Files
android/libwvdrmengine/oemcrypto/mock/src/oemcrypto_usage_table_mock.cpp
Fred Gylys-Colwell 84efb88c28 Do not depend on wvcdm::Clock in OEC tests
Merge from widevine repo of http://go/wvgerrit/14669

This fixes two timing-related test failures when running the OEMCrypto
tests in the CE test suite.  The failures were caused by the TestHost
Clock implementation, which is a fake.  Since there is no clear reason
for OEMCrypto/mock to rely on wvcdm::Clock, this replaces it with
time(NULL).  Incidentally, this also makes the time source consistent
with the tests themselves, which were already using time(NULL).

Change-Id: I0fad51f14d45f99526146da05b757d4ba7b6aba0
2015-06-29 18:17:15 -07:00

425 lines
15 KiB
C++

// Copyright 2013 Google Inc. All Rights Reserved.
//
// Mock implementation of OEMCrypto APIs
//
#include "oemcrypto_usage_table_mock.h"
#include <string.h>
#include <time.h>
#include <string>
#include <vector>
#include <openssl/aes.h>
#include <openssl/hmac.h>
#include <openssl/rand.h>
#include <openssl/sha.h>
#include "file_store.h"
#include "log.h"
#include "oemcrypto_engine_mock.h"
#include "oemcrypto_logging.h"
#include "properties.h"
#include "string_conversions.h"
#include "wv_cdm_constants.h"
namespace wvoec_mock {
UsageTableEntry::UsageTableEntry(const std::vector<uint8_t> &pst_hash,
SessionContext *ctx)
: pst_hash_(pst_hash),
time_of_license_received_(time(NULL)),
time_of_first_decrypt_(0),
time_of_last_decrypt_(0),
status_(kUnused),
session_(ctx) {}
UsageTableEntry::~UsageTableEntry() {
if (session_) session_->ReleaseUsageEntry();
}
UsageTableEntry::UsageTableEntry(const StoredUsageEntry *buffer) {
pst_hash_.assign(buffer->pst_hash, buffer->pst_hash + SHA256_DIGEST_LENGTH);
time_of_license_received_ = buffer->time_of_license_received;
time_of_first_decrypt_ = buffer->time_of_first_decrypt;
time_of_last_decrypt_ = buffer->time_of_last_decrypt;
status_ = buffer->status;
mac_key_server_.assign(buffer->mac_key_server,
buffer->mac_key_server + wvcdm::MAC_KEY_SIZE);
mac_key_client_.assign(buffer->mac_key_client,
buffer->mac_key_client + wvcdm::MAC_KEY_SIZE);
session_ = NULL;
}
void UsageTableEntry::SaveToBuffer(StoredUsageEntry *buffer) {
if (pst_hash_.size() != sizeof(buffer->pst_hash)) {
LOGE("Coding Error: pst hash has wrong size.");
return;
}
memcpy(buffer->pst_hash, &pst_hash_[0], pst_hash_.size());
buffer->time_of_license_received = time_of_license_received_;
buffer->time_of_first_decrypt = time_of_first_decrypt_;
buffer->time_of_last_decrypt = time_of_last_decrypt_;
buffer->status = status_;
memcpy(buffer->mac_key_server, &mac_key_server_[0], wvcdm::MAC_KEY_SIZE);
memcpy(buffer->mac_key_client, &mac_key_client_[0], wvcdm::MAC_KEY_SIZE);
}
void UsageTableEntry::Deactivate() {
status_ = kInactive;
if (session_) {
session_->ReleaseUsageEntry();
session_ = NULL;
}
}
bool UsageTableEntry::UpdateTime() {
int64_t now = time(NULL);
switch (status_) {
case kUnused:
status_ = kActive;
time_of_first_decrypt_ = now;
time_of_last_decrypt_ = now;
return true;
case kActive:
time_of_last_decrypt_ = now;
return true;
case kInactive:
return false;
}
return false;
}
OEMCryptoResult UsageTableEntry::ReportUsage(SessionContext *session,
const std::vector<uint8_t> &pst,
OEMCrypto_PST_Report *buffer,
size_t *buffer_length) {
size_t length_needed = sizeof(OEMCrypto_PST_Report) + pst.size();
if (*buffer_length < length_needed) {
*buffer_length = length_needed;
return OEMCrypto_ERROR_SHORT_BUFFER;
}
if (!buffer) {
LOGE("ReportUsage: buffer was null pointer.");
return OEMCrypto_ERROR_INVALID_CONTEXT;
}
int64_t now = time(NULL);
buffer->seconds_since_license_received =
wvcdm::htonll64(now - time_of_license_received_);
buffer->seconds_since_first_decrypt =
wvcdm::htonll64(now - time_of_first_decrypt_);
buffer->seconds_since_last_decrypt =
wvcdm::htonll64(now - time_of_last_decrypt_);
buffer->status = status_;
buffer->clock_security_level = kSecureTimer;
buffer->pst_length = static_cast<uint8_t>(pst.size());
memcpy(buffer->pst, &pst[0], length_needed - sizeof(OEMCrypto_PST_Report));
unsigned int md_len = sizeof(buffer->signature);
if (!HMAC(EVP_sha1(), &mac_key_client_[0], mac_key_client_.size(),
reinterpret_cast<uint8_t *>(buffer) + SHA_DIGEST_LENGTH,
length_needed - SHA_DIGEST_LENGTH, buffer->signature, &md_len)) {
LOGE("UsageTableEntry: could not compute signature.");
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
session->set_mac_key_server(mac_key_server_);
session->set_mac_key_client(mac_key_client_);
return OEMCrypto_SUCCESS;
}
bool UsageTableEntry::VerifyOrSetMacKeys(const std::vector<uint8_t> &server,
const std::vector<uint8_t> &client) {
if (mac_key_server_.size() == 0) { // Not set yet, so set it now.
mac_key_server_ = server;
mac_key_client_ = client;
return true;
} else {
return (mac_key_server_ == server && mac_key_client_ == client);
}
}
UsageTable::UsageTable(CryptoEngine *ce) {
ce_ = ce;
generation_ = 0;
table_.clear();
// Load saved table.
wvcdm::File file;
std::string path;
// Note: this path is OK for a real implementation, but using security level 1
// would be better.
if (!wvcdm::Properties::GetDeviceFilesBasePath(wvcdm::kSecurityLevelL3,
&path)) {
LOGE("UsageTable: Unable to get base path");
return;
}
std::string filename = path + "UsageTable.dat";
if (!file.Exists(filename)) {
if (LogCategoryEnabled(kLoggingTraceUsageTable)) {
LOGI("UsageTable: No saved usage table. Creating new table.");
}
return;
}
size_t file_size = file.FileSize(filename);
std::vector<uint8_t> encrypted_buffer(file_size);
std::vector<uint8_t> buffer(file_size);
StoredUsageTable *stored_table =
reinterpret_cast<StoredUsageTable *>(&buffer[0]);
StoredUsageTable *encrypted_table =
reinterpret_cast<StoredUsageTable *>(&encrypted_buffer[0]);
if (!file.Open(filename, wvcdm::File::kReadOnly | wvcdm::File::kBinary)) {
LOGE("UsageTable: File open failed: %s", path.c_str());
return;
}
file.Read(reinterpret_cast<char *>(&encrypted_buffer[0]), file_size);
file.Close();
// First, verify the signature of the usage table file.
std::vector<uint8_t> &key = ce_->real_keybox().device_key();
uint8_t computed_signature[SHA256_DIGEST_LENGTH];
unsigned int sig_length = sizeof(computed_signature);
if (!HMAC(EVP_sha256(), &key[0], key.size(),
&encrypted_buffer[SHA256_DIGEST_LENGTH],
file_size - SHA256_DIGEST_LENGTH, computed_signature,
&sig_length)) {
LOGE("UsageTable: Could not recreate signature.");
table_.clear();
return;
}
if (memcmp(encrypted_table->signature, computed_signature, sig_length)) {
LOGE("UsageTable: Invalid signature given: %s",
wvcdm::HexEncode(&encrypted_buffer[0], sig_length).c_str());
LOGE("UsageTable: Invalid signature computed: %s",
wvcdm::HexEncode(computed_signature, sig_length).c_str());
table_.clear();
return;
}
// Next, decrypt the table.
uint8_t iv_buffer[wvcdm::KEY_IV_SIZE];
memcpy(iv_buffer, encrypted_table->iv, wvcdm::KEY_IV_SIZE);
AES_KEY aes_key;
AES_set_decrypt_key(&key[0], 128, &aes_key);
AES_cbc_encrypt(&encrypted_buffer[SHA256_DIGEST_LENGTH + wvcdm::KEY_IV_SIZE],
&buffer[SHA256_DIGEST_LENGTH + wvcdm::KEY_IV_SIZE],
file_size - SHA256_DIGEST_LENGTH - wvcdm::KEY_IV_SIZE,
&aes_key, iv_buffer, AES_DECRYPT);
// Next, read the generation number from a different location.
// On a real implementation, you should NOT put the generation number in
// a file in user space. It should be stored in secure memory. For the
// reference implementation, we'll just pretend this is secure.
std::string filename2 = path + "GenerationNumber.dat";
if (!file.Exists(filename2) ||
!file.Open(filename2, wvcdm::File::kReadOnly | wvcdm::File::kBinary)) {
LOGE("UsageTable: File open failed: %s (clearing table)", path.c_str());
generation_ = 0;
table_.clear();
return;
}
file.Read(reinterpret_cast<char *>(&generation_), sizeof(int64_t));
file.Close();
if (stored_table->generation == generation_ + 1) {
if (LogCategoryEnabled(kLoggingTraceUsageTable)) {
LOGW("UsageTable: File is one generation old. Acceptable rollback.");
}
} else if (stored_table->generation == generation_ - 1) {
if (LogCategoryEnabled(kLoggingTraceUsageTable)) {
LOGW("UsageTable: File is one generation new. Acceptable rollback.");
}
// This might happen if the generation number was rolled back?
} else if (stored_table->generation != generation_) {
LOGE("UsageTable: Rollback detected. Clearing Usage Table. %lx -> %lx",
generation_, stored_table->generation);
table_.clear();
generation_ = 0;
return;
}
// At this point, the stored table looks valid. We can load in all the
// entries.
for (size_t i = 0; i < stored_table->count; i++) {
UsageTableEntry *entry =
new UsageTableEntry(&stored_table->entries[i].entry);
table_[entry->pst_hash()] = entry;
}
if (LogCategoryEnabled(kLoggingTraceUsageTable)) {
LOGI("UsageTable: loaded %d entries.", stored_table->count);
}
}
bool UsageTable::SaveToFile() {
// This is always called by a locking function.
// Update the generation number so we can detect rollback.
generation_++;
// Now save data to the file as seen in the constructor, above.
size_t file_size = sizeof(StoredUsageTable) +
table_.size() * sizeof(AlignedStoredUsageEntry);
std::vector<uint8_t> buffer(file_size);
std::vector<uint8_t> encrypted_buffer(file_size);
StoredUsageTable *stored_table =
reinterpret_cast<StoredUsageTable *>(&buffer[0]);
StoredUsageTable *encrypted_table =
reinterpret_cast<StoredUsageTable *>(&encrypted_buffer[0]);
stored_table->generation = generation_;
stored_table->count = 0;
for (EntryMap::iterator i = table_.begin(); i != table_.end(); ++i) {
UsageTableEntry *entry = i->second;
entry->SaveToBuffer(&stored_table->entries[stored_table->count].entry);
stored_table->count++;
}
// This should be encrypted and signed with a device specific key.
// For the reference implementation, I'm just going to use the keybox key.
std::vector<uint8_t> &key = ce_->real_keybox().device_key();
// Encrypt the table.
RAND_bytes(encrypted_table->iv, wvcdm::KEY_IV_SIZE);
uint8_t iv_buffer[wvcdm::KEY_IV_SIZE];
memcpy(iv_buffer, encrypted_table->iv, wvcdm::KEY_IV_SIZE);
AES_KEY aes_key;
AES_set_encrypt_key(&key[0], 128, &aes_key);
AES_cbc_encrypt(&buffer[SHA256_DIGEST_LENGTH + wvcdm::KEY_IV_SIZE],
&encrypted_buffer[SHA256_DIGEST_LENGTH + wvcdm::KEY_IV_SIZE],
file_size - SHA256_DIGEST_LENGTH - wvcdm::KEY_IV_SIZE,
&aes_key, iv_buffer, AES_ENCRYPT);
// Sign the table.
unsigned int sig_length = sizeof(stored_table->signature);
if (!HMAC(EVP_sha256(), &key[0], key.size(),
&encrypted_buffer[SHA256_DIGEST_LENGTH],
file_size - SHA256_DIGEST_LENGTH, encrypted_table->signature,
&sig_length)) {
LOGE("UsageTable: Could not sign table.");
return false;
}
wvcdm::File file;
std::string path;
// Note: this path is OK for a real implementation, but using security level 1
// would be better.
if (!wvcdm::Properties::GetDeviceFilesBasePath(wvcdm::kSecurityLevelL3,
&path)) {
LOGE("UsageTable: Unable to get base path");
return false;
}
if (!file.IsDirectory(path)) {
if (!file.CreateDirectory(path)) {
LOGE("UsageTable: could not create directory: %s", path.c_str());
return false;
}
}
std::string filename = path + "UsageTable.dat";
if (!file.Exists(filename)) {
if (LogCategoryEnabled(kLoggingTraceUsageTable)) {
LOGI("UsageTable: No saved usage table. Creating new table.");
}
}
if (!file.Open(filename, wvcdm::File::kCreate | wvcdm::File::kTruncate |
wvcdm::File::kBinary)) {
LOGE("UsageTable: Could not save usage table: %s", path.c_str());
return false;
}
file.Write(reinterpret_cast<char *>(&encrypted_buffer[0]), file_size);
file.Close();
// On a real implementation, you should NOT put the generation number in
// a file in user space. It should be stored in secure memory.
std::string filename2 = path + "GenerationNumber.dat";
if (!file.Open(filename2, wvcdm::File::kCreate | wvcdm::File::kTruncate |
wvcdm::File::kBinary)) {
LOGE("UsageTable: File open failed: %s", path.c_str());
return false;
}
file.Write(reinterpret_cast<char *>(&generation_), sizeof(int64_t));
file.Close();
return true;
}
UsageTableEntry *UsageTable::FindEntry(const std::vector<uint8_t> &pst) {
wvcdm::AutoLock lock(lock_);
return FindEntryLocked(pst);
}
UsageTableEntry *UsageTable::FindEntryLocked(const std::vector<uint8_t> &pst) {
std::vector<uint8_t> pst_hash;
if (!ComputeHash(pst, pst_hash)) {
LOGE("UsageTable: Could not compute hash of pst.");
return NULL;
}
EntryMap::iterator it = table_.find(pst_hash);
if (it == table_.end()) {
return NULL;
}
return it->second;
}
UsageTableEntry *UsageTable::CreateEntry(const std::vector<uint8_t> &pst,
SessionContext *ctx) {
std::vector<uint8_t> pst_hash;
if (!ComputeHash(pst, pst_hash)) {
LOGE("UsageTable: Could not compute hash of pst.");
return NULL;
}
UsageTableEntry *entry = new UsageTableEntry(pst_hash, ctx);
wvcdm::AutoLock lock(lock_);
table_[pst_hash] = entry;
return entry;
}
OEMCryptoResult UsageTable::UpdateTable() {
wvcdm::AutoLock lock(lock_);
if (SaveToFile()) return OEMCrypto_SUCCESS;
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
OEMCryptoResult UsageTable::DeactivateEntry(const std::vector<uint8_t> &pst) {
wvcdm::AutoLock lock(lock_);
UsageTableEntry *entry = FindEntryLocked(pst);
if (!entry) return OEMCrypto_ERROR_INVALID_CONTEXT;
entry->Deactivate();
if (SaveToFile()) return OEMCrypto_SUCCESS;
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
bool UsageTable::DeleteEntry(const std::vector<uint8_t> &pst) {
std::vector<uint8_t> pst_hash;
if (!ComputeHash(pst, pst_hash)) {
LOGE("UsageTable: Could not compute hash of pst.");
return false;
}
wvcdm::AutoLock lock(lock_);
EntryMap::iterator it = table_.find(pst_hash);
if (it == table_.end()) return false;
if (it->second) delete it->second;
table_.erase(it);
return SaveToFile();
}
void UsageTable::Clear() {
wvcdm::AutoLock lock(lock_);
for (EntryMap::iterator i = table_.begin(); i != table_.end(); ++i) {
if (i->second) delete i->second;
}
table_.clear();
}
bool UsageTable::ComputeHash(const std::vector<uint8_t> &pst,
std::vector<uint8_t> &pst_hash) {
// The PST is not fixed size, and we have no promises that it is reasonbly
// sized, so we compute a hash of it, and store that instead.
pst_hash.resize(SHA256_DIGEST_LENGTH);
SHA256_CTX context;
if (!SHA256_Init(&context)) return false;
if (!SHA256_Update(&context, &pst[0], pst.size())) return false;
if (!SHA256_Final(&pst_hash[0], &context)) return false;
return true;
}
} // namespace wvoec_mock