Files
android/libwvdrmengine/mediacrypto/src_hidl/WVCryptoPlugin.cpp
Edwin Wong c3a24e6c86 Fix potential decrypt src pointer overflow.
Merged from http://go/wvgerrit/114903

There is a potential integer overflow to bypass the
source base size check in decrypt. The source pointer
can then point to the outside of the source buffer,
which could potentially leak arbitrary memory content
to destination pointer.

Test: sts-tradefed
  sts-tradefed run sts-engbuild-no-spl-lock -m StsHostTestCases --test android.security.sts.Bug_176496160#testPocBug_176496160

Test: push to device with target_hwasan-userdebug build
  adb shell /data/local/tmp/Bug-17649616064

Bug: 176496160
Bug: 176444786
Change-Id: I208e0d5d949e8ef003fcf7d6f129eab66b9b3656
2021-01-28 17:59:08 +00:00

450 lines
15 KiB
C++

//
// Copyright 2018 Google LLC. All Rights Reserved. This file and proprietary
// source code may only be used and distributed under the Widevine Master
// License Agreement.
//
//#define LOG_NDEBUG 0
#define LOG_TAG "WVCdm"
#include <utils/Log.h>
#include "WVCryptoPlugin.h"
#include <hidlmemory/mapping.h>
#include "HidlTypes.h"
#include "mapErrors-inl.h"
#include "OEMCryptoCENC.h"
#include "openssl/sha.h"
#include "TypeConvert.h"
#include "wv_cdm_constants.h"
#include "WVErrors.h"
namespace {
static const size_t kAESBlockSize = 16;
inline Status toStatus_1_0(Status_V1_2 status) {
switch (status) {
case Status_V1_2::ERROR_DRM_INSUFFICIENT_SECURITY:
case Status_V1_2::ERROR_DRM_FRAME_TOO_LARGE:
case Status_V1_2::ERROR_DRM_SESSION_LOST_STATE:
return Status::ERROR_DRM_UNKNOWN;
default:
return static_cast<Status>(status);
}
}
} // namespace
namespace wvdrm {
namespace hardware {
namespace drm {
namespace V1_2 {
namespace widevine {
using android::hardware::drm::V1_2::widevine::toVector;
using wvcdm::CdmDecryptionParameters;
using wvcdm::CdmQueryMap;
using wvcdm::CdmResponseType;
using wvcdm::CdmSessionId;
using wvcdm::KeyId;
using wvcdm::WvContentDecryptionModule;
WVCryptoPlugin::WVCryptoPlugin(const void* data, size_t size,
const sp<WvContentDecryptionModule>& cdm)
: mCDM(cdm){
if (data != NULL) {
mSessionId.assign(static_cast<const char *>(data), size);
}
if (!mCDM->IsOpenSession(mSessionId)) {
mSessionId.clear();
}
}
Return<bool> WVCryptoPlugin::requiresSecureDecoderComponent(
const hidl_string& mime) {
if (!strncasecmp(mime.c_str(), "video/", 6)) {
// Type is video, so query CDM to see if we require a secure decoder.
CdmQueryMap status;
CdmResponseType res = mCDM->QuerySessionStatus(mSessionId, &status);
if (!isCdmResponseTypeSuccess(res)) {
ALOGE("Error querying CDM status: %u", res);
return false;
}
return status[wvcdm::QUERY_KEY_SECURITY_LEVEL] ==
wvcdm::QUERY_VALUE_SECURITY_LEVEL_L1;
} else {
// Type is not video, so never require a secure decoder.
return false;
}
}
Return<void> WVCryptoPlugin::notifyResolution(
uint32_t width, uint32_t height) {
mCDM->NotifyResolution(mSessionId, width, height);
return Void();
}
Return<Status> WVCryptoPlugin::setMediaDrmSession(
const hidl_vec<uint8_t>& sessionId) {
if (sessionId.size() == 0) {
return Status::BAD_VALUE;
}
const std::vector<uint8_t> sId = toVector(sessionId);
CdmSessionId cdmSessionId(sId.begin(), sId.end());
if (!mCDM->IsOpenSession(cdmSessionId)) {
return Status::ERROR_DRM_SESSION_NOT_OPENED;
} else {
mSessionId = cdmSessionId;
return Status::OK;
}
}
Return<void> WVCryptoPlugin::setSharedBufferBase(
const hidl_memory& base, uint32_t bufferId) {
sp<IMemory> hidlMemory = mapMemory(base);
// allow mapMemory to return nullptr
mSharedBufferMap[bufferId] = hidlMemory;
return Void();
}
Return<void> WVCryptoPlugin::decrypt(
bool secure,
const hidl_array<uint8_t, 16>& keyId,
const hidl_array<uint8_t, 16>& iv,
Mode mode,
const Pattern& pattern,
const hidl_vec<SubSample>& subSamples,
const SharedBuffer& source,
uint64_t offset,
const DestinationBuffer& destination,
decrypt_cb _hidl_cb) {
Status status = Status::ERROR_DRM_UNKNOWN;
hidl_string detailedError;
uint32_t bytesWritten = 0;
Return<void> hResult = decrypt_1_2(
secure, keyId, iv, mode, pattern, subSamples, source, offset, destination,
[&](Status_V1_2 hStatus, uint32_t hBytesWritten, hidl_string hDetailedError) {
status = toStatus_1_0(hStatus);
if (status == Status::OK) {
bytesWritten = hBytesWritten;
detailedError = hDetailedError;
}
}
);
status = hResult.isOk() ? status : Status::ERROR_DRM_CANNOT_HANDLE;
_hidl_cb(status, bytesWritten, detailedError);
return Void();
}
Return<void> WVCryptoPlugin::decrypt_1_2(
bool secure,
const hidl_array<uint8_t, 16>& keyId,
const hidl_array<uint8_t, 16>& iv,
Mode mode,
const Pattern& pattern,
const hidl_vec<SubSample>& subSamples,
const SharedBuffer& source,
uint64_t offset,
const DestinationBuffer& destination,
decrypt_1_2_cb _hidl_cb) {
if (mSharedBufferMap.find(source.bufferId) == mSharedBufferMap.end()) {
_hidl_cb(Status_V1_2::ERROR_DRM_CANNOT_HANDLE, 0,
"source decrypt buffer base not set");
return Void();
}
if (destination.type == BufferType::SHARED_MEMORY) {
const SharedBuffer& dest = destination.nonsecureMemory;
if (mSharedBufferMap.find(dest.bufferId) == mSharedBufferMap.end()) {
_hidl_cb(Status_V1_2::ERROR_DRM_CANNOT_HANDLE, 0,
"destination decrypt buffer base not set");
return Void();
}
}
if (mode != Mode::UNENCRYPTED &&
mode != Mode::AES_CTR &&
mode != Mode::AES_CBC) {
_hidl_cb(Status_V1_2::BAD_VALUE,
0, "Encryption mode is not supported by Widevine CDM.");
return Void();
}
// Convert parameters to the form the CDM wishes to consume them in.
const KeyId cryptoKey(
reinterpret_cast<const char*>(keyId.data()), wvcdm::KEY_ID_SIZE);
std::vector<uint8_t> ivVector(iv.data(), iv.data() + wvcdm::KEY_IV_SIZE);
std::string errorDetailMsg;
sp<IMemory> sourceBase = mSharedBufferMap[source.bufferId];
if (sourceBase == nullptr) {
_hidl_cb(Status_V1_2::ERROR_DRM_CANNOT_HANDLE, 0, "source is a nullptr");
return Void();
}
size_t totalSrcSize = 0;
if (__builtin_add_overflow(source.offset, offset, &totalSrcSize) ||
__builtin_add_overflow(totalSrcSize, source.size, &totalSrcSize) ||
totalSrcSize > sourceBase->getSize()) {
android_errorWriteLog(0x534e4554, "176496160");
_hidl_cb(Status_V1_2::ERROR_DRM_CANNOT_HANDLE, 0, "invalid buffer size");
return Void();
}
uint8_t *base = static_cast<uint8_t *>
(static_cast<void *>(sourceBase->getPointer()));
uint8_t* srcPtr = static_cast<uint8_t *>(base + source.offset + offset);
void* destPtr = NULL;
if (destination.type == BufferType::SHARED_MEMORY) {
const SharedBuffer& destBuffer = destination.nonsecureMemory;
sp<IMemory> destBase = mSharedBufferMap[destBuffer.bufferId];
if (destBase == nullptr) {
_hidl_cb(Status_V1_2::ERROR_DRM_CANNOT_HANDLE, 0, "destination is a nullptr");
return Void();
}
if (destBuffer.offset + destBuffer.size > destBase->getSize()) {
_hidl_cb(Status_V1_2::ERROR_DRM_FRAME_TOO_LARGE, 0, "invalid buffer size");
return Void();
}
destPtr = static_cast<void *>(base + destination.nonsecureMemory.offset);
} else if (destination.type == BufferType::NATIVE_HANDLE) {
native_handle_t *handle = const_cast<native_handle_t *>(
destination.secureMemory.getNativeHandle());
destPtr = static_cast<void *>(handle);
}
// Calculate the output buffer size and determine if any subsamples are
// encrypted.
size_t destSize = 0;
bool haveEncryptedSubsamples = false;
for (size_t i = 0; i < subSamples.size(); i++) {
const SubSample &subSample = subSamples[i];
destSize += subSample.numBytesOfClearData;
destSize += subSample.numBytesOfEncryptedData;
if (subSample.numBytesOfEncryptedData > 0) {
haveEncryptedSubsamples = true;
}
}
// Set up the decrypt params that do not vary.
CdmDecryptionParameters params = CdmDecryptionParameters();
params.is_secure = secure;
params.key_id = &cryptoKey;
params.iv = &ivVector;
params.decrypt_buffer = destPtr;
params.decrypt_buffer_length = destSize;
params.pattern_descriptor.encrypt_blocks = pattern.encryptBlocks;
params.pattern_descriptor.skip_blocks = pattern.skipBlocks;
if (mode == Mode::AES_CTR) {
params.cipher_mode = wvcdm::kCipherModeCtr;
} else if (mode == Mode::AES_CBC) {
params.cipher_mode = wvcdm::kCipherModeCbc;
}
// Iterate through subsamples, sending them to the CDM serially.
size_t bufferOffset = 0;
size_t blockOffset = 0;
const size_t patternLengthInBytes =
(pattern.encryptBlocks + pattern.skipBlocks) * kAESBlockSize;
for (size_t i = 0; i < subSamples.size(); ++i) {
const SubSample& subSample = subSamples[i];
if (mode == Mode::UNENCRYPTED && subSample.numBytesOfEncryptedData != 0) {
_hidl_cb(Status_V1_2::ERROR_DRM_CANNOT_HANDLE, 0,
"Encrypted subsamples found in allegedly unencrypted data.");
return Void();
}
// Calculate any flags that apply to this subsample's parts.
uint8_t clearFlags = 0;
uint8_t encryptedFlags = 0;
// If this is the first subsample…
if (i == 0) {
// …add OEMCrypto_FirstSubsample to the first part that is present.
if (subSample.numBytesOfClearData != 0) {
clearFlags = clearFlags | OEMCrypto_FirstSubsample;
} else {
encryptedFlags = encryptedFlags | OEMCrypto_FirstSubsample;
}
}
// If this is the last subsample…
if (i == subSamples.size() - 1) {
// …add OEMCrypto_LastSubsample to the last part that is present
if (subSample.numBytesOfEncryptedData != 0) {
encryptedFlags = encryptedFlags | OEMCrypto_LastSubsample;
} else {
clearFlags = clearFlags | OEMCrypto_LastSubsample;
}
}
// "Decrypt" any unencrypted data. Per the ISO-CENC standard, clear data
// comes before encrypted data.
if (subSample.numBytesOfClearData != 0) {
params.is_encrypted = false;
params.encrypt_buffer = srcPtr + bufferOffset;
params.encrypt_length = subSample.numBytesOfClearData;
params.block_offset = 0;
params.decrypt_buffer_offset = bufferOffset;
params.subsample_flags = clearFlags;
Status_V1_2 res = attemptDecrypt(params, haveEncryptedSubsamples,
&errorDetailMsg);
if (res != Status_V1_2::OK) {
_hidl_cb(res, 0, errorDetailMsg.c_str());
return Void();
}
bufferOffset += subSample.numBytesOfClearData;
}
// Decrypt any encrypted data. Per the ISO-CENC standard, encrypted data
// comes after clear data.
if (subSample.numBytesOfEncryptedData != 0) {
params.is_encrypted = true;
params.encrypt_buffer = srcPtr + bufferOffset;
params.encrypt_length = subSample.numBytesOfEncryptedData;
params.block_offset = blockOffset;
params.decrypt_buffer_offset = bufferOffset;
params.subsample_flags = encryptedFlags;
Status_V1_2 res = attemptDecrypt(params, haveEncryptedSubsamples,
&errorDetailMsg);
if (res != Status_V1_2::OK) {
_hidl_cb(res, 0, errorDetailMsg.c_str());
return Void();
}
bufferOffset += subSample.numBytesOfEncryptedData;
// Update the block offset, pattern offset, and IV as needed by the
// various crypto modes. Possible combinations are cenc (AES-CTR), cens
// (AES-CTR w/ Patterns), cbc1 (AES-CBC), and cbcs (AES-CBC w/ Patterns).
if (mode == Mode::AES_CTR) {
// Update the IV depending on how many encrypted blocks we passed.
uint64_t increment = 0;
if (patternLengthInBytes == 0) {
// If there's no pattern, all the blocks are encrypted. We have to add
// in blockOffset to account for any incomplete crypto blocks from the
// preceding subsample.
increment = (blockOffset + subSample.numBytesOfEncryptedData) /
kAESBlockSize;
} else {
const uint64_t numBlocks =
subSample.numBytesOfEncryptedData / kAESBlockSize;
const uint64_t patternLengthInBlocks =
pattern.encryptBlocks + pattern.skipBlocks;
increment =
(numBlocks / patternLengthInBlocks) * pattern.encryptBlocks;
// A partial pattern is only encrypted if it is at least
// mEncryptBlocks large.
if (numBlocks % patternLengthInBlocks >= pattern.encryptBlocks)
increment += pattern.encryptBlocks;
}
incrementIV(increment, &ivVector);
// Update the block offset
blockOffset = (blockOffset + subSample.numBytesOfEncryptedData) %
kAESBlockSize;
} else if (mode == Mode::AES_CBC && patternLengthInBytes == 0) {
// If there is no pattern, assume cbc1 mode and update the IV.
// Stash the last crypto block in the IV.
const uint8_t* bufferEnd = srcPtr + bufferOffset +
subSample.numBytesOfEncryptedData;
ivVector.assign(bufferEnd - kAESBlockSize, bufferEnd);
}
// There is no branch for cbcs mode because the IV and pattern offest
// reset at the start of each subsample, so they do not need to be
// updated.
}
}
_hidl_cb(Status_V1_2::OK, bufferOffset, errorDetailMsg.c_str());
return Void();
}
Status_V1_2 WVCryptoPlugin::attemptDecrypt(const CdmDecryptionParameters& params,
bool haveEncryptedSubsamples, std::string* errorDetailMsg) {
CdmResponseType res = mCDM->Decrypt(mSessionId, haveEncryptedSubsamples,
params);
if (isCdmResponseTypeSuccess(res)) {
return Status_V1_2::OK;
} else {
ALOGE("Decrypt error result in session %s during %s block: %d",
mSessionId.c_str(),
params.is_encrypted ? "encrypted" : "unencrypted",
res);
bool actionableError = true;
switch (res) {
case wvcdm::INSUFFICIENT_CRYPTO_RESOURCES:
errorDetailMsg->assign(
"Error decrypting data: insufficient crypto resources");
break;
case wvcdm::NEED_KEY:
case wvcdm::KEY_NOT_FOUND_IN_SESSION:
errorDetailMsg->assign(
"Error decrypting data: requested key has not been loaded");
break;
case wvcdm::DECRYPT_NOT_READY:
errorDetailMsg->assign(
"Error decrypting data: license validity period is in the future");
break;
case wvcdm::SESSION_NOT_FOUND_FOR_DECRYPT:
errorDetailMsg->assign(
"Error decrypting data: session not found, possibly reclaimed");
break;
case wvcdm::DECRYPT_ERROR:
errorDetailMsg->assign(
"Error decrypting data: unspecified error");
break;
case wvcdm::INSUFFICIENT_OUTPUT_PROTECTION:
case wvcdm::ANALOG_OUTPUT_ERROR:
errorDetailMsg->assign(
"Error decrypting data: insufficient output protection");
break;
case wvcdm::KEY_PROHIBITED_FOR_SECURITY_LEVEL:
errorDetailMsg->assign(
"Error decrypting data: key prohibited for security level");
break;
default:
actionableError = false;
break;
}
if (actionableError) {
// This error is actionable by the app and should be passed up.
return mapCdmResponseType_1_2(res);
} else {
// Swallow the specifics of other errors to obscure decrypt internals.
return Status_V1_2::ERROR_DRM_UNKNOWN;
}
}
}
void WVCryptoPlugin::incrementIV(uint64_t increaseBy,
std::vector<uint8_t>* ivPtr) {
std::vector<uint8_t>& iv = *ivPtr;
uint64_t* counterBuffer = reinterpret_cast<uint64_t*>(&iv[8]);
(*counterBuffer) = htonq(ntohq(*counterBuffer) + increaseBy);
}
} // namespace widevine
} // namespace V1_2
} // namespace drm
} // namespace hardware
} // namespace wvdrm