Files
android/libwvdrmengine/cdm/core/src/string_conversions.cpp
Jeff Tinker 958bbe6d05 Certificate provisioning verification
bug: 8620943

This is a merge of changes made to the Widevine CDM
repository during certificate provisioning verification.

The following changes are included:

Fixes for certificate based licensing
https://widevine-internal-review.googlesource.com/#/c/5162/

Base64 encode and decode now handles non-multiple of 24-bits input
https://widevine-internal-review.googlesource.com/#/c/4981/

Fixed issues with device provisioning response handling
https://widevine-internal-review.googlesource.com/#/c/5153/

Persistent storage to support device certificates
https://widevine-internal-review.googlesource.com/#/c/5161/

Enable loading of certificates
https://widevine-internal-review.googlesource.com/#/c/5172/

Provide license server url
https://widevine-internal-review.googlesource.com/#/c/5173/

Change-Id: I0c032c1ae0055dcc1a7a77ad4b0ea0898030dc7d
2013-04-22 20:12:03 -07:00

324 lines
10 KiB
C++

// Copyright 2013 Google Inc. All Rights Reserved.
#include "string_conversions.h"
#include <ctype.h>
#include <iostream>
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <vector>
#include "log.h"
namespace {
/*
* Returns a 8-bit char that is mapped to the 6-bit base64 in_ch.
*
* Extracted from http://www.ietf.org/rfc/rfc3548.txt.
*
The "URL and Filename safe" Base 64 Alphabet
Value Encoding Value Encoding Value Encoding Value Encoding
0 A 17 R 34 i 51 z
1 B 18 S 35 j 52 0
2 C 19 T 36 k 53 1
3 D 20 U 37 l 54 2
4 E 21 V 38 m 55 3
5 F 22 W 39 n 56 4
6 G 23 X 40 o 57 5
7 H 24 Y 41 p 58 6
8 I 25 Z 42 q 59 7
9 J 26 a 43 r 60 8
10 K 27 b 44 s 61 9
11 L 28 c 45 t 62 - (minus)
12 M 29 d 46 u 63 _
13 N 30 e 47 v (underline)
14 O 31 f 48 w
15 P 32 g 49 x
16 Q 33 h 50 y (pad) =
*/
char B64ToBin(char in_ch) {
if (in_ch >= 'A' && in_ch <= 'Z') return in_ch - 'A';
if (in_ch >= 'a' && in_ch <= 'z') return in_ch - 'a' + 26;
if (in_ch >= '0' && in_ch <= '9') return in_ch - '0' + 52;
if (in_ch == '-') return 62;
if (in_ch == '_') return 63;
// arbitrary delimiter not in Base64 encoded alphabet, do not pick 0
return '?';
}
}
namespace wvcdm {
static bool CharToDigit(char ch, unsigned char* digit) {
if (ch >= '0' && ch <= '9') {
*digit = ch - '0';
} else {
ch = tolower(ch);
if ((ch >= 'a') && (ch <= 'f')) {
*digit = ch - 'a' + 10;
} else {
return false;
}
}
return true;
}
// converts an ascii hex string(2 bytes per digit) into a decimal byte string
std::vector<uint8_t> a2b_hex(const std::string& byte) {
std::vector<uint8_t> array;
unsigned int count = byte.size();
if (count == 0 || (count % 2) != 0) {
LOGE("Invalid input size %u for string %s", count, byte.c_str());
return array;
}
for (unsigned int i = 0; i < count / 2; ++i) {
unsigned char msb = 0; // most significant 4 bits
unsigned char lsb = 0; // least significant 4 bits
if (!CharToDigit(byte[i * 2], &msb) ||
!CharToDigit(byte[i * 2 + 1], &lsb)) {
LOGE("Invalid hex value %c%c at index %d", byte[i*2], byte[i*2+1], i);
return array;
}
array.push_back((msb << 4) | lsb);
}
return array;
}
std::string a2bs_hex(const std::string& byte) {
std::vector<uint8_t> array = a2b_hex(byte);
return std::string(array.begin(), array.end());
}
std::string b2a_hex(const std::vector<uint8_t>& byte) {
return HexEncode(&byte[0], byte.size());
}
std::string b2a_hex(const std::string& byte) {
return HexEncode(reinterpret_cast<const uint8_t *>(byte.data()),
byte.length());
}
// Filename-friendly base64 encoding (RFC4648), commonly referred as
// Base64WebSafeEncode.
// This is the encoding required by GooglePlay for certain
// license server transactions. It is also used for logging
// certain strings.
// The difference between web safe encoding vs regular encoding is that
// the web safe version replaces '+' with '-' and '/' with '_'.
std::string Base64SafeEncode(const std::vector<uint8_t>& bin_input) {
static const char kBase64Chars[] =
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz"
"0123456789-_";
if (bin_input.empty()) {
return std::string();
}
int in_size = bin_input.size();
int final_quantum_in_bytes = in_size % 3;
int full_in_chunks = in_size / 3;
int out_size = full_in_chunks * 4;
if (final_quantum_in_bytes) out_size += 4;
std::string b64_output(out_size, '\0');
int in_index = 0;
int out_index = 0;
unsigned long buffer;
unsigned char out_cc;
static const unsigned long kInMask = 0xff;
static const unsigned long kOutMask = 0x3f;
for (int i = 0; i < full_in_chunks; ++i) {
// up to 3 bytes (0..255) in
buffer = (bin_input.at(in_index) & kInMask);
buffer <<= 8;
buffer |= (++in_index >= in_size) ? 0 : (bin_input.at(in_index) & kInMask);
buffer <<= 8;
buffer |= (++in_index >= in_size) ? 0 : (bin_input.at(in_index) & kInMask);
++in_index;
// up to 4 bytes (0..63) out
out_cc = (buffer >> 18) & kOutMask;
b64_output.at(out_index) = kBase64Chars[out_cc];
if (++out_index >= out_size)
break;
out_cc = (buffer >> 12) & kOutMask;
b64_output.at(out_index) = kBase64Chars[out_cc];
if (++out_index >= out_size)
break;
out_cc = (buffer >> 6) & kOutMask;
b64_output.at(out_index) = kBase64Chars[out_cc];
if (++out_index >= out_size)
break;
out_cc = buffer & kOutMask;
b64_output.at(out_index) = kBase64Chars[out_cc];
++out_index;
}
if (final_quantum_in_bytes) {
switch(final_quantum_in_bytes) {
case 1: {
// reads 24-bits data, which is made up of one 8-bits char
buffer = (bin_input.at(in_index++) & kInMask);
buffer <<= 16;
// writes two 6-bits chars followed by two '=' padding char
out_cc = (buffer >> 18) & kOutMask;
b64_output.at(out_index++) = kBase64Chars[out_cc];
out_cc = (buffer >> 12) & kOutMask;
b64_output.at(out_index++) = kBase64Chars[out_cc];
b64_output.at(out_index++) = '=';
b64_output.at(out_index) = '=';
break;
}
case 2: {
// reads 24-bits data, which is made up of two 8-bits chars
buffer = (bin_input.at(in_index++) & kInMask);
buffer <<= 8;
buffer |= (bin_input.at(in_index++) & kInMask);
buffer <<= 8;
// writes three 6-bits chars followed by one '=' padding char
out_cc = (buffer >> 18) & kOutMask;
b64_output.at(out_index++) = kBase64Chars[out_cc];
out_cc = (buffer >> 12) & kOutMask;
b64_output.at(out_index++) = kBase64Chars[out_cc];
out_cc = (buffer >> 6) & kOutMask;
b64_output.at(out_index++) = kBase64Chars[out_cc];
b64_output.at(out_index) = '=';
break;
}
default:
break;
}
}
return b64_output;
}
// Decode for Filename-friendly base64 encoding (RFC4648), commonly referred
// as Base64WebSafeDecode.
// This is the encoding required by GooglePlay for certain
// license server transactions. It is also used for logging
// certain strings.
std::vector<uint8_t> Base64SafeDecode(const std::string& b64_input) {
if (b64_input.empty()) {
return std::vector<uint8_t>();
}
int in_size = b64_input.size();
int out_size = in_size;
std::vector<uint8_t> bin_output(out_size, '\0');
int in_index = 0;
int out_index = 0;
unsigned long buffer;
unsigned char out_cc;
static const unsigned long kOutMask = 0xff;
int counter = 0;
size_t delimiter_pos = b64_input.rfind('=');
if (delimiter_pos != std::string::npos) {
// Special case for partial last quantum indicated by '='
// at the end of encoded input.
counter = 1;
}
for (; counter < (in_size / 4); ++counter) {
// up to 4 bytes (0..63) in
buffer = B64ToBin(b64_input.at(in_index));
buffer <<= 6;
buffer |= (++in_index >= in_size) ? 0 : B64ToBin(b64_input.at(in_index));
buffer <<= 6;
buffer |= (++in_index >= in_size) ? 0 : B64ToBin(b64_input.at(in_index));
buffer <<= 6;
buffer |= (++in_index >= in_size) ? 0 : B64ToBin(b64_input.at(in_index));
++in_index;
// up to 3 bytes (0..255) out
out_cc = (buffer >> 16) & kOutMask;
bin_output.at(out_index) = out_cc;
if (++out_index >= out_size)
break;
out_cc = (buffer >> 8) & kOutMask;
bin_output.at(out_index) = out_cc;
if (++out_index >= out_size)
break;
out_cc = buffer & kOutMask;
bin_output.at(out_index) = out_cc;
++out_index;
}
if (delimiter_pos != std::string::npos) {
// it is either 2 chars plus 2 '=' or 3 chars plus one '='
buffer = B64ToBin(b64_input.at(in_index++));
buffer <<= 6;
buffer |= B64ToBin(b64_input.at(in_index++));
buffer <<= 6;
char special_char = b64_input.at(in_index++);
if ('=' == special_char) {
// we have 2 chars and 2 '='
buffer <<= 6;
out_cc = (buffer >> 16) & kOutMask;
bin_output.at(out_index++) = out_cc;
out_cc = (buffer >> 8) & kOutMask;
bin_output.at(out_index) = out_cc;
} else {
// we have 3 chars and 1 '='
buffer |= B64ToBin(special_char);
buffer <<= 6;
buffer |= B64ToBin(b64_input.at(in_index));
out_cc = (buffer >> 16) & kOutMask;
bin_output.at(out_index++) = out_cc;
out_cc = (buffer >> 8) & kOutMask;
bin_output.at(out_index++) = out_cc;
out_cc = buffer & kOutMask;
bin_output.at(out_index) = out_cc;
}
}
// adjust vector to reflect true size
bin_output.resize(out_index);
return bin_output;
}
std::string HexEncode(const uint8_t* in_buffer, unsigned int size) {
static const char kHexChars[] = "0123456789ABCDEF";
// Each input byte creates two output hex characters.
std::string out_buffer(size * 2, '\0');
for (unsigned int i = 0; i < size; ++i) {
char byte = in_buffer[i];
out_buffer[(i << 1)] = kHexChars[(byte >> 4) & 0xf];
out_buffer[(i << 1) + 1] = kHexChars[byte & 0xf];
}
return out_buffer;
}
std::string IntToString(int value) {
// log10(2) ~= 0.3 bytes needed per bit or per byte log10(2**8) ~= 2.4.
// So round up to allocate 3 output characters per byte, plus 1 for '-'.
const int kOutputBufSize = 3 * sizeof(int) + 1;
char buffer[kOutputBufSize];
memset(buffer, 0, kOutputBufSize);
snprintf(buffer, kOutputBufSize, "%d", value);
std::string out_string(buffer, sizeof(buffer));
return out_string;
}
std::string UintToString(unsigned int value) {
// log10(2) ~= 0.3 bytes needed per bit or per byte log10(2**8) ~= 2.4.
// So round up to allocate 3 output characters per byte.
const int kOutputBufSize = 3 * sizeof(unsigned int);
char buffer[kOutputBufSize];
memset(buffer, 0, kOutputBufSize);
snprintf(buffer, kOutputBufSize, "%u", value);
std::string out_string(buffer, sizeof(buffer));
return out_string;
}
}; // namespace wvcdm