Source release 19.1.0

This commit is contained in:
Matt Feddersen
2024-03-28 19:21:54 -07:00
parent 28ec8548c6
commit b8bdfccebe
182 changed files with 10645 additions and 2040 deletions

567
third_party/libcppbor/src/cppbor.cpp vendored Normal file
View File

@@ -0,0 +1,567 @@
/*
* Copyright 2019 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "cppbor.h"
#include <inttypes.h>
#include <limits>
using std::string;
using std::vector;
#define CHECK(x) (void)(x)
namespace cppbor {
namespace {
template <typename T, typename Iterator,
typename = std::enable_if<std::is_unsigned<T>::value>>
Iterator writeBigEndian(T value, Iterator pos) {
for (unsigned i = 0; i < sizeof(value); ++i) {
*pos++ = static_cast<uint8_t>(value >> (8 * (sizeof(value) - 1)));
value = static_cast<T>(value << 8);
}
return pos;
}
template <typename T, typename = std::enable_if<std::is_unsigned<T>::value>>
void writeBigEndian(T value, std::function<void(uint8_t)>& cb) {
for (unsigned i = 0; i < sizeof(value); ++i) {
cb(static_cast<uint8_t>(value >> (8 * (sizeof(value) - 1))));
value = static_cast<T>(value << 8);
}
}
bool cborAreAllElementsNonCompound(const Item* compoundItem) {
if (compoundItem->type() == ARRAY) {
const Array* array = compoundItem->asArray();
for (size_t n = 0; n < array->size(); n++) {
const Item* entry = (*array)[n].get();
switch (entry->type()) {
case ARRAY:
case MAP:
return false;
default:
break;
}
}
} else {
const Map* map = compoundItem->asMap();
for (auto& entry : *map) {
auto& keyEntry = entry.first;
auto& valueEntry = entry.second;
switch (keyEntry->type()) {
case ARRAY:
case MAP:
return false;
default:
break;
}
switch (valueEntry->type()) {
case ARRAY:
case MAP:
return false;
default:
break;
}
}
}
return true;
}
bool prettyPrintInternal(const Item* item, string& out, size_t indent,
size_t maxBStrSize,
const vector<string>& mapKeysToNotPrint) {
if (!item) {
out.append("<NULL>");
return false;
}
char buf[80];
string indentString(indent, ' ');
size_t tagCount = item->semanticTagCount();
while (tagCount > 0) {
--tagCount;
snprintf(buf, sizeof(buf), "tag %" PRIu64 " ", item->semanticTag(tagCount));
out.append(buf);
}
switch (item->type()) {
case SEMANTIC:
// Handled above.
break;
case UINT:
snprintf(buf, sizeof(buf), "%" PRIu64, item->asUint()->unsignedValue());
out.append(buf);
break;
case NINT:
snprintf(buf, sizeof(buf), "%" PRId64, item->asNint()->value());
out.append(buf);
break;
case BSTR: {
const uint8_t* valueData;
size_t valueSize;
const Bstr* bstr = item->asBstr();
if (bstr == nullptr) {
return false;
}
const vector<uint8_t>& value = bstr->value();
valueData = value.data();
valueSize = value.size();
out.append("{");
for (size_t n = 0; n < valueSize; n++) {
if (n > 0) {
out.append(", ");
}
snprintf(buf, sizeof(buf), "0x%02x", valueData[n]);
out.append(buf);
}
out.append("}");
} break;
case TSTR:
out.append("'");
{
// TODO: escape "'" characters
if (item->asTstr() != nullptr) {
out.append(item->asTstr()->value().c_str());
} else {
}
}
out.append("'");
break;
case ARRAY: {
const Array* array = item->asArray();
if (array->size() == 0) {
out.append("[]");
} else if (cborAreAllElementsNonCompound(array)) {
out.append("[");
for (size_t n = 0; n < array->size(); n++) {
if (!prettyPrintInternal((*array)[n].get(), out, indent + 2,
maxBStrSize, mapKeysToNotPrint)) {
return false;
}
out.append(", ");
}
out.append("]");
} else {
out.append("[\n" + indentString);
for (size_t n = 0; n < array->size(); n++) {
out.append(" ");
if (!prettyPrintInternal((*array)[n].get(), out, indent + 2,
maxBStrSize, mapKeysToNotPrint)) {
return false;
}
out.append(",\n" + indentString);
}
out.append("]");
}
} break;
case MAP: {
const Map* map = item->asMap();
if (map->size() == 0) {
out.append("{}");
} else {
out.append("{\n" + indentString);
for (auto& entry : *map) {
auto& map_key = entry.first;
auto& map_value = entry.second;
out.append(" ");
if (!prettyPrintInternal(map_key.get(), out, indent + 2, maxBStrSize,
mapKeysToNotPrint)) {
return false;
}
out.append(" : ");
if (map_key->type() == TSTR &&
std::find(mapKeysToNotPrint.begin(), mapKeysToNotPrint.end(),
map_key->asTstr()->value()) !=
mapKeysToNotPrint.end()) {
out.append("<not printed>");
} else {
if (!prettyPrintInternal(map_value.get(), out, indent + 2,
maxBStrSize, mapKeysToNotPrint)) {
return false;
}
}
out.append(",\n" + indentString);
}
out.append("}");
}
} break;
case SIMPLE:
const Bool* asBool = item->asSimple()->asBool();
const Null* asNull = item->asSimple()->asNull();
if (asBool != nullptr) {
out.append(asBool->value() ? "true" : "false");
} else if (asNull != nullptr) {
out.append("null");
} else {
return false;
}
break;
}
return true;
}
} // namespace
size_t headerSize(uint64_t addlInfo) {
if (addlInfo < ONE_BYTE_LENGTH) return 1;
if (addlInfo <= std::numeric_limits<uint8_t>::max()) return 2;
if (addlInfo <= std::numeric_limits<uint16_t>::max()) return 3;
if (addlInfo <= std::numeric_limits<uint32_t>::max()) return 5;
return 9;
}
uint8_t* encodeHeader(MajorType type, uint64_t addlInfo, uint8_t* pos,
const uint8_t* end) {
size_t sz = headerSize(addlInfo);
if (end - pos < static_cast<ssize_t>(sz)) return nullptr;
switch (sz) {
case 1:
*pos++ = type | static_cast<uint8_t>(addlInfo);
return pos;
case 2:
*pos++ = type | ONE_BYTE_LENGTH;
*pos++ = static_cast<uint8_t>(addlInfo);
return pos;
case 3:
*pos++ = type | TWO_BYTE_LENGTH;
return writeBigEndian(static_cast<uint16_t>(addlInfo), pos);
case 5:
*pos++ = type | FOUR_BYTE_LENGTH;
return writeBigEndian(static_cast<uint32_t>(addlInfo), pos);
case 9:
*pos++ = type | EIGHT_BYTE_LENGTH;
return writeBigEndian(addlInfo, pos);
default:
CHECK(false); // Impossible to get here.
return nullptr;
}
}
void encodeHeader(MajorType type, uint64_t addlInfo,
EncodeCallback encodeCallback) {
size_t sz = headerSize(addlInfo);
switch (sz) {
case 1:
encodeCallback(type | static_cast<uint8_t>(addlInfo));
break;
case 2:
encodeCallback(type | ONE_BYTE_LENGTH);
encodeCallback(static_cast<uint8_t>(addlInfo));
break;
case 3:
encodeCallback(type | TWO_BYTE_LENGTH);
writeBigEndian(static_cast<uint16_t>(addlInfo), encodeCallback);
break;
case 5:
encodeCallback(type | FOUR_BYTE_LENGTH);
writeBigEndian(static_cast<uint32_t>(addlInfo), encodeCallback);
break;
case 9:
encodeCallback(type | EIGHT_BYTE_LENGTH);
writeBigEndian(addlInfo, encodeCallback);
break;
default:
CHECK(false); // Impossible to get here.
}
}
bool Item::operator==(const Item& other) const& {
if (type() != other.type()) return false;
switch (type()) {
case UINT:
return *asUint() == *(other.asUint());
case NINT:
return *asNint() == *(other.asNint());
case BSTR:
if (asBstr() != nullptr && other.asBstr() != nullptr) {
return *asBstr() == *(other.asBstr());
}
// Interesting corner case: comparing a Bstr and ViewBstr with
// identical contents. The function currently returns false for
// this case.
// TODO: if it should return true, this needs a deep comparison
return false;
case TSTR:
if (asTstr() != nullptr && other.asTstr() != nullptr) {
return *asTstr() == *(other.asTstr());
}
// Same corner case as Bstr
return false;
case ARRAY:
return *asArray() == *(other.asArray());
case MAP:
return *asMap() == *(other.asMap());
case SIMPLE:
return *asSimple() == *(other.asSimple());
case SEMANTIC:
return *asSemanticTag() == *(other.asSemanticTag());
default:
CHECK(false); // Impossible to get here.
return false;
}
}
Nint::Nint(int64_t v) : mValue(v) { CHECK(v < 0); }
bool Simple::operator==(const Simple& other) const& {
if (simpleType() != other.simpleType()) return false;
switch (simpleType()) {
case BOOLEAN:
return *asBool() == *(other.asBool());
case NULL_T:
return true;
default:
CHECK(false); // Impossible to get here.
return false;
}
}
uint8_t* Bstr::encode(uint8_t* pos, const uint8_t* end) const {
pos = encodeHeader(mValue.size(), pos, end);
if (!pos || end - pos < static_cast<ptrdiff_t>(mValue.size())) return nullptr;
return std::copy(mValue.begin(), mValue.end(), pos);
}
void Bstr::encodeValue(EncodeCallback encodeCallback) const {
for (auto c : mValue) {
encodeCallback(c);
}
}
uint8_t* Tstr::encode(uint8_t* pos, const uint8_t* end) const {
pos = encodeHeader(mValue.size(), pos, end);
if (!pos || end - pos < static_cast<ptrdiff_t>(mValue.size())) return nullptr;
return std::copy(mValue.begin(), mValue.end(), pos);
}
void Tstr::encodeValue(EncodeCallback encodeCallback) const {
for (auto c : mValue) {
encodeCallback(static_cast<uint8_t>(c));
}
}
bool Array::operator==(const Array& other) const& {
return size() == other.size()
// Can't use vector::operator== because the contents are pointers.
// std::equal lets us provide a predicate that does the dereferencing.
&& std::equal(mEntries.begin(), mEntries.end(), other.mEntries.begin(),
[](const std::unique_ptr<cppbor::Item>& a,
const std::unique_ptr<cppbor::Item>& b) -> bool {
return *a == *b;
});
}
uint8_t* Array::encode(uint8_t* pos, const uint8_t* end) const {
pos = encodeHeader(size(), pos, end);
if (!pos) return nullptr;
for (auto& entry : mEntries) {
pos = entry->encode(pos, end);
if (!pos) return nullptr;
}
return pos;
}
void Array::encode(EncodeCallback encodeCallback) const {
encodeHeader(size(), encodeCallback);
for (auto& entry : mEntries) {
entry->encode(encodeCallback);
}
}
std::unique_ptr<Item> Array::clone() const {
auto res = make_unique<Array>();
for (size_t i = 0; i < mEntries.size(); i++) {
res->add(mEntries[i]->clone());
}
return res;
}
bool Map::operator==(const Map& other) const& {
return size() == other.size()
// Can't use vector::operator== because the contents are pairs of
// pointers. std::equal lets us provide a predicate that does the
// dereferencing.
&& std::equal(begin(), end(), other.begin(),
[](const entry_type& a, const entry_type& b) {
return *a.first == *b.first && *a.second == *b.second;
});
}
uint8_t* Map::encode(uint8_t* pos, const uint8_t* end) const {
pos = encodeHeader(size(), pos, end);
if (!pos) return nullptr;
for (auto& entry : mEntries) {
pos = entry.first->encode(pos, end);
if (!pos) return nullptr;
pos = entry.second->encode(pos, end);
if (!pos) return nullptr;
}
return pos;
}
void Map::encode(EncodeCallback encodeCallback) const {
encodeHeader(size(), encodeCallback);
for (auto& entry : mEntries) {
entry.first->encode(encodeCallback);
entry.second->encode(encodeCallback);
}
}
bool Map::keyLess(const Item* a, const Item* b) {
// CBOR map canonicalization rules are:
// 1. If two keys have different lengths, the shorter one sorts earlier.
if (a->encodedSize() < b->encodedSize()) return true;
if (a->encodedSize() > b->encodedSize()) return false;
// 2. If two keys have the same length, the one with the lower value in
// (byte-wise) lexical order sorts earlier. This requires encoding both
// items.
auto encodedA = a->encode();
auto encodedB = b->encode();
return std::lexicographical_compare(encodedA.begin(), encodedA.end(), //
encodedB.begin(), encodedB.end());
}
void recursivelyCanonicalize(std::unique_ptr<Item>& item) {
switch (item->type()) {
case UINT:
case NINT:
case BSTR:
case TSTR:
case SIMPLE:
return;
case ARRAY:
std::for_each(item->asArray()->begin(), item->asArray()->end(),
recursivelyCanonicalize);
return;
case MAP:
item->asMap()->canonicalize(true /* recurse */);
return;
case SEMANTIC:
// This can't happen. SemanticTags delegate their type() method to the
// contained Item's type.
assert(false);
return;
}
}
Map& Map::canonicalize(bool recurse) & {
if (recurse) {
for (auto& entry : mEntries) {
recursivelyCanonicalize(entry.first);
recursivelyCanonicalize(entry.second);
}
}
if (size() < 2 || mCanonicalized) {
// Trivially or already canonical; do nothing.
return *this;
}
std::sort(begin(), end(), [](const entry_type& a, const entry_type& b) {
return keyLess(a.first.get(), b.first.get());
});
mCanonicalized = true;
return *this;
}
std::unique_ptr<Item> Map::clone() const {
auto res = make_unique<Map>();
for (auto& entry : *this) {
auto& key = entry.first;
auto& value = entry.second;
res->add(key->clone(), value->clone());
}
res->mCanonicalized = mCanonicalized;
return res;
}
std::unique_ptr<Item> SemanticTag::clone() const {
return make_unique<SemanticTag>(mValue, mTaggedItem->clone());
}
uint8_t* SemanticTag::encode(uint8_t* pos, const uint8_t* end) const {
// Can't use the encodeHeader() method that calls type() to get the major
// type, since that will return the tagged Item's type.
pos = ::cppbor::encodeHeader(kMajorType, mValue, pos, end);
if (!pos) return nullptr;
return mTaggedItem->encode(pos, end);
}
void SemanticTag::encode(EncodeCallback encodeCallback) const {
// Can't use the encodeHeader() method that calls type() to get the major
// type, since that will return the tagged Item's type.
::cppbor::encodeHeader(kMajorType, mValue, encodeCallback);
mTaggedItem->encode(std::move(encodeCallback));
}
size_t SemanticTag::semanticTagCount() const {
size_t levelCount = 1; // Count this level.
const SemanticTag* cur = this;
while (cur->mTaggedItem &&
(cur = cur->mTaggedItem->asSemanticTag()) != nullptr)
++levelCount;
return levelCount;
}
uint64_t SemanticTag::semanticTag(size_t nesting) const {
// Getting the value of a specific nested tag is a bit tricky, because we
// start with the outer tag and don't know how many are inside. We count the
// number of nesting levels to find out how many there are in total, then to
// get the one we want we have to walk down levelCount - nesting steps.
size_t levelCount = semanticTagCount();
if (nesting >= levelCount) return 0;
levelCount -= nesting;
const SemanticTag* cur = this;
while (--levelCount > 0) cur = cur->mTaggedItem->asSemanticTag();
return cur->mValue;
}
string prettyPrint(const Item* item, size_t maxBStrSize,
const vector<string>& mapKeysToNotPrint) {
string out;
prettyPrintInternal(item, out, 0, maxBStrSize, mapKeysToNotPrint);
return out;
}
} // namespace cppbor

View File

@@ -0,0 +1,380 @@
/*
* Copyright 2019 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "cppbor_parse.h"
#include <limits>
#include <sstream>
#include <stack>
#ifndef __has_feature
#define __has_feature(x) 0
#endif
namespace cppbor {
namespace {
std::string insufficientLengthString(size_t bytesNeeded, size_t bytesAvail,
const std::string& type) {
char buf[1024];
snprintf(buf, sizeof(buf), "Need %zu byte(s) for %s, have %zu.", bytesNeeded, type.c_str(),
bytesAvail);
return std::string(buf);
}
template <typename T, typename = std::enable_if_t<std::is_unsigned<T>::value>>
std::tuple<bool, uint64_t, const uint8_t*> parseLength(const uint8_t* pos, const uint8_t* end,
ParseClient* parseClient) {
if (pos + sizeof(T) > end) {
parseClient->error(pos - 1, insufficientLengthString(sizeof(T), end - pos, "length field"));
return {false, 0, pos};
}
const uint8_t* intEnd = pos + sizeof(T);
T result = 0;
do {
result = static_cast<T>((result << 8) | *pos++);
} while (pos < intEnd);
return {true, result, pos};
}
std::tuple<const uint8_t*, ParseClient*> parseRecursively(const uint8_t* begin, const uint8_t* end,
bool emitViews, ParseClient* parseClient);
std::tuple<const uint8_t*, ParseClient*> handleUint(uint64_t value, const uint8_t* hdrBegin,
const uint8_t* hdrEnd,
ParseClient* parseClient) {
std::unique_ptr<Item> item = std::make_unique<Uint>(value);
return {hdrEnd,
parseClient->item(item, hdrBegin, hdrEnd /* valueBegin */, hdrEnd /* itemEnd */)};
}
std::tuple<const uint8_t*, ParseClient*> handleNint(uint64_t value, const uint8_t* hdrBegin,
const uint8_t* hdrEnd,
ParseClient* parseClient) {
if (value > std::numeric_limits<int64_t>::max()) {
parseClient->error(hdrBegin, "NINT values that don't fit in int64_t are not supported.");
return {hdrBegin, nullptr /* end parsing */};
}
std::unique_ptr<Item> item = std::make_unique<Nint>(-1 - static_cast<int64_t>(value));
return {hdrEnd,
parseClient->item(item, hdrBegin, hdrEnd /* valueBegin */, hdrEnd /* itemEnd */)};
}
std::tuple<const uint8_t*, ParseClient*> handleBool(uint64_t value, const uint8_t* hdrBegin,
const uint8_t* hdrEnd,
ParseClient* parseClient) {
std::unique_ptr<Item> item = std::make_unique<Bool>(value == TRUE);
return {hdrEnd,
parseClient->item(item, hdrBegin, hdrEnd /* valueBegin */, hdrEnd /* itemEnd */)};
}
std::tuple<const uint8_t*, ParseClient*> handleNull(const uint8_t* hdrBegin, const uint8_t* hdrEnd,
ParseClient* parseClient) {
std::unique_ptr<Item> item = std::make_unique<Null>();
return {hdrEnd,
parseClient->item(item, hdrBegin, hdrEnd /* valueBegin */, hdrEnd /* itemEnd */)};
}
template <typename T>
std::tuple<const uint8_t*, ParseClient*> handleString(uint64_t length, const uint8_t* hdrBegin,
const uint8_t* valueBegin, const uint8_t* end,
const std::string& errLabel,
ParseClient* parseClient) {
ssize_t signed_length = static_cast<ssize_t>(length);
if (end - valueBegin < signed_length || signed_length < 0) {
parseClient->error(hdrBegin, insufficientLengthString(length, end - valueBegin, errLabel));
return {hdrBegin, nullptr /* end parsing */};
}
std::unique_ptr<Item> item = std::make_unique<T>(valueBegin, valueBegin + length);
return {valueBegin + length,
parseClient->item(item, hdrBegin, valueBegin, valueBegin + length)};
}
class IncompleteItem {
public:
virtual ~IncompleteItem() {}
virtual void add(std::unique_ptr<Item> item) = 0;
};
class IncompleteArray : public Array, public IncompleteItem {
public:
explicit IncompleteArray(size_t size) : mSize(size) {}
// We return the "complete" size, rather than the actual size.
size_t size() const override { return mSize; }
void add(std::unique_ptr<Item> item) override {
mEntries.reserve(mSize);
mEntries.push_back(std::move(item));
}
private:
size_t mSize;
};
class IncompleteMap : public Map, public IncompleteItem {
public:
explicit IncompleteMap(size_t size) : mSize(size) {}
// We return the "complete" size, rather than the actual size.
size_t size() const override { return mSize; }
void add(std::unique_ptr<Item> item) override {
if (mKeyHeldForAdding) {
mEntries.reserve(mSize);
mEntries.push_back({std::move(mKeyHeldForAdding), std::move(item)});
} else {
mKeyHeldForAdding = std::move(item);
}
}
private:
std::unique_ptr<Item> mKeyHeldForAdding;
size_t mSize;
};
class IncompleteSemanticTag : public SemanticTag, public IncompleteItem {
public:
explicit IncompleteSemanticTag(uint64_t value) : SemanticTag(value) {}
// We return the "complete" size, rather than the actual size.
size_t size() const override { return 1; }
void add(std::unique_ptr<Item> item) override { mTaggedItem = std::move(item); }
};
std::tuple<const uint8_t*, ParseClient*> handleEntries(size_t entryCount, const uint8_t* hdrBegin,
const uint8_t* pos, const uint8_t* end,
const std::string& typeName,
bool emitViews,
ParseClient* parseClient) {
while (entryCount > 0) {
--entryCount;
if (pos == end) {
parseClient->error(hdrBegin, "Not enough entries for " + typeName + ".");
return {hdrBegin, nullptr /* end parsing */};
}
std::tie(pos, parseClient) = parseRecursively(pos, end, emitViews, parseClient);
if (!parseClient) return {hdrBegin, nullptr};
}
return {pos, parseClient};
}
std::tuple<const uint8_t*, ParseClient*> handleCompound(
std::unique_ptr<Item> item, uint64_t entryCount, const uint8_t* hdrBegin,
const uint8_t* valueBegin, const uint8_t* end, const std::string& typeName,
bool emitViews, ParseClient* parseClient) {
parseClient =
parseClient->item(item, hdrBegin, valueBegin, valueBegin /* don't know the end yet */);
if (!parseClient) return {hdrBegin, nullptr};
const uint8_t* pos;
std::tie(pos, parseClient) =
handleEntries(entryCount, hdrBegin, valueBegin, end, typeName, emitViews, parseClient);
if (!parseClient) return {hdrBegin, nullptr};
return {pos, parseClient->itemEnd(item, hdrBegin, valueBegin, pos)};
}
std::tuple<const uint8_t*, ParseClient*> parseRecursively(const uint8_t* begin, const uint8_t* end,
bool emitViews, ParseClient* parseClient) {
if (begin == end) {
parseClient->error(
begin,
"Input buffer is empty. Begin and end cannot point to the same location.");
return {begin, nullptr};
}
const uint8_t* pos = begin;
MajorType type = static_cast<MajorType>(*pos & 0xE0);
uint8_t tagInt = *pos & 0x1F;
++pos;
bool success = true;
uint64_t addlData;
if (tagInt < ONE_BYTE_LENGTH) {
addlData = tagInt;
} else if (tagInt > EIGHT_BYTE_LENGTH) {
parseClient->error(
begin,
"Reserved additional information value or unsupported indefinite length item.");
return {begin, nullptr};
} else {
switch (tagInt) {
case ONE_BYTE_LENGTH:
std::tie(success, addlData, pos) = parseLength<uint8_t>(pos, end, parseClient);
break;
case TWO_BYTE_LENGTH:
std::tie(success, addlData, pos) = parseLength<uint16_t>(pos, end, parseClient);
break;
case FOUR_BYTE_LENGTH:
std::tie(success, addlData, pos) = parseLength<uint32_t>(pos, end, parseClient);
break;
case EIGHT_BYTE_LENGTH:
std::tie(success, addlData, pos) = parseLength<uint64_t>(pos, end, parseClient);
break;
default:
// It's impossible to get here
parseClient->error(begin, "Invalid tag.");
return {};
}
}
if (!success) return {begin, nullptr};
switch (type) {
case UINT:
return handleUint(addlData, begin, pos, parseClient);
case NINT:
return handleNint(addlData, begin, pos, parseClient);
case BSTR:
return handleString<Bstr>(addlData, begin, pos, end, "byte string", parseClient);
case TSTR:
return handleString<Tstr>(addlData, begin, pos, end, "text string", parseClient);
case ARRAY:
return handleCompound(std::make_unique<IncompleteArray>(addlData), addlData, begin, pos,
end, "array", emitViews, parseClient);
case MAP:
return handleCompound(std::make_unique<IncompleteMap>(addlData), addlData * 2, begin,
pos, end, "map", emitViews, parseClient);
case SEMANTIC:
return handleCompound(std::make_unique<IncompleteSemanticTag>(addlData), 1, begin, pos,
end, "semantic", emitViews, parseClient);
case SIMPLE:
switch (addlData) {
case TRUE:
case FALSE:
return handleBool(addlData, begin, pos, parseClient);
case NULL_V:
return handleNull(begin, pos, parseClient);
default:
parseClient->error(begin, "Unsupported floating-point or simple value.");
return {begin, nullptr};
}
}
// Impossible to get here.
parseClient->error(begin, "Invalid type.");
return {};
}
class FullParseClient : public ParseClient {
public:
virtual ParseClient* item(std::unique_ptr<Item>& item, const uint8_t*, const uint8_t*,
const uint8_t* end) override {
if (mParentStack.empty() && !item->isCompound()) {
// This is the first and only item.
mTheItem = std::move(item);
mPosition = end;
return nullptr; // We're done.
}
if (item->isCompound()) {
// Starting a new compound data item, i.e. a new parent. Save it on the parent stack.
// It's safe to save a raw pointer because the unique_ptr is guaranteed to stay in
// existence until the corresponding itemEnd() call.
mParentStack.push(item.get());
return this;
} else {
appendToLastParent(std::move(item));
return this;
}
}
virtual ParseClient* itemEnd(std::unique_ptr<Item>& item, const uint8_t*, const uint8_t*,
const uint8_t* end) override {
if (!item->isCompound() || item.get() != mParentStack.top()) {
return nullptr;
}
mParentStack.pop();
if (mParentStack.empty()) {
mTheItem = std::move(item);
mPosition = end;
return nullptr; // We're done
} else {
appendToLastParent(std::move(item));
return this;
}
}
virtual void error(const uint8_t* position, const std::string& errorMessage) override {
mPosition = position;
mErrorMessage = errorMessage;
}
std::tuple<std::unique_ptr<Item> /* result */, const uint8_t* /* newPos */,
std::string /* errMsg */>
parseResult() {
std::unique_ptr<Item> p = std::move(mTheItem);
return {std::move(p), mPosition, std::move(mErrorMessage)};
}
private:
void appendToLastParent(std::unique_ptr<Item> item) {
auto parent = mParentStack.top();
#if __has_feature(cxx_rtti)
assert(dynamic_cast<IncompleteItem*>(parent));
#endif
IncompleteItem* parentItem{};
if (parent->type() == ARRAY) {
parentItem = static_cast<IncompleteArray*>(parent);
} else if (parent->type() == MAP) {
parentItem = static_cast<IncompleteMap*>(parent);
} else if (parent->asSemanticTag()) {
parentItem = static_cast<IncompleteSemanticTag*>(parent);
} else {
// Impossible to get here.
}
parentItem->add(std::move(item));
}
std::unique_ptr<Item> mTheItem;
std::stack<Item*> mParentStack;
const uint8_t* mPosition = nullptr;
std::string mErrorMessage;
};
} // anonymous namespace
void parse(const uint8_t* begin, const uint8_t* end, ParseClient* parseClient) {
parseRecursively(begin, end, false, parseClient);
}
std::tuple<std::unique_ptr<Item> /* result */, const uint8_t* /* newPos */,
std::string /* errMsg */>
parse(const uint8_t* begin, const uint8_t* end) {
FullParseClient parseClient;
parse(begin, end, &parseClient);
return parseClient.parseResult();
}
} // namespace cppbor