrypt_length;
// Update the remaining length of the original buffer only after
// calculating the new values.
remaining_encrypt_length -= chunk_size;
// Update the destination buffer with the new offset.
switch (buffer_descriptor.type) {
case OEMCrypto_BufferType_Clear:
buffer_descriptor.buffer.clear.address =
static_cast<uint8_t*>(params.decrypt_buffer) +
params.decrypt_buffer_offset + additional_offset;
buffer_descriptor.buffer.clear.max_length =
params.decrypt_buffer_length -
(params.decrypt_buffer_offset + additional_offset);
break;
case OEMCrypto_BufferType_Secure:
buffer_descriptor.buffer.secure.offset =
params.decrypt_buffer_offset + additional_offset;
break;
case OEMCrypto_BufferType_Direct:
// OEMCrypto_BufferType_Direct does not need modification.
break;
}
// Re-add "last subsample" flag if this is the last subsample.
if (remaining_encrypt_length == 0) {
subsample_flags |= OEMCrypto_LastSubsample;
}
OEMCryptoResult sts;
M_TIME(sts = OEMCrypto_CopyBuffer(requested_security_level_,
params.encrypt_buffer + additional_offset,
chunk_size, &buffer_descriptor,
subsample_flags),
metrics_, oemcrypto_copy_buffer_, sts,
metrics::Pow2Bucket(chunk_size));
if (sts != OEMCrypto_SUCCESS) {
return sts;
}
// Clear any subsample flags before the next loop iteration.
subsample_flags = 0;
}
return OEMCrypto_SUCCESS;
}
OEMCryptoResult CryptoSession::DecryptInChunks(
const CdmDecryptionParameters& params,
const OEMCrypto_DestBufferDesc& full_buffer_descriptor,
const OEMCrypto_CENCEncryptPatternDesc& pattern_descriptor,
size_t max_chunk_size) {
size_t remaining_encrypt_length = params.encrypt_length;
uint8_t subsample_flags = (params.subsample_flags & OEMCrypto_FirstSubsample)
? OEMCrypto_FirstSubsample
: 0;
std::vector<uint8_t> iv = *params.iv;
const size_t pattern_length_in_bytes =
(pattern_descriptor.encrypt + pattern_descriptor.skip) * kAes128BlockSize;
while (remaining_encrypt_length > 0) {
// Calculate the size of the next chunk and its offset into the
// original buffer.
const size_t chunk_size =
std::min(remaining_encrypt_length, max_chunk_size);
const size_t additional_offset =
params.encrypt_length - remaining_encrypt_length;
// Update the remaining length of the original buffer only after
// calculating the new values.
remaining_encrypt_length -= chunk_size;
// Update the destination buffer with the new offset. Because OEMCrypto
// can modify the OEMCrypto_DestBufferDesc during the call to
// OEMCrypto_DecryptCENC, (and is known to do so on some platforms) a new
// OEMCrypto_DestBufferDesc must be allocated for each call.
OEMCrypto_DestBufferDesc buffer_descriptor = full_buffer_descriptor;
switch (buffer_descriptor.type) {
case OEMCrypto_BufferType_Clear:
buffer_descriptor.buffer.clear.address += additional_offset;
buffer_descriptor.buffer.clear.max_length -= additional_offset;
break;
case OEMCrypto_BufferType_Secure:
buffer_descriptor.buffer.secure.offset += additional_offset;
break;
case OEMCrypto_BufferType_Direct:
// OEMCrypto_BufferType_Direct does not need modification.
break;
}
// Re-add "last subsample" flag if this is the last subsample.
if (remaining_encrypt_length == 0 &&
params.subsample_flags & OEMCrypto_LastSubsample) {
subsample_flags |= OEMCrypto_LastSubsample;
}
// block_offset and pattern_descriptor do not need to change because
// max_chunk_size is guaranteed to be an even multiple of the
// pattern length long, which is also guaranteed to be an exact number
// of AES blocks long.
OEMCryptoResult sts;
M_TIME(
sts = OEMCrypto_DecryptCENC(
oec_session_id_, params.encrypt_buffer + additional_offset,
chunk_size, params.is_encrypted, &iv.front(), params.block_offset,
&buffer_descriptor, &pattern_descriptor, subsample_flags),
metrics_, oemcrypto_decrypt_cenc_, sts,
metrics::Pow2Bucket(chunk_size));
if (sts != OEMCrypto_SUCCESS) {
return sts;
}
// If we are not yet done, update the IV so that it is valid for the next
// iteration.
if (remaining_encrypt_length != 0) {
if (cipher_mode_ == kCipherModeCtr) {
// For CTR modes, update the IV depending on how many encrypted blocks
// we passed. Since we calculated the chunk size to be an even number
// of crypto blocks and pattern repetitions in size, we can do a
// simplified calculation for this.
uint64_t encrypted_blocks_passed = 0;
if (pattern_length_in_bytes == 0) {
encrypted_blocks_passed = chunk_size / kAes128BlockSize;
} else {
const size_t pattern_repetitions_passed =
chunk_size / pattern_length_in_bytes;
encrypted_blocks_passed =
pattern_repetitions_passed * pattern_descriptor.encrypt;
}
IncrementIV(encrypted_blocks_passed, &iv);
} else if (cipher_mode_ == kCipherModeCbc) {
// For CBC modes, use the previous ciphertext block.
// Stash the last crypto block in the IV. We don't have to handle
// partial crypto blocks here because we know we broke the buffer into
// chunks along even crypto block boundaries.
const uint8_t* const buffer_end =
params.encrypt_buffer + additional_offset + chunk_size;
const uint8_t* block_end = NULL;
if (pattern_length_in_bytes == 0) {
// For cbc1, the last encrypted block is the last block of the
// subsample.
block_end = buffer_end;
} else {
// For cbcs, we must look for the last encrypted block, which is
// probably not the last block of the subsample. Luckily, since the
// buffer size is guaranteed to be an even number of pattern
// repetitions long, we can use the pattern to know how many blocks
// to look back.
block_end = buffer_end - kAes128BlockSize * pattern_descriptor.skip;
}
iv.assign(block_end - kAes128BlockSize, block_end);
}
}
// Clear any subsample flags before the next loop iteration.
subsample_flags = 0;
}
return OEMCrypto_SUCCESS;
}
void CryptoSession::IncrementIV(uint64_t increase_by,
std::vector<uint8_t>* iv_out) {
std::vector<uint8_t>& iv = *iv_out;
uint64_t* counter_buffer = reinterpret_cast<uint64_t*>(&iv[8]);
(*counter_buffer) = htonll64(ntohll64(*counter_buffer) + increase_by);
}
} // namespace wvcdm