Files
android/libwvdrmengine/mediacrypto/src_hidl/WVCryptoPlugin.cpp
Edwin Wong 9c278174c8 [RESTRICT AUTOMERGE] Fix WVCryptoPlugin use after free vulnerability.
The shared memory buffer used by srcPtr can be freed by another
thread because it is not protected by a mutex. Subsequently,
a use after free AIGABRT can occur in a race condition.

SafetyNet logging is not added to avoid log spamming. The
mutex lock is called to setup for decryption, which is
called frequently.

The crash was reproduced on the device before the fix.
Verified the test passes after the fix.

Test: sts
  sts-tradefed run sts-engbuild-no-spl-lock -m StsHostTestCases --test android.security.sts.Bug_176495665#testPocBug_176495665

Test: push to device with target_hwasan-userdebug build
  adb shell /data/local/tmp/Bug-176495665_sts64

Bug: 176495665
Bug: 176444161
Change-Id: Ie1aca0ceacb4b7a1b6e473b823541607a36d8cb4
2021-03-08 15:54:00 -08:00

455 lines
15 KiB
C++

//
// Copyright 2018 Google LLC. All Rights Reserved. This file and proprietary
// source code may only be used and distributed under the Widevine Master
// License Agreement.
//
//#define LOG_NDEBUG 0
#define LOG_TAG "WVCdm"
#include <utils/Log.h>
#include "WVCryptoPlugin.h"
#include <hidlmemory/mapping.h>
#include "HidlTypes.h"
#include "mapErrors-inl.h"
#include "OEMCryptoCENC.h"
#include "openssl/sha.h"
#include "TypeConvert.h"
#include "wv_cdm_constants.h"
#include "WVErrors.h"
namespace {
static const size_t kAESBlockSize = 16;
inline Status toStatus_1_0(Status_V1_2 status) {
switch (status) {
case Status_V1_2::ERROR_DRM_INSUFFICIENT_SECURITY:
case Status_V1_2::ERROR_DRM_FRAME_TOO_LARGE:
case Status_V1_2::ERROR_DRM_SESSION_LOST_STATE:
return Status::ERROR_DRM_UNKNOWN;
default:
return static_cast<Status>(status);
}
}
} // namespace
namespace wvdrm {
namespace hardware {
namespace drm {
namespace V1_2 {
namespace widevine {
using android::hardware::drm::V1_2::widevine::toVector;
using wvcdm::CdmDecryptionParameters;
using wvcdm::CdmQueryMap;
using wvcdm::CdmResponseType;
using wvcdm::CdmSessionId;
using wvcdm::KeyId;
using wvcdm::WvContentDecryptionModule;
WVCryptoPlugin::WVCryptoPlugin(const void* data, size_t size,
const sp<WvContentDecryptionModule>& cdm)
: mCDM(cdm){
if (data != NULL) {
mSessionId.assign(static_cast<const char *>(data), size);
}
if (!mCDM->IsOpenSession(mSessionId)) {
mSessionId.clear();
}
}
Return<bool> WVCryptoPlugin::requiresSecureDecoderComponent(
const hidl_string& mime) {
if (!strncasecmp(mime.c_str(), "video/", 6)) {
// Type is video, so query CDM to see if we require a secure decoder.
CdmQueryMap status;
CdmResponseType res = mCDM->QuerySessionStatus(mSessionId, &status);
if (!isCdmResponseTypeSuccess(res)) {
ALOGE("Error querying CDM status: %u", res);
return false;
}
return status[wvcdm::QUERY_KEY_SECURITY_LEVEL] ==
wvcdm::QUERY_VALUE_SECURITY_LEVEL_L1;
} else {
// Type is not video, so never require a secure decoder.
return false;
}
}
Return<void> WVCryptoPlugin::notifyResolution(
uint32_t width, uint32_t height) {
mCDM->NotifyResolution(mSessionId, width, height);
return Void();
}
Return<Status> WVCryptoPlugin::setMediaDrmSession(
const hidl_vec<uint8_t>& sessionId) {
if (sessionId.size() == 0) {
return Status::BAD_VALUE;
}
const std::vector<uint8_t> sId = toVector(sessionId);
CdmSessionId cdmSessionId(sId.begin(), sId.end());
if (!mCDM->IsOpenSession(cdmSessionId)) {
return Status::ERROR_DRM_SESSION_NOT_OPENED;
} else {
mSessionId = cdmSessionId;
return Status::OK;
}
}
Return<void> WVCryptoPlugin::setSharedBufferBase(
const hidl_memory& base, uint32_t bufferId) {
sp<IMemory> hidlMemory = mapMemory(base);
std::lock_guard<std::mutex> shared_buffer_lock(mSharedBufferLock);
// allow mapMemory to return nullptr
mSharedBufferMap[bufferId] = hidlMemory;
return Void();
}
Return<void> WVCryptoPlugin::decrypt(
bool secure,
const hidl_array<uint8_t, 16>& keyId,
const hidl_array<uint8_t, 16>& iv,
Mode mode,
const Pattern& pattern,
const hidl_vec<SubSample>& subSamples,
const SharedBuffer& source,
uint64_t offset,
const DestinationBuffer& destination,
decrypt_cb _hidl_cb) {
Status status = Status::ERROR_DRM_UNKNOWN;
hidl_string detailedError;
uint32_t bytesWritten = 0;
Return<void> hResult = decrypt_1_2(
secure, keyId, iv, mode, pattern, subSamples, source, offset, destination,
[&](Status_V1_2 hStatus, uint32_t hBytesWritten, hidl_string hDetailedError) {
status = toStatus_1_0(hStatus);
if (status == Status::OK) {
bytesWritten = hBytesWritten;
detailedError = hDetailedError;
}
}
);
status = hResult.isOk() ? status : Status::ERROR_DRM_CANNOT_HANDLE;
_hidl_cb(status, bytesWritten, detailedError);
return Void();
}
Return<void> WVCryptoPlugin::decrypt_1_2(
bool secure,
const hidl_array<uint8_t, 16>& keyId,
const hidl_array<uint8_t, 16>& iv,
Mode mode,
const Pattern& pattern,
const hidl_vec<SubSample>& subSamples,
const SharedBuffer& source,
uint64_t offset,
const DestinationBuffer& destination,
decrypt_1_2_cb _hidl_cb) {
std::unique_lock<std::mutex> lock(mSharedBufferLock);
if (mSharedBufferMap.find(source.bufferId) == mSharedBufferMap.end()) {
_hidl_cb(Status_V1_2::ERROR_DRM_CANNOT_HANDLE, 0,
"source decrypt buffer base not set");
return Void();
}
if (destination.type == BufferType::SHARED_MEMORY) {
const SharedBuffer& dest = destination.nonsecureMemory;
if (mSharedBufferMap.find(dest.bufferId) == mSharedBufferMap.end()) {
_hidl_cb(Status_V1_2::ERROR_DRM_CANNOT_HANDLE, 0,
"destination decrypt buffer base not set");
return Void();
}
}
if (mode != Mode::UNENCRYPTED &&
mode != Mode::AES_CTR &&
mode != Mode::AES_CBC) {
_hidl_cb(Status_V1_2::BAD_VALUE,
0, "Encryption mode is not supported by Widevine CDM.");
return Void();
}
// Convert parameters to the form the CDM wishes to consume them in.
const KeyId cryptoKey(
reinterpret_cast<const char*>(keyId.data()), wvcdm::KEY_ID_SIZE);
std::vector<uint8_t> ivVector(iv.data(), iv.data() + wvcdm::KEY_IV_SIZE);
std::string errorDetailMsg;
sp<IMemory> sourceBase = mSharedBufferMap[source.bufferId];
if (sourceBase == nullptr) {
_hidl_cb(Status_V1_2::ERROR_DRM_CANNOT_HANDLE, 0, "source is a nullptr");
return Void();
}
size_t totalSrcSize = 0;
if (__builtin_add_overflow(source.offset, offset, &totalSrcSize) ||
__builtin_add_overflow(totalSrcSize, source.size, &totalSrcSize) ||
totalSrcSize > sourceBase->getSize()) {
android_errorWriteLog(0x534e4554, "176496160");
_hidl_cb(Status_V1_2::ERROR_DRM_CANNOT_HANDLE, 0, "invalid buffer size");
return Void();
}
uint8_t *base = static_cast<uint8_t *>
(static_cast<void *>(sourceBase->getPointer()));
uint8_t* srcPtr = static_cast<uint8_t *>(base + source.offset + offset);
void* destPtr = NULL;
if (destination.type == BufferType::SHARED_MEMORY) {
const SharedBuffer& destBuffer = destination.nonsecureMemory;
sp<IMemory> destBase = mSharedBufferMap[destBuffer.bufferId];
if (destBase == nullptr) {
_hidl_cb(Status_V1_2::ERROR_DRM_CANNOT_HANDLE, 0, "destination is a nullptr");
return Void();
}
if (destBuffer.offset + destBuffer.size > destBase->getSize()) {
_hidl_cb(Status_V1_2::ERROR_DRM_FRAME_TOO_LARGE, 0, "invalid buffer size");
return Void();
}
destPtr = static_cast<void *>(base + destination.nonsecureMemory.offset);
} else if (destination.type == BufferType::NATIVE_HANDLE) {
native_handle_t *handle = const_cast<native_handle_t *>(
destination.secureMemory.getNativeHandle());
destPtr = static_cast<void *>(handle);
}
// release mSharedBufferLock
lock.unlock();
// Calculate the output buffer size and determine if any subsamples are
// encrypted.
size_t destSize = 0;
bool haveEncryptedSubsamples = false;
for (size_t i = 0; i < subSamples.size(); i++) {
const SubSample &subSample = subSamples[i];
destSize += subSample.numBytesOfClearData;
destSize += subSample.numBytesOfEncryptedData;
if (subSample.numBytesOfEncryptedData > 0) {
haveEncryptedSubsamples = true;
}
}
// Set up the decrypt params that do not vary.
CdmDecryptionParameters params = CdmDecryptionParameters();
params.is_secure = secure;
params.key_id = &cryptoKey;
params.iv = &ivVector;
params.decrypt_buffer = destPtr;
params.decrypt_buffer_length = destSize;
params.pattern_descriptor.encrypt_blocks = pattern.encryptBlocks;
params.pattern_descriptor.skip_blocks = pattern.skipBlocks;
if (mode == Mode::AES_CTR) {
params.cipher_mode = wvcdm::kCipherModeCtr;
} else if (mode == Mode::AES_CBC) {
params.cipher_mode = wvcdm::kCipherModeCbc;
}
// Iterate through subsamples, sending them to the CDM serially.
size_t bufferOffset = 0;
size_t blockOffset = 0;
const size_t patternLengthInBytes =
(pattern.encryptBlocks + pattern.skipBlocks) * kAESBlockSize;
for (size_t i = 0; i < subSamples.size(); ++i) {
const SubSample& subSample = subSamples[i];
if (mode == Mode::UNENCRYPTED && subSample.numBytesOfEncryptedData != 0) {
_hidl_cb(Status_V1_2::ERROR_DRM_CANNOT_HANDLE, 0,
"Encrypted subsamples found in allegedly unencrypted data.");
return Void();
}
// Calculate any flags that apply to this subsample's parts.
uint8_t clearFlags = 0;
uint8_t encryptedFlags = 0;
// If this is the first subsample…
if (i == 0) {
// …add OEMCrypto_FirstSubsample to the first part that is present.
if (subSample.numBytesOfClearData != 0) {
clearFlags = clearFlags | OEMCrypto_FirstSubsample;
} else {
encryptedFlags = encryptedFlags | OEMCrypto_FirstSubsample;
}
}
// If this is the last subsample…
if (i == subSamples.size() - 1) {
// …add OEMCrypto_LastSubsample to the last part that is present
if (subSample.numBytesOfEncryptedData != 0) {
encryptedFlags = encryptedFlags | OEMCrypto_LastSubsample;
} else {
clearFlags = clearFlags | OEMCrypto_LastSubsample;
}
}
// "Decrypt" any unencrypted data. Per the ISO-CENC standard, clear data
// comes before encrypted data.
if (subSample.numBytesOfClearData != 0) {
params.is_encrypted = false;
params.encrypt_buffer = srcPtr + bufferOffset;
params.encrypt_length = subSample.numBytesOfClearData;
params.block_offset = 0;
params.decrypt_buffer_offset = bufferOffset;
params.subsample_flags = clearFlags;
Status_V1_2 res = attemptDecrypt(params, haveEncryptedSubsamples,
&errorDetailMsg);
if (res != Status_V1_2::OK) {
_hidl_cb(res, 0, errorDetailMsg.c_str());
return Void();
}
bufferOffset += subSample.numBytesOfClearData;
}
// Decrypt any encrypted data. Per the ISO-CENC standard, encrypted data
// comes after clear data.
if (subSample.numBytesOfEncryptedData != 0) {
params.is_encrypted = true;
params.encrypt_buffer = srcPtr + bufferOffset;
params.encrypt_length = subSample.numBytesOfEncryptedData;
params.block_offset = blockOffset;
params.decrypt_buffer_offset = bufferOffset;
params.subsample_flags = encryptedFlags;
Status_V1_2 res = attemptDecrypt(params, haveEncryptedSubsamples,
&errorDetailMsg);
if (res != Status_V1_2::OK) {
_hidl_cb(res, 0, errorDetailMsg.c_str());
return Void();
}
bufferOffset += subSample.numBytesOfEncryptedData;
// Update the block offset, pattern offset, and IV as needed by the
// various crypto modes. Possible combinations are cenc (AES-CTR), cens
// (AES-CTR w/ Patterns), cbc1 (AES-CBC), and cbcs (AES-CBC w/ Patterns).
if (mode == Mode::AES_CTR) {
// Update the IV depending on how many encrypted blocks we passed.
uint64_t increment = 0;
if (patternLengthInBytes == 0) {
// If there's no pattern, all the blocks are encrypted. We have to add
// in blockOffset to account for any incomplete crypto blocks from the
// preceding subsample.
increment = (blockOffset + subSample.numBytesOfEncryptedData) /
kAESBlockSize;
} else {
const uint64_t numBlocks =
subSample.numBytesOfEncryptedData / kAESBlockSize;
const uint64_t patternLengthInBlocks =
pattern.encryptBlocks + pattern.skipBlocks;
increment =
(numBlocks / patternLengthInBlocks) * pattern.encryptBlocks;
// A partial pattern is only encrypted if it is at least
// mEncryptBlocks large.
if (numBlocks % patternLengthInBlocks >= pattern.encryptBlocks)
increment += pattern.encryptBlocks;
}
incrementIV(increment, &ivVector);
// Update the block offset
blockOffset = (blockOffset + subSample.numBytesOfEncryptedData) %
kAESBlockSize;
} else if (mode == Mode::AES_CBC && patternLengthInBytes == 0) {
// If there is no pattern, assume cbc1 mode and update the IV.
// Stash the last crypto block in the IV.
const uint8_t* bufferEnd = srcPtr + bufferOffset +
subSample.numBytesOfEncryptedData;
ivVector.assign(bufferEnd - kAESBlockSize, bufferEnd);
}
// There is no branch for cbcs mode because the IV and pattern offest
// reset at the start of each subsample, so they do not need to be
// updated.
}
}
_hidl_cb(Status_V1_2::OK, bufferOffset, errorDetailMsg.c_str());
return Void();
}
Status_V1_2 WVCryptoPlugin::attemptDecrypt(const CdmDecryptionParameters& params,
bool haveEncryptedSubsamples, std::string* errorDetailMsg) {
CdmResponseType res = mCDM->Decrypt(mSessionId, haveEncryptedSubsamples,
params);
if (isCdmResponseTypeSuccess(res)) {
return Status_V1_2::OK;
} else {
ALOGE("Decrypt error result in session %s during %s block: %d",
mSessionId.c_str(),
params.is_encrypted ? "encrypted" : "unencrypted",
res);
bool actionableError = true;
switch (res) {
case wvcdm::INSUFFICIENT_CRYPTO_RESOURCES:
errorDetailMsg->assign(
"Error decrypting data: insufficient crypto resources");
break;
case wvcdm::NEED_KEY:
case wvcdm::KEY_NOT_FOUND_IN_SESSION:
errorDetailMsg->assign(
"Error decrypting data: requested key has not been loaded");
break;
case wvcdm::DECRYPT_NOT_READY:
errorDetailMsg->assign(
"Error decrypting data: license validity period is in the future");
break;
case wvcdm::SESSION_NOT_FOUND_FOR_DECRYPT:
errorDetailMsg->assign(
"Error decrypting data: session not found, possibly reclaimed");
break;
case wvcdm::DECRYPT_ERROR:
errorDetailMsg->assign(
"Error decrypting data: unspecified error");
break;
case wvcdm::INSUFFICIENT_OUTPUT_PROTECTION:
case wvcdm::ANALOG_OUTPUT_ERROR:
errorDetailMsg->assign(
"Error decrypting data: insufficient output protection");
break;
case wvcdm::KEY_PROHIBITED_FOR_SECURITY_LEVEL:
errorDetailMsg->assign(
"Error decrypting data: key prohibited for security level");
break;
default:
actionableError = false;
break;
}
if (actionableError) {
// This error is actionable by the app and should be passed up.
return mapCdmResponseType_1_2(res);
} else {
// Swallow the specifics of other errors to obscure decrypt internals.
return Status_V1_2::ERROR_DRM_UNKNOWN;
}
}
}
void WVCryptoPlugin::incrementIV(uint64_t increaseBy,
std::vector<uint8_t>* ivPtr) {
std::vector<uint8_t>& iv = *ivPtr;
uint64_t* counterBuffer = reinterpret_cast<uint64_t*>(&iv[8]);
(*counterBuffer) = htonq(ntohq(*counterBuffer) + increaseBy);
}
} // namespace widevine
} // namespace V1_2
} // namespace drm
} // namespace hardware
} // namespace wvdrm