Files
android/libwvdrmengine/level3/arm/entry_points.cpp
Fred Gylys-Colwell 39ea1df671 Part of Qualcomm L1 OEMCrypto integration
Upgrade to version 2.1 of license protocol in OEMCrypto.

related-to-bug: 8621521

Merge of https://widevine-internal-review.googlesource.com/#/c/4952/
from Widevine CDM repository to android repository.

Change-Id: I0d85dae1981b7525ab17aec5f21cf668d078bf47
2013-04-22 16:15:03 -07:00

1309 lines
54 KiB
C++

/*******************************************************************************
*
* Copyright 2013 Google Inc. All Rights Reserved.
*
* Wrapper for Level 1 OEMCrypto or Level 3 Fallback APIs
*
******************************************************************************/
#include "OEMCryptoCENC.h"
#include <dlfcn.h>
#include <stdio.h>
#include <iostream>
#include <cstring>
#include <string>
#include "log.h"
#include "oemcrypto_engine_mock.h"
#include "openssl/cmac.h"
#include "openssl/evp.h"
#include "openssl/hmac.h"
#include "openssl/rand.h"
#include "openssl/sha.h"
#include "wv_cdm_constants.h"
namespace wvoec_mock {
// TODO(fredgc): These are in the level 3 directory, but they are entry points for
// both level 3 and level 1. That is confusing. Fix it.
typedef OEMCryptoResult (*L1_Initialize_t)(void);
typedef OEMCryptoResult (*L1_Terminate_t)(void);
typedef OEMCryptoResult (*L1_OpenSession_t)(OEMCrypto_SESSION *session);
typedef OEMCryptoResult (*L1_CloseSession_t)(OEMCrypto_SESSION session);
typedef OEMCryptoResult (*L1_GenerateDerivedKeys_t)(OEMCrypto_SESSION session,
const uint8_t *mac_key_context,
uint32_t mac_key_context_length,
const uint8_t *enc_key_context,
uint32_t enc_key_context_length);
typedef OEMCryptoResult (*L1_GenerateNonce_t)(OEMCrypto_SESSION session,
uint32_t* nonce);
typedef OEMCryptoResult (*L1_GenerateSignature_t)(OEMCrypto_SESSION session,
const uint8_t* message,
size_t message_length,
uint8_t* signature,
size_t* signature_length);
typedef OEMCryptoResult (*L1_LoadKeys_t)(OEMCrypto_SESSION session,
const uint8_t* message,
size_t message_length,
const uint8_t* signature,
size_t signature_length,
const uint8_t* enc_mac_key_iv,
const uint8_t* enc_mac_key,
size_t num_keys,
const OEMCrypto_KeyObject* key_array);
typedef OEMCryptoResult (*L1_RefreshKeys_t)(OEMCrypto_SESSION session,
const uint8_t* message,
size_t message_length,
const uint8_t* signature,
size_t signature_length,
size_t num_keys,
const OEMCrypto_KeyRefreshObject* key_array);
typedef OEMCryptoResult (*L1_SelectKey_t)(const OEMCrypto_SESSION session,
const uint8_t* key_id,
size_t key_id_length);
typedef OEMCryptoResult (*L1_DecryptCTR_t)(OEMCrypto_SESSION session,
const uint8_t *data_addr,
size_t data_length,
bool is_encrypted,
const uint8_t *iv,
size_t offset,
const OEMCrypto_DestBufferDesc* out_buffer,
uint8_t subsample_flags);
typedef OEMCryptoResult (*L1_InstallKeybox_t)(const uint8_t *keybox,
size_t keyBoxLength);
typedef OEMCryptoResult (*L1_IsKeyboxValid_t)(void);
typedef OEMCryptoResult (*L1_GetDeviceID_t)(uint8_t* deviceID,
size_t *idLength);
typedef OEMCryptoResult (*L1_GetKeyData_t)(uint8_t* keyData,
size_t *keyDataLength);
typedef OEMCryptoResult (*L1_GetRandom_t)(uint8_t* randomData,
size_t dataLength);
typedef OEMCryptoResult (*L1_WrapKeybox_t)(const uint8_t *keybox,
size_t keyBoxLength,
uint8_t *wrappedKeybox,
size_t *wrappedKeyBoxLength,
const uint8_t *transportKey,
size_t transportKeyLength);
typedef OEMCryptoResult (*L1_RewrapDeviceRSAKey_t)(OEMCrypto_SESSION session,
const uint8_t* message,
size_t message_length,
const uint8_t* signature,
size_t signature_length,
const uint32_t *nonce,
const uint8_t* enc_rsa_key,
size_t enc_rsa_key_length,
const uint8_t* enc_rsa_key_iv,
uint8_t* wrapped_rsa_key,
size_t *wrapped_rsa_key_length);
typedef OEMCryptoResult (*L1_LoadDeviceRSAKey_t)(OEMCrypto_SESSION session,
const uint8_t* wrapped_rsa_key,
size_t wrapped_rsa_key_length);
typedef OEMCryptoResult (*L1_GenerateRSASignature_t)(OEMCrypto_SESSION session,
const uint8_t* message,
size_t message_length,
uint8_t* signature,
size_t *signature_length);
typedef OEMCryptoResult (*L1_DeriveKeysFromSessionKey_t)(OEMCrypto_SESSION session,
const uint8_t* enc_session_key,
size_t enc_session_key_length,
const uint8_t *mac_key_context,
size_t mac_key_context_length,
const uint8_t *enc_key_context,
size_t enc_key_context_length);
typedef OEMCryptoResult (*L1_Generic_Encrypt_t)(OEMCrypto_SESSION session,
const uint8_t* in_buffer,
size_t buffer_length,
const uint8_t* iv,
OEMCrypto_Algorithm algorithm,
uint8_t* out_buffer);
typedef OEMCryptoResult (*L1_Generic_Decrypt_t)(OEMCrypto_SESSION session,
const uint8_t* in_buffer,
size_t buffer_length,
const uint8_t* iv,
OEMCrypto_Algorithm algorithm,
uint8_t* out_buffer);
typedef OEMCryptoResult (*L1_Generic_Sign_t)(OEMCrypto_SESSION session,
const uint8_t* in_buffer,
size_t buffer_length,
OEMCrypto_Algorithm algorithm,
uint8_t* signature,
size_t* signature_length);
typedef OEMCryptoResult (*L1_Generic_Verify_t)(OEMCrypto_SESSION session,
const uint8_t* in_buffer,
size_t buffer_length,
OEMCrypto_Algorithm algorithm,
const uint8_t* signature,
size_t signature_length);
typedef uint8_t (*L1_APIVersion_t)();
typedef const char* (*L1_SecurityLevel_t)();
struct FunctionPointers {
void* library;
L1_Initialize_t OEMCrypto_Initialize;
L1_Terminate_t OEMCrypto_Terminate;
L1_OpenSession_t OEMCrypto_OpenSession;
L1_CloseSession_t OEMCrypto_CloseSession;
L1_GenerateDerivedKeys_t OEMCrypto_GenerateDerivedKeys;
L1_GenerateNonce_t OEMCrypto_GenerateNonce;
L1_GenerateSignature_t OEMCrypto_GenerateSignature;
L1_LoadKeys_t OEMCrypto_LoadKeys;
L1_RefreshKeys_t OEMCrypto_RefreshKeys;
L1_SelectKey_t OEMCrypto_SelectKey;
L1_DecryptCTR_t OEMCrypto_DecryptCTR;
L1_InstallKeybox_t OEMCrypto_InstallKeybox;
L1_IsKeyboxValid_t OEMCrypto_IsKeyboxValid;
L1_GetDeviceID_t OEMCrypto_GetDeviceID;
L1_GetKeyData_t OEMCrypto_GetKeyData;
L1_GetRandom_t OEMCrypto_GetRandom;
L1_WrapKeybox_t OEMCrypto_WrapKeybox;
L1_RewrapDeviceRSAKey_t OEMCrypto_RewrapDeviceRSAKey;
L1_LoadDeviceRSAKey_t OEMCrypto_LoadDeviceRSAKey;
L1_GenerateRSASignature_t OEMCrypto_GenerateRSASignature;
L1_DeriveKeysFromSessionKey_t OEMCrypto_DeriveKeysFromSessionKey;
L1_APIVersion_t OEMCrypto_APIVersion;
L1_SecurityLevel_t OEMCrypto_SecurityLevel;
L1_Generic_Encrypt_t OEMCrypto_Generic_Encrypt;
L1_Generic_Decrypt_t OEMCrypto_Generic_Decrypt;
L1_Generic_Sign_t OEMCrypto_Generic_Sign;
L1_Generic_Verify_t OEMCrypto_Generic_Verify;
};
static struct FunctionPointers level1;
#define QUOTE_DEFINE(A) #A
#define QUOTE(A) QUOTE_DEFINE(A)
#define LOOKUP(Type, Name) \
level1.Name = (Type)dlsym(level1.library, QUOTE(Name)); \
if (!level1.Name) { \
dll_valid = false; \
}
typedef struct {
uint8_t signature[wvcdm::MAC_KEY_SIZE];
uint8_t context[wvcdm::MAC_KEY_SIZE];
uint8_t iv[wvcdm::KEY_IV_SIZE];
uint8_t enc_rsa_key[];
} WrappedRSAKey;
static CryptoEngine* crypto_engine = NULL;
extern "C"
OEMCryptoResult OEMCrypto_Initialize(void) {
crypto_engine = new CryptoEngine;
if (!crypto_engine || !crypto_engine->Initialized()) {
LOGE("[OEMCrypto_Initialize(): failed]");
return OEMCrypto_ERROR_INIT_FAILED;
}
LOGD("OEMCrypto_Initialize Level 3 success. Now I will try to load Level 1");
level1.library = dlopen("liboemcrypto.so", RTLD_NOW);
if (level1.library == NULL) {
LOGW("Could not load liboemcrypto.so. Falling Back to L3.");
return OEMCrypto_SUCCESS;
}
bool dll_valid = true;
LOOKUP(L1_Initialize_t, OEMCrypto_Initialize);
LOOKUP(L1_Terminate_t, OEMCrypto_Terminate);
LOOKUP(L1_OpenSession_t, OEMCrypto_OpenSession);
LOOKUP(L1_CloseSession_t, OEMCrypto_CloseSession);
LOOKUP(L1_GenerateDerivedKeys_t, OEMCrypto_GenerateDerivedKeys);
LOOKUP(L1_GenerateNonce_t, OEMCrypto_GenerateNonce);
LOOKUP(L1_GenerateSignature_t, OEMCrypto_GenerateSignature);
LOOKUP(L1_LoadKeys_t, OEMCrypto_LoadKeys);
LOOKUP(L1_RefreshKeys_t, OEMCrypto_RefreshKeys);
LOOKUP(L1_SelectKey_t, OEMCrypto_SelectKey);
LOOKUP(L1_DecryptCTR_t, OEMCrypto_DecryptCTR);
LOOKUP(L1_InstallKeybox_t, OEMCrypto_InstallKeybox);
LOOKUP(L1_IsKeyboxValid_t, OEMCrypto_IsKeyboxValid);
LOOKUP(L1_GetDeviceID_t, OEMCrypto_GetDeviceID);
LOOKUP(L1_GetKeyData_t, OEMCrypto_GetKeyData);
LOOKUP(L1_GetRandom_t, OEMCrypto_GetRandom);
LOOKUP(L1_WrapKeybox_t, OEMCrypto_WrapKeybox);
// TODO(fredgc): Move the validity check from here to below after we have
// an L1 library that matches current version.
if (!dll_valid) {
dlclose(level1.library);
level1.library = NULL;
LOGW("Could not load functions from liboemcrypto.so. Falling Back to L3.");
return OEMCrypto_SUCCESS;
}
LOOKUP(L1_RewrapDeviceRSAKey_t, OEMCrypto_RewrapDeviceRSAKey);
LOOKUP(L1_LoadDeviceRSAKey_t, OEMCrypto_LoadDeviceRSAKey);
LOOKUP(L1_GenerateRSASignature_t, OEMCrypto_GenerateRSASignature);
LOOKUP(L1_DeriveKeysFromSessionKey_t, OEMCrypto_DeriveKeysFromSessionKey);
LOOKUP(L1_APIVersion_t, OEMCrypto_APIVersion);
LOOKUP(L1_SecurityLevel_t, OEMCrypto_SecurityLevel);
LOOKUP(L1_Generic_Decrypt_t, OEMCrypto_Generic_Decrypt);
LOOKUP(L1_Generic_Encrypt_t, OEMCrypto_Generic_Encrypt);
LOOKUP(L1_Generic_Sign_t, OEMCrypto_Generic_Sign);
LOOKUP(L1_Generic_Verify_t, OEMCrypto_Generic_Verify);
// TODO(fredgc): Move the validity check from above to here after we have
// a current L1 library.
OEMCryptoResult st = level1.OEMCrypto_Initialize();
if (st != OEMCrypto_SUCCESS) {
LOGW("Could not initialize liboemcrypto.so. Falling Back to L3.");
dlclose(level1.library);
level1.library = NULL;
return OEMCrypto_SUCCESS;
}
if (level1.OEMCrypto_APIVersion ) {
uint32_t level1_version = level1.OEMCrypto_APIVersion();
if( level1_version > oec_latest_version ) { // Check for foward jump.
LOGW("liboemcrypto.so is version %d, not %d. Falling Back to L3.",
level1_version, oec_latest_version);
dlclose(level1.library);
level1.library = NULL;
return OEMCrypto_SUCCESS;
}
}
LOGD("OEMCrypto_Initialize Level 1 success. I will use level 1.");
return OEMCrypto_SUCCESS;
}
extern "C"
OEMCryptoResult OEMCrypto_Terminate(void) {
if (level1.library) {
OEMCryptoResult st = level1.OEMCrypto_Terminate();
dlclose(level1.library);
level1.library = NULL;
return st;
}
if (!crypto_engine) {
LOGE("[OEMCrypto_Terminate(): failed]");
return OEMCrypto_ERROR_TERMINATE_FAILED;
}
if (crypto_engine->Initialized()) {
crypto_engine->Terminate();
}
delete crypto_engine;
crypto_engine = NULL;
LOGD("[OEMCrypto_Terminate(): success]");
return OEMCrypto_SUCCESS;
}
extern "C"
OEMCryptoResult OEMCrypto_OpenSession(OEMCrypto_SESSION* session) {
if (level1.library) {
return level1.OEMCrypto_OpenSession(session);
}
SessionId sid = crypto_engine->CreateSession();
*session = (OEMCrypto_SESSION)sid;
LOGD("[OEMCrypto_OpenSession(): SID=%08x]", sid);
return OEMCrypto_SUCCESS;
}
extern "C"
OEMCryptoResult OEMCrypto_CloseSession(OEMCrypto_SESSION session) {
if (level1.library) {
return level1.OEMCrypto_CloseSession(session);
}
if (!crypto_engine->DestroySession((SessionId)session)) {
LOGD("[OEMCrypto_CloseSession(SID=%08X): failed]", session);
return OEMCrypto_ERROR_CLOSE_SESSION_FAILED;
} else {
LOGD("[OEMCrypto_CloseSession(SID=%08X): success]", session);
return OEMCrypto_SUCCESS;
}
}
extern "C"
OEMCryptoResult OEMCrypto_GenerateNonce(OEMCrypto_SESSION session,
uint32_t* nonce) {
if (level1.library) {
return level1.OEMCrypto_GenerateNonce(session, nonce);
}
SessionContext* session_ctx = crypto_engine->FindSession(session);
if (!session_ctx || !session_ctx->isValid()) {
LOGE("[OEMCrypto_GenerateNonce(): ERROR_NO_INVALID_SESSION]");
return OEMCrypto_ERROR_INVALID_SESSION;
}
uint32_t nonce_value;
uint8_t* nonce_string = reinterpret_cast<uint8_t*>(&nonce_value);
// Generate 4 bytes of random data
if (!RAND_bytes(nonce_string, 4)) {
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
session_ctx->AddNonce(nonce_value);
*nonce = nonce_value;
return OEMCrypto_SUCCESS;
}
extern "C"
OEMCryptoResult OEMCrypto_GenerateDerivedKeys(OEMCrypto_SESSION session,
const uint8_t* mac_key_context,
uint32_t mac_key_context_length,
const uint8_t* enc_key_context,
uint32_t enc_key_context_length) {
if (level1.library) {
return level1.OEMCrypto_GenerateDerivedKeys(session, mac_key_context,
mac_key_context_length,
enc_key_context,
enc_key_context_length);
}
if (NO_ERROR != crypto_engine->ValidateKeybox()) {
LOGE("[OEMCrypto_GenerateDerivedKeys(): ERROR_KEYBOX_INVALID]");
return OEMCrypto_ERROR_KEYBOX_INVALID;
}
SessionContext* session_ctx = crypto_engine->FindSession(session);
if (!session_ctx || !session_ctx->isValid()) {
LOGE("[OEMCrypto_GenerateDerivedKeys(): ERROR_NO_INVALID_SESSION]");
return OEMCrypto_ERROR_INVALID_SESSION;
}
const std::vector<uint8_t> mac_ctx_str(mac_key_context,
mac_key_context + mac_key_context_length);
const std::vector<uint8_t> enc_ctx_str(enc_key_context,
enc_key_context + enc_key_context_length);
// Generate mac and encryption keys for current session context
if (!session_ctx->DeriveKeys(crypto_engine->keybox().device_key().value(),
mac_ctx_str, enc_ctx_str)) {
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
return OEMCrypto_SUCCESS;
}
extern "C"
OEMCryptoResult OEMCrypto_GenerateSignature(OEMCrypto_SESSION session,
const uint8_t* message,
size_t message_length,
uint8_t* signature,
size_t* signature_length) {
if (level1.library) {
return level1.OEMCrypto_GenerateSignature( session, message, message_length,
signature, signature_length);
}
if (NO_ERROR != crypto_engine->ValidateKeybox()) {
LOGE("[OEMCrypto_GenerateSignature(): ERROR_KEYBOX_INVALID]");
return OEMCrypto_ERROR_KEYBOX_INVALID;
}
if (*signature_length < SHA256_DIGEST_LENGTH) {
*signature_length = SHA256_DIGEST_LENGTH;
return OEMCrypto_ERROR_SHORT_BUFFER;
}
if (message == NULL || message_length == 0 ||
signature == NULL || signature_length == 0) {
LOGE("[OEMCrypto_GenerateSignature(): OEMCrypto_ERROR_INVALID_CONTEXT]");
return OEMCrypto_ERROR_INVALID_CONTEXT;
}
SessionContext* session_ctx = crypto_engine->FindSession(session);
if (!session_ctx || !session_ctx->isValid()) {
LOGE("[OEMCrypto_GenerateSignature(): ERROR_NO_INVALID_SESSION]");
return OEMCrypto_ERROR_INVALID_SESSION;
}
if (session_ctx->GenerateSignature(message,
message_length,
signature,
signature_length)) {
return OEMCrypto_SUCCESS;
}
return OEMCrypto_ERROR_UNKNOWN_FAILURE;;
}
bool RangeCheck(const uint8_t* message,
uint32_t message_length,
const uint8_t* field,
uint32_t field_length,
bool allow_null) {
if (field == NULL) return allow_null;
if (field < message) return false;
if (field + field_length > message + message_length) return false;
return true;
}
extern "C"
OEMCryptoResult OEMCrypto_LoadKeys(OEMCrypto_SESSION session,
const uint8_t* message,
size_t message_length,
const uint8_t* signature,
size_t signature_length,
const uint8_t* enc_mac_key_iv,
const uint8_t* enc_mac_keys,
size_t num_keys,
const OEMCrypto_KeyObject* key_array) {
if (level1.library) {
return level1.OEMCrypto_LoadKeys(session, message, message_length, signature,
signature_length, enc_mac_key_iv, enc_mac_keys,
num_keys, key_array);
}
if (NO_ERROR != crypto_engine->ValidateKeybox()) {
LOGE("[OEMCrypto_LoadKeys(): ERROR_KEYBOX_INVALID]");
return OEMCrypto_ERROR_KEYBOX_INVALID;
}
SessionContext* session_ctx = crypto_engine->FindSession(session);
if (!session_ctx || !session_ctx->isValid()) {
LOGE("[OEMCrypto_LoadKeys(): ERROR_NO_INVALID_SESSION]");
return OEMCrypto_ERROR_INVALID_SESSION;
}
if (message == NULL || message_length == 0 ||
signature == NULL || signature_length == 0 ||
key_array == NULL || num_keys == 0) {
LOGE("[OEMCrypto_LoadKeys(): OEMCrypto_ERROR_INVALID_CONTEXT]");
return OEMCrypto_ERROR_INVALID_CONTEXT;
}
// Range check
if (!RangeCheck(message, message_length, enc_mac_keys,
2*wvcdm::MAC_KEY_SIZE, true) ||
!RangeCheck(message, message_length, enc_mac_key_iv,
wvcdm::KEY_IV_SIZE, true)) {
LOGE("[OEMCrypto_LoadKeys(): OEMCrypto_ERROR_SIGNATURE_FAILURE - range check.]");
return OEMCrypto_ERROR_SIGNATURE_FAILURE;
}
for (unsigned int i = 0; i < num_keys; i++) {
if (!RangeCheck(message, message_length, key_array[i].key_id,
key_array[i].key_id_length, false) ||
!RangeCheck(message, message_length, key_array[i].key_data,
key_array[i].key_data_length, false) ||
!RangeCheck(message, message_length, key_array[i].key_data_iv,
wvcdm::KEY_IV_SIZE, false) ||
!RangeCheck(message, message_length, key_array[i].key_control,
wvcdm::KEY_CONTROL_SIZE, false) ||
!RangeCheck(message, message_length, key_array[i].key_control_iv,
wvcdm::KEY_IV_SIZE, false)) {
LOGE("[OEMCrypto_LoadKeys(): OEMCrypto_ERROR_SIGNATURE_FAILURE -range check %d]", i);
return OEMCrypto_ERROR_SIGNATURE_FAILURE;
}
}
// Validate message signature
if (!session_ctx->ValidateMessage(message, message_length, signature, signature_length)) {
return OEMCrypto_ERROR_SIGNATURE_FAILURE;
}
session_ctx->StartTimer();
// Decrypt and install keys in key object
// Each key will have a key control block. They will all have the same nonce.
bool status = true;
std::vector<uint8_t> key_id;
std::vector<uint8_t> enc_key_data;
std::vector<uint8_t> key_data_iv;
std::vector<uint8_t> key_control;
std::vector<uint8_t> key_control_iv;
for (unsigned int i = 0; i < num_keys; i++) {
key_id.assign(key_array[i].key_id,
key_array[i].key_id + key_array[i].key_id_length);
enc_key_data.assign(key_array[i].key_data,
key_array[i].key_data + key_array[i].key_data_length);
key_data_iv.assign(key_array[i].key_data_iv,
key_array[i].key_data_iv + wvcdm::KEY_IV_SIZE);
if (key_array[i].key_control == NULL) {
status = false;
break;
}
key_control.assign(key_array[i].key_control,
key_array[i].key_control + wvcdm::KEY_CONTROL_SIZE);
key_control_iv.assign(key_array[i].key_control_iv,
key_array[i].key_control_iv + wvcdm::KEY_IV_SIZE);
if (!session_ctx->InstallKey(key_id, enc_key_data, key_data_iv, key_control,
key_control_iv)) {
status = false;
break;
}
}
session_ctx->FlushNonces();
if (!status) return OEMCrypto_ERROR_UNKNOWN_FAILURE;
// enc_mac_key can be NULL if license renewal is not supported
if (enc_mac_keys == NULL) return OEMCrypto_SUCCESS;
// V2.1 license protocol: update mac keys after processing license response
const std::vector<uint8_t> enc_mac_keys_str = std::vector<uint8_t>(
enc_mac_keys, enc_mac_keys + 2*wvcdm::MAC_KEY_SIZE);
const std::vector<uint8_t> enc_mac_key_iv_str = std::vector<uint8_t>(
enc_mac_key_iv, enc_mac_key_iv + wvcdm::KEY_IV_SIZE);
if (!session_ctx->UpdateMacKeys(enc_mac_keys_str, enc_mac_key_iv_str)) {
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
return OEMCrypto_SUCCESS;
}
extern "C"
OEMCryptoResult OEMCrypto_RefreshKeys(OEMCrypto_SESSION session,
const uint8_t* message,
size_t message_length,
const uint8_t* signature,
size_t signature_length,
size_t num_keys,
const OEMCrypto_KeyRefreshObject* key_array) {
if (level1.library) {
return level1.OEMCrypto_RefreshKeys(session, message, message_length, signature,
signature_length, num_keys, key_array);
}
if (NO_ERROR != crypto_engine->ValidateKeybox()) {
LOGE("[OEMCrypto_RefreshKeys(): ERROR_KEYBOX_INVALID]");
return OEMCrypto_ERROR_KEYBOX_INVALID;
}
SessionContext* session_ctx = crypto_engine->FindSession(session);
if (!session_ctx || !session_ctx->isValid()) {
LOGE("[OEMCrypto_RefreshKeys(): ERROR_NO_INVALID_SESSION]");
return OEMCrypto_ERROR_INVALID_SESSION;
}
if (message == NULL || message_length == 0 ||
signature == NULL || signature_length == 0 ||
num_keys == 0) {
LOGE("[OEMCrypto_RefreshKeys(): OEMCrypto_ERROR_INVALID_CONTEXT]");
return OEMCrypto_ERROR_INVALID_CONTEXT;
}
// Range check
for (unsigned int i = 0; i < num_keys; i++) {
if (!RangeCheck(message, message_length, key_array[i].key_id,
key_array[i].key_id_length, true) ||
!RangeCheck(message, message_length, key_array[i].key_control,
wvcdm::KEY_CONTROL_SIZE, false) ||
!RangeCheck(message, message_length, key_array[i].key_control_iv,
wvcdm::KEY_IV_SIZE, true)) {
LOGE("[OEMCrypto_RefreshKeys(): Range Check %d]", i);
return OEMCrypto_ERROR_SIGNATURE_FAILURE;
}
}
// Validate message signature
if (!session_ctx->ValidateMessage(message, message_length,
signature, signature_length)) {
LOGE("[OEMCrypto_RefreshKeys(): signature was invalid]");
return OEMCrypto_ERROR_SIGNATURE_FAILURE;
}
// Decrypt and refresh keys in key refresh object
bool status = true;
std::vector<uint8_t> key_id;
std::vector<uint8_t> key_control;
std::vector<uint8_t> key_control_iv;
for (unsigned int i = 0; i < num_keys; i++) {
if (key_array[i].key_id != NULL) {
key_id.assign(key_array[i].key_id,
key_array[i].key_id + key_array[i].key_id_length);
key_control.assign(key_array[i].key_control,
key_array[i].key_control + wvcdm::KEY_CONTROL_SIZE);
if (key_array[i].key_control_iv == NULL ) {
key_control_iv.clear();
} else {
key_control_iv.assign(key_array[i].key_control_iv,
key_array[i].key_control_iv + wvcdm::KEY_IV_SIZE);
}
} else {
// key_id could be null if special control key type
// key_control is not encrypted in this case
key_id.clear();
key_control_iv.clear();
key_control.assign(key_array[i].key_control,
key_array[i].key_control + wvcdm::KEY_CONTROL_SIZE);
}
if (!session_ctx->RefreshKey(key_id, key_control, key_control_iv)) {
LOGE("[OEMCrypto_RefreshKeys(): error in key %i]", i);
status = false;
break;
}
}
session_ctx->FlushNonces();
if (!status) return OEMCrypto_ERROR_UNKNOWN_FAILURE;
session_ctx->StartTimer();
return OEMCrypto_SUCCESS;
}
extern "C"
OEMCryptoResult OEMCrypto_SelectKey(const OEMCrypto_SESSION session,
const uint8_t* key_id,
size_t key_id_length) {
if (level1.library) {
return level1.OEMCrypto_SelectKey(session, key_id, key_id_length);
}
if (NO_ERROR != crypto_engine->ValidateKeybox()) {
LOGE("[OEMCrypto_SelectKey(): ERROR_KEYBOX_INVALID]");
return OEMCrypto_ERROR_KEYBOX_INVALID;
}
SessionContext* session_ctx = crypto_engine->FindSession(session);
if (!session_ctx || !session_ctx->isValid()) {
LOGE("[OEMCrypto_SelectKey(): ERROR_NO_INVALID_SESSION]");
return OEMCrypto_ERROR_INVALID_SESSION;
}
const std::vector<uint8_t> key_id_vec = std::vector<uint8_t>(key_id, key_id + key_id_length);
if (!session_ctx->SelectContentKey(key_id_vec)) {
LOGE("[OEMCrypto_SelectKey(): FAIL]");
return OEMCrypto_ERROR_NO_CONTENT_KEY;
}
return OEMCrypto_SUCCESS;
}
extern "C"
OEMCryptoResult OEMCrypto_DecryptCTR(OEMCrypto_SESSION session,
const uint8_t* data_addr,
size_t data_length,
bool is_encrypted,
const uint8_t* iv,
size_t block_offset,
const OEMCrypto_DestBufferDesc* out_buffer,
uint8_t subsample_flags) {
if (level1.library) {
return level1.OEMCrypto_DecryptCTR( session, data_addr, data_length,
is_encrypted, iv, block_offset,
out_buffer, subsample_flags);
}
wvoec_mock::BufferType buffer_type = kBufferTypeDirect;
uint8_t* destination = NULL;
size_t max_length = 0;
switch (out_buffer->type) {
case OEMCrypto_BufferType_Clear:
buffer_type = kBufferTypeClear;
destination = out_buffer->buffer.clear.address;
max_length = out_buffer->buffer.clear.max_length;
break;
case OEMCrypto_BufferType_Secure:
buffer_type = kBufferTypeSecure;
destination = ((uint8_t*)out_buffer->buffer.secure.handle
+ out_buffer->buffer.secure.offset);
max_length = out_buffer->buffer.secure.max_length;
break;
default:
case OEMCrypto_BufferType_Direct:
buffer_type = kBufferTypeDirect;
destination = NULL;
break;
}
if (buffer_type != kBufferTypeDirect && max_length < data_length) {
LOGE("[OEMCrypto_DecryptCTR(): OEMCrypto_ERROR_SHORT_BUFFER]");
return OEMCrypto_ERROR_SHORT_BUFFER;
}
#ifndef NDEBUG
if (NO_ERROR != crypto_engine->ValidateKeybox()) {
LOGE("[OEMCrypto_DecryptCTR(): ERROR_KEYBOX_INVALID]");
return OEMCrypto_ERROR_KEYBOX_INVALID;
}
#endif
SessionContext* session_ctx = crypto_engine->FindSession(session);
if (!session_ctx || !session_ctx->isValid()) {
LOGE("[OEMCrypto_DecryptCTR(): ERROR_NO_INVALID_SESSION]");
return OEMCrypto_ERROR_INVALID_SESSION;
}
if (data_addr == NULL || data_length == 0 ||
iv == NULL || out_buffer == NULL) {
LOGE("[OEMCrypto_DecryptCTR(): OEMCrypto_ERROR_INVALID_CONTEXT]");
return OEMCrypto_ERROR_INVALID_CONTEXT;
}
if (!crypto_engine->DecryptCTR(session_ctx, iv, (int)block_offset,
data_addr, data_length, is_encrypted,
destination, buffer_type)) {
LOGE("[OEMCrypto_DecryptCTR(): OEMCrypto_ERROR_DECRYPT_FAILED]");
return OEMCrypto_ERROR_DECRYPT_FAILED;
}
return OEMCrypto_SUCCESS;
}
extern "C"
OEMCryptoResult OEMCrypto_InstallKeybox(const uint8_t* keybox,
size_t keyBoxLength) {
if (level1.library) {
return level1.OEMCrypto_InstallKeybox(keybox, keyBoxLength);
}
if (crypto_engine->keybox().InstallKeybox(keybox, keyBoxLength)) {
return OEMCrypto_SUCCESS;
}
return OEMCrypto_ERROR_WRITE_KEYBOX;
}
extern "C"
OEMCryptoResult OEMCrypto_IsKeyboxValid(void) {
if (level1.library) {
return level1.OEMCrypto_IsKeyboxValid();
}
switch(crypto_engine->ValidateKeybox()) {
case NO_ERROR: return OEMCrypto_SUCCESS;
case BAD_CRC: return OEMCrypto_ERROR_BAD_CRC;
case BAD_MAGIC: return OEMCrypto_ERROR_BAD_MAGIC;
default:
case OTHER_ERROR: return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
}
extern "C"
OEMCryptoResult OEMCrypto_GetDeviceID(uint8_t* deviceID,
size_t* idLength) {
if (level1.library) {
return level1.OEMCrypto_GetDeviceID(deviceID, idLength);
}
std::vector<uint8_t> dev_id_vec = crypto_engine->keybox().device_id();
if (dev_id_vec.empty()) {
LOGE("[OEMCrypto_GetDeviceId(): Keybox Invalid]");
return OEMCrypto_ERROR_KEYBOX_INVALID;
}
size_t dev_id_len = dev_id_vec.size();
if (*idLength < dev_id_len) {
*idLength = dev_id_len;
LOGE("[OEMCrypto_GetDeviceId(): ERROR_SHORT_BUFFER]");
return OEMCrypto_ERROR_SHORT_BUFFER;
}
memset(deviceID, 0, *idLength);
memcpy(deviceID, &dev_id_vec[0], dev_id_len);
*idLength = dev_id_len;
LOGD("[OEMCrypto_GetDeviceId(): success]");
return OEMCrypto_SUCCESS;
}
extern "C"
OEMCryptoResult OEMCrypto_GetKeyData(uint8_t* keyData,
size_t* keyDataLength) {
if (level1.library) {
return level1.OEMCrypto_GetKeyData(keyData, keyDataLength);
}
size_t length = crypto_engine->keybox().key_data_length();
if (*keyDataLength < length) {
*keyDataLength = length;
LOGE("[OEMCrypto_GetKeyData(): ERROR_SHORT_BUFFER]");
return OEMCrypto_ERROR_SHORT_BUFFER;
}
memset(keyData, 0, *keyDataLength);
memcpy(keyData, crypto_engine->keybox().key_data(), length);
*keyDataLength = length;
LOGD("[OEMCrypto_GetKeyData(): success]");
return OEMCrypto_SUCCESS;
}
extern "C"
OEMCryptoResult OEMCrypto_GetRandom(uint8_t* randomData, size_t dataLength) {
if (level1.library) {
return level1.OEMCrypto_GetRandom(randomData, dataLength);
}
if (!randomData) {
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
if (RAND_bytes(randomData, dataLength)) {
return OEMCrypto_SUCCESS;
}
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
extern "C"
OEMCryptoResult OEMCrypto_WrapKeybox(const uint8_t* keybox,
size_t keyBoxLength,
uint8_t* wrappedKeybox,
size_t* wrappedKeyBoxLength,
const uint8_t* transportKey,
size_t transportKeyLength) {
if (level1.library) {
return level1.OEMCrypto_WrapKeybox(keybox, keyBoxLength, wrappedKeybox,
wrappedKeyBoxLength, transportKey,
transportKeyLength);
}
if (!keybox || !wrappedKeybox || !wrappedKeyBoxLength
|| (keyBoxLength != *wrappedKeyBoxLength)) {
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
// This implementation ignores the transport key. For test keys, we
// don't need to encrypt the keybox.
memcpy(wrappedKeybox, keybox, keyBoxLength);
return OEMCrypto_SUCCESS;
}
extern "C"
OEMCryptoResult OEMCrypto_RewrapDeviceRSAKey(OEMCrypto_SESSION session,
const uint8_t* message,
size_t message_length,
const uint8_t* signature,
size_t signature_length,
const uint32_t* nonce,
const uint8_t* enc_rsa_key,
size_t enc_rsa_key_length,
const uint8_t* enc_rsa_key_iv,
uint8_t* wrapped_rsa_key,
size_t* wrapped_rsa_key_length) {
if (level1.library) {
if (!level1.OEMCrypto_RewrapDeviceRSAKey ) {
return OEMCrypto_ERROR_NOT_IMPLEMENTED;
}
return level1.OEMCrypto_RewrapDeviceRSAKey( session, message, message_length,
signature, signature_length, nonce,
enc_rsa_key, enc_rsa_key_length,
enc_rsa_key_iv, wrapped_rsa_key,
wrapped_rsa_key_length);
}
if (wrapped_rsa_key_length == NULL) {
LOGE("[OEMCrypto_RewrapDeviceRSAKey(): OEMCrypto_ERROR_INVALID_CONTEXT]");
return OEMCrypto_ERROR_INVALID_CONTEXT;
}
// For the reference implementation, the wrapped key and the encrypted
// key are the same size -- just encrypted with different keys.
// We add 32 bytes for a context, 32 for iv, and 32 bytes for a signature.
// Important: This layout must match OEMCrypto_LoadDeviceRSAKey below.
size_t buffer_size = enc_rsa_key_length + sizeof(WrappedRSAKey);
if (wrapped_rsa_key == NULL || *wrapped_rsa_key_length < buffer_size) {
LOGW("[OEMCrypto_RewrapDeviceRSAKey(): Wrapped Keybox Short Buffer]");
*wrapped_rsa_key_length = buffer_size;
return OEMCrypto_ERROR_SHORT_BUFFER;
}
*wrapped_rsa_key_length = buffer_size; // Tell caller how much space we used.
if (NO_ERROR != crypto_engine->ValidateKeybox()) {
LOGE("[OEMCrypto_RewrapDeviceRSAKey(): ERROR_KEYBOX_INVALID]");
return OEMCrypto_ERROR_KEYBOX_INVALID;
}
SessionContext* session_ctx = crypto_engine->FindSession(session);
if (!session_ctx || !session_ctx->isValid()) {
LOGE("[OEMCrypto_RewrapDeviceRSAKey(): ERROR_NO_INVALID_SESSION]");
return OEMCrypto_ERROR_INVALID_SESSION;
}
if (message == NULL || message_length == 0 || signature == NULL
|| signature_length == 0 || nonce == NULL || enc_rsa_key == NULL) {
LOGE("[OEMCrypto_RewrapDeviceRSAKey(): OEMCrypto_ERROR_INVALID_CONTEXT]");
return OEMCrypto_ERROR_INVALID_CONTEXT;
}
// Range check
if (!RangeCheck(message, message_length, reinterpret_cast<const uint8_t*>(nonce),
sizeof(uint32_t), true) ||
!RangeCheck(message, message_length, enc_rsa_key, enc_rsa_key_length,
true) ||
!RangeCheck(message, message_length, enc_rsa_key_iv, wvcdm::KEY_IV_SIZE,
true)) {
LOGE("[OEMCrypto_RewrapDeviceRSAKey(): - range check.]");
return OEMCrypto_ERROR_SIGNATURE_FAILURE;
}
// Validate nonce
if (!session_ctx->CheckNonce(*nonce)) {
return OEMCrypto_ERROR_INVALID_NONCE;
}
session_ctx->FlushNonces();
// Decrypt RSA key.
uint8_t* pkcs8_rsa_key = new uint8_t[enc_rsa_key_length];
OEMCryptoResult result = OEMCrypto_SUCCESS;
if (!session_ctx->DecryptRSAKey(enc_rsa_key, enc_rsa_key_length,
enc_rsa_key_iv, pkcs8_rsa_key)) {
result = OEMCrypto_ERROR_INVALID_RSA_KEY;
}
size_t padding = pkcs8_rsa_key[enc_rsa_key_length - 1];
if( result == OEMCrypto_SUCCESS) {
if (padding > 16) {
LOGE("[RewrapRSAKey(): Encrypted RSA has bad padding: %d]", padding);
result = OEMCrypto_ERROR_INVALID_RSA_KEY;
}
}
size_t rsa_key_length = enc_rsa_key_length - padding;
// verify signature, verify RSA key, and load it.
if( result == OEMCrypto_SUCCESS) {
if (!session_ctx->LoadRSAKey(pkcs8_rsa_key, rsa_key_length,
message, message_length,
signature, signature_length)) {
result = OEMCrypto_ERROR_SIGNATURE_FAILURE;
// return OEMCrypto_ERROR_INVALID_RSA_KEY;
}
}
// Now we generate a wrapped keybox.
WrappedRSAKey* wrapped = reinterpret_cast<WrappedRSAKey*>(wrapped_rsa_key);
// Pick a random context and IV for generating keys.
if( result == OEMCrypto_SUCCESS) {
if (!RAND_bytes(wrapped->context, sizeof(wrapped->context))) {
result = OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
if (!RAND_bytes(wrapped->iv, sizeof(wrapped->iv))) {
result = OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
}
const std::vector<uint8_t> context(wrapped->context,
wrapped->context + sizeof(wrapped->context));
// Generate mac and encryption keys for encrypting the signature.
if( result == OEMCrypto_SUCCESS) {
if (!session_ctx->DeriveKeys(crypto_engine->keybox().device_key().value(),
context, context)) {
result = OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
}
// Encrypt rsa key with keybox.
if( result == OEMCrypto_SUCCESS) {
if (!session_ctx->EncryptRSAKey(pkcs8_rsa_key, enc_rsa_key_length,
wrapped->iv, wrapped->enc_rsa_key)) {
result = OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
}
delete[] pkcs8_rsa_key;
// The wrapped keybox must be signed with the same key we verify with. I'll
// pick the server key, so I don't have to modify LoadRSAKey.
if( result == OEMCrypto_SUCCESS) {
size_t sig_length = sizeof(wrapped->signature);
if (!HMAC(EVP_sha256(), &session_ctx->mac_key_server()[0],
SHA256_DIGEST_LENGTH, wrapped->context,
buffer_size - sizeof(wrapped->signature), wrapped->signature,
&sig_length)) {
result = OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
}
return result;
}
extern "C"
OEMCryptoResult OEMCrypto_LoadDeviceRSAKey(OEMCrypto_SESSION session,
const uint8_t* wrapped_rsa_key,
size_t wrapped_rsa_key_length) {
if (level1.library) {
if (!level1.OEMCrypto_LoadDeviceRSAKey ) {
return OEMCrypto_ERROR_NOT_IMPLEMENTED;
}
return level1.OEMCrypto_LoadDeviceRSAKey( session, wrapped_rsa_key,
wrapped_rsa_key_length);
}
if (wrapped_rsa_key == NULL) {
LOGE("[OEMCrypto_LoadDeviceRSAKey(): OEMCrypto_ERROR_INVALID_CONTEXT]");
return OEMCrypto_ERROR_INVALID_CONTEXT;
}
const WrappedRSAKey* wrapped
= reinterpret_cast<const WrappedRSAKey*>(wrapped_rsa_key);
if (NO_ERROR != crypto_engine->ValidateKeybox()) {
LOGE("[OEMCrypto_LoadDeviceRSAKey(): ERROR_KEYBOX_INVALID]");
return OEMCrypto_ERROR_KEYBOX_INVALID;
}
SessionContext* session_ctx = crypto_engine->FindSession(session);
if (!session_ctx || !session_ctx->isValid()) {
LOGE("[OEMCrypto_LoadDeviceRSAKey(): ERROR_NO_INVALID_SESSION]");
return OEMCrypto_ERROR_INVALID_SESSION;
}
const std::vector<uint8_t> context(wrapped->context,
wrapped->context + sizeof(wrapped->context));
// Generate mac and encryption keys for encrypting the signature.
if (!session_ctx->DeriveKeys(crypto_engine->keybox().device_key().value(),
context, context)) {
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
// Decrypt RSA key.
uint8_t* pkcs8_rsa_key = new uint8_t[wrapped_rsa_key_length
- sizeof(wrapped->signature)];
size_t enc_rsa_key_length = wrapped_rsa_key_length - sizeof(WrappedRSAKey);
OEMCryptoResult result = OEMCrypto_SUCCESS;
if (!session_ctx->DecryptRSAKey(wrapped->enc_rsa_key, enc_rsa_key_length,
wrapped->iv, pkcs8_rsa_key)) {
result = OEMCrypto_ERROR_INVALID_RSA_KEY;
}
size_t padding = pkcs8_rsa_key[enc_rsa_key_length - 1];
if( result == OEMCrypto_SUCCESS) {
if (padding > 16) {
LOGE("[LoadDeviceRSAKey(): Encrypted RSA has bad padding: %d]", padding);
result = OEMCrypto_ERROR_INVALID_RSA_KEY;
}
}
size_t rsa_key_length = enc_rsa_key_length - padding;
// verify signature.
if( result == OEMCrypto_SUCCESS) {
if (!session_ctx->LoadRSAKey(pkcs8_rsa_key, rsa_key_length,
wrapped->context,
wrapped_rsa_key_length - sizeof(wrapped->signature),
wrapped->signature,
sizeof(wrapped->signature))) {
result = OEMCrypto_ERROR_SIGNATURE_FAILURE;
// return OEMCrypto_ERROR_INVALID_RSA_KEY;
}
}
delete[] pkcs8_rsa_key;
return result;
}
extern "C"
OEMCryptoResult OEMCrypto_GenerateRSASignature(OEMCrypto_SESSION session,
const uint8_t* message,
size_t message_length,
uint8_t* signature,
size_t* signature_length) {
if (level1.library) {
if (!level1.OEMCrypto_GenerateRSASignature ) {
return OEMCrypto_ERROR_NOT_IMPLEMENTED;
}
return level1.OEMCrypto_GenerateRSASignature(session, message, message_length,
signature, signature_length);
}
if (NO_ERROR != crypto_engine->ValidateKeybox()) {
LOGE("[OEMCrypto_GenerateRSASignature(): ERROR_KEYBOX_INVALID]");
return OEMCrypto_ERROR_KEYBOX_INVALID;
}
if (signature_length == 0) {
LOGE("[OEMCrypto_GenerateRSASignature(): OEMCrypto_ERROR_INVALID_CONTEXT]");
return OEMCrypto_ERROR_INVALID_CONTEXT;
}
SessionContext* session_ctx = crypto_engine->FindSession(session);
if (!session_ctx || !session_ctx->isValid()) {
LOGE("[OEMCrypto_GenerateRSASignature(): ERROR_NO_INVALID_SESSION]");
return OEMCrypto_ERROR_INVALID_SESSION;
}
size_t required_size = session_ctx->RSASignatureSize();
if (*signature_length < required_size) {
*signature_length = required_size;
return OEMCrypto_ERROR_SHORT_BUFFER;
}
if (message == NULL || message_length == 0 ||
signature == NULL || signature_length == 0) {
LOGE("[OEMCrypto_GenerateRSASignature(): OEMCrypto_ERROR_INVALID_CONTEXT]");
return OEMCrypto_ERROR_INVALID_CONTEXT;
}
if (session_ctx->GenerateRSASignature(message,
message_length,
signature,
signature_length)) {
return OEMCrypto_SUCCESS;
}
return OEMCrypto_ERROR_UNKNOWN_FAILURE;;
}
extern "C"
OEMCryptoResult OEMCrypto_DeriveKeysFromSessionKey(OEMCrypto_SESSION session,
const uint8_t* enc_session_key,
size_t enc_session_key_length,
const uint8_t* mac_key_context,
size_t mac_key_context_length,
const uint8_t* enc_key_context,
size_t enc_key_context_length) {
if (level1.library) {
if (!level1.OEMCrypto_DeriveKeysFromSessionKey ) {
return OEMCrypto_ERROR_NOT_IMPLEMENTED;
}
return level1.OEMCrypto_DeriveKeysFromSessionKey(session, enc_session_key,
enc_session_key_length,
mac_key_context,
mac_key_context_length,
enc_key_context,
enc_key_context_length);
}
if (NO_ERROR != crypto_engine->ValidateKeybox()) {
LOGE("[OEMCrypto_GenerateDerivedKeys(): ERROR_KEYBOX_INVALID]");
return OEMCrypto_ERROR_KEYBOX_INVALID;
}
SessionContext* session_ctx = crypto_engine->FindSession(session);
if (!session_ctx || !session_ctx->isValid()) {
LOGE("[OEMCrypto_GenerateDerivedKeys(): ERROR_NO_INVALID_SESSION]");
return OEMCrypto_ERROR_INVALID_SESSION;
}
const std::vector<uint8_t> ssn_key_vec(enc_session_key,
enc_session_key + enc_session_key_length);
const std::vector<uint8_t> mac_ctx_vec(mac_key_context,
mac_key_context + mac_key_context_length);
const std::vector<uint8_t> enc_ctx_vec(enc_key_context,
enc_key_context + enc_key_context_length);
// Generate mac and encryption keys for current session context
if (!session_ctx->RSADeriveKeys(ssn_key_vec, mac_ctx_vec, enc_ctx_vec)) {
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
return OEMCrypto_SUCCESS;
}
extern "C"
uint32_t OEMCrypto_APIVersion() {
if (level1.library) {
if (!level1.OEMCrypto_APIVersion ) {
return 5;
}
return level1.OEMCrypto_APIVersion();
}
return oec_latest_version;
}
extern "C"
const char* OEMCrypto_SecurityLevel() {
if (level1.library) {
if (!level1.OEMCrypto_SecurityLevel ) {
return "Unknown";
}
return level1.OEMCrypto_SecurityLevel();
}
return "L3";
}
extern "C"
OEMCryptoResult OEMCrypto_Generic_Encrypt(OEMCrypto_SESSION session,
const uint8_t* in_buffer,
size_t buffer_length,
const uint8_t* iv,
OEMCrypto_Algorithm algorithm,
uint8_t* out_buffer) {
if (level1.library) {
if (!level1.OEMCrypto_Generic_Encrypt ) {
return OEMCrypto_ERROR_NOT_IMPLEMENTED;
}
return level1.OEMCrypto_Generic_Encrypt(session, in_buffer, buffer_length,
iv, algorithm, out_buffer);
}
if (NO_ERROR != crypto_engine->ValidateKeybox()) {
LOGE("[OEMCrypto_Generic_Enrypt(): ERROR_KEYBOX_INVALID]");
return OEMCrypto_ERROR_KEYBOX_INVALID;
}
SessionContext* session_ctx = crypto_engine->FindSession(session);
if (!session_ctx || !session_ctx->isValid()) {
LOGE("[OEMCrypto_Generic_Enrypt(): ERROR_NO_INVALID_SESSION]");
return OEMCrypto_ERROR_INVALID_SESSION;
}
if (in_buffer == NULL || buffer_length == 0 ||
iv == NULL || out_buffer == NULL) {
LOGE("[OEMCrypto_Generic_Enrypt(): OEMCrypto_ERROR_INVALID_CONTEXT]");
return OEMCrypto_ERROR_INVALID_CONTEXT;
}
if (!session_ctx->Generic_Encrypt(in_buffer, buffer_length, iv, algorithm,
out_buffer)) {
LOGE("[OEMCrypto_Generic_Enrypt(): OEMCrypto_ERROR_UNKNOWN_FAILURE]");
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
return OEMCrypto_SUCCESS;
}
extern "C"
OEMCryptoResult OEMCrypto_Generic_Decrypt(OEMCrypto_SESSION session,
const uint8_t* in_buffer,
size_t buffer_length,
const uint8_t* iv,
OEMCrypto_Algorithm algorithm,
uint8_t* out_buffer) {
if (level1.library) {
if (!level1.OEMCrypto_Generic_Decrypt ) {
return OEMCrypto_ERROR_NOT_IMPLEMENTED;
}
return level1.OEMCrypto_Generic_Decrypt(session, in_buffer, buffer_length,
iv, algorithm, out_buffer);
}
if (NO_ERROR != crypto_engine->ValidateKeybox()) {
LOGE("[OEMCrypto_Generic_Decrypt(): ERROR_KEYBOX_INVALID]");
return OEMCrypto_ERROR_KEYBOX_INVALID;
}
SessionContext* session_ctx = crypto_engine->FindSession(session);
if (!session_ctx || !session_ctx->isValid()) {
LOGE("[OEMCrypto_Generic_Decrypt(): ERROR_NO_INVALID_SESSION]");
return OEMCrypto_ERROR_INVALID_SESSION;
}
if (!session_ctx->Generic_Decrypt(in_buffer, buffer_length, iv, algorithm,
out_buffer)) {
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
if (in_buffer == NULL || buffer_length == 0 ||
iv == NULL || out_buffer == NULL) {
LOGE("[OEMCrypto_Generic_Decrypt(): OEMCrypto_ERROR_INVALID_CONTEXT]");
return OEMCrypto_ERROR_INVALID_CONTEXT;
}
return OEMCrypto_SUCCESS;
}
extern "C"
OEMCryptoResult OEMCrypto_Generic_Sign(OEMCrypto_SESSION session,
const uint8_t* in_buffer,
size_t buffer_length,
OEMCrypto_Algorithm algorithm,
uint8_t* signature,
size_t* signature_length) {
if (level1.library) {
if (!level1.OEMCrypto_Generic_Sign ) {
return OEMCrypto_ERROR_NOT_IMPLEMENTED;
}
return level1.OEMCrypto_Generic_Sign(session, in_buffer, buffer_length,
algorithm, signature,
signature_length);
}
if (NO_ERROR != crypto_engine->ValidateKeybox()) {
LOGE("[OEMCrypto_Generic_Sign(): ERROR_KEYBOX_INVALID]");
return OEMCrypto_ERROR_KEYBOX_INVALID;
}
SessionContext* session_ctx = crypto_engine->FindSession(session);
if (!session_ctx || !session_ctx->isValid()) {
LOGE("[OEMCrypto_Generic_Sign(): ERROR_NO_INVALID_SESSION]");
return OEMCrypto_ERROR_INVALID_SESSION;
}
if (*signature_length < SHA256_DIGEST_LENGTH) {
*signature_length = SHA256_DIGEST_LENGTH;
return OEMCrypto_ERROR_SHORT_BUFFER;
}
if (in_buffer == NULL || buffer_length == 0 || signature == NULL) {
LOGE("[OEMCrypto_Generic_Sign(): OEMCrypto_ERROR_INVALID_CONTEXT]");
return OEMCrypto_ERROR_INVALID_CONTEXT;
}
if (!session_ctx->Generic_Sign(in_buffer, buffer_length, algorithm,
signature, signature_length)) {
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
return OEMCrypto_SUCCESS;
}
extern "C"
OEMCryptoResult OEMCrypto_Generic_Verify(OEMCrypto_SESSION session,
const uint8_t* in_buffer,
size_t buffer_length,
OEMCrypto_Algorithm algorithm,
const uint8_t* signature,
size_t signature_length) {
if (level1.library) {
if (!level1.OEMCrypto_Generic_Verify ) {
return OEMCrypto_ERROR_NOT_IMPLEMENTED;
}
return level1.OEMCrypto_Generic_Verify(session, in_buffer, buffer_length,
algorithm, signature,
signature_length);
}
if (NO_ERROR != crypto_engine->ValidateKeybox()) {
LOGE("[OEMCrypto_Generic_Verify(): ERROR_KEYBOX_INVALID]");
return OEMCrypto_ERROR_KEYBOX_INVALID;
}
SessionContext* session_ctx = crypto_engine->FindSession(session);
if (!session_ctx || !session_ctx->isValid()) {
LOGE("[OEMCrypto_Generic_Verify(): ERROR_NO_INVALID_SESSION]");
return OEMCrypto_ERROR_INVALID_SESSION;
}
if (signature_length != SHA256_DIGEST_LENGTH) {
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
if (in_buffer == NULL || buffer_length == 0 || signature == NULL) {
LOGE("[OEMCrypto_Generic_Verify(): OEMCrypto_ERROR_INVALID_CONTEXT]");
return OEMCrypto_ERROR_INVALID_CONTEXT;
}
if (!session_ctx->Generic_Verify(in_buffer, buffer_length, algorithm,
signature, signature_length)) {
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
return OEMCrypto_SUCCESS;
}
}; // namespace wvoec_mock