Revision History

O WIDEVINE

Widevine CE CDM 15.3.0
Integration Guide

Document version 15.3.0

Version

Date

Description

Author

2.8

2018-03-28

Updated the version number to 14.0.0. Clarified that
the IV must be 16 bytes. Documented which
compilers Widevine verifies the source code with.
Updated BoringSSL revision. Replaced
openssl_config with asm_target_arch. Documented
that CE CDM 14.0.0 only supports OEMCrypto v14.
Added explicit references to Mock OEMCrypto and
called out that Mock OEMCrypto is not suitable for
production devices and is for testing only. Updated
the provisioning URLSs.

John Bruce

29

2018-06-25

Removed Clang 3.8 & 3.9 from the list of internal
compilers, added Clang 4.0 & 5.0. Made the host’s
responsibilites when calling Cdm::initialize() more
explicit. Updated listed versions of Protobuf and
BoringSSL. Updated documentation of what versions
of Protobuf are supported.

John Bruce

2.10

2018-09-05

Clarified what CPU architectures Widevine tests on.
Aded GCC 7.3.0 to the list of Widevine compilers.
Clarified the expected behavior of ITimer. Updated
listed version of BoringSSL.

John Bruce

15.0.0

2019-02-28

Revised document version numbers to reflect
matching CE CDM version. Removed document
versions from before CE CDM 14.0.0 from this table.
Added mention of C++11 requirement. Updated
included versions of Protobuf and BoringSSL.
Emphasized that Widevine CE CDM works with a
wide range of Protobuf versions. Renamed one of the
overloads of load() to loadEmbeddedKeys().
Renamed “Mock OEMCrypto” to “Reference
OEMCrypto” to reflect the name change that occurred
in 14.2.0. Updated the service certificate

John Bruce

documentation to reflect that it is now possible to
install separate service certificates for the
Provisioning Service and Licensing Service. Cleaned
up some typos. Updated decrypt() documentation to
explain the optional Session ID parameter.

15.1.0

2019-03-29

Corrected the release date of document version
15.0.0. Revised the version numbers in the Purpose
section. Removed POSIX requirement from
Supported Compilers. Added Recoverable
OEMCrypto Errors section. Updated provisioning
information to reflect the removal of callback-based
provisioning and the requirement of manual
provisioning. Documented new methods for querying
OEMCrypto’s information.

John Bruce

15.2.0

2019-06-28

Emphasized that removeUsageTable() is almost
never the right method to call. Added documentation
for forceRemove(). Updated BoringSSL and Protobuf
versions. Widevine now specifies what version of
jsmn it requires.

John Bruce

15.3.0

2020-02-05

Added second overload to initialize(). Added second
overload to create(). Noted that sessions can now be
opened without a service certificate being installed.
Noted the new error code kNeedsServiceCertificate.
Clarified when privacy mode is recommended;
Widevine no longer recommends privacy mode for
most devices. Fixed the incorrect name of
parseAndLoadServiceCertificateResponse().

John Bruce

ne irity |
he CE M.

Table of Contents
Purpose

Audience

External References

What is a CDM?

CE CDM Software Stack
For Browsers (HTML5/EME stack)
For Native Applications
Responsibilities
Build Requirements

Application Responsibilities
Networking
Device Certificate Provisioning
Certificate Provisioning Message Formats
Device Certificate Provisioning v3.0

Service Certificates

Storage
Clock

Timers

Managing Persistent Licenses

Acquiring Persisted Licenses
LoadingPersisted Licenses
Removing Persisted Licenses

CDM APls
initialize
version
create
setServiceCertificate

getServiceCertificateRequest

parseAndLoadServiceCertificateResponse
createSession

generateRequest

getRobustnesslevel

getResourceRatingTier
getOemCryptoBuildinfo
isProvisioned

getProvisioningRequest

handleProvisioningResponse

removeProvisioning
listStoredLicenses

listUsageRecords

deleteUsageRecord
deleteAllUsageRecords
removeUsageTable
load

update
loadEmbeddedKeys

getExpiration
getKeyStatuses

getKeyAllowedUsages

close

remove

forceRemove

decrypt

setAppParameter, getAppParameter, removeAppParameter, clearAppParameters
genericEncrypt, genericDecrypt, genericSign, genericVerify

setVideoResolution

Recoverable OEMCrypto Errors

kResourceContention

kSessionStatelLost

kSystemStateLost

kOutputToolLarge

Using the CDM With HLS Content
Using the Correct CENC 3.0 Mode
Extra Start Code Emulation Prevention
Special Treatment of the Last 16 Bytes of a Video Frame

Build System
Supported Compilers

Compile-time Options and Configuration

oemcrypto_version

protobuf config

system

target
source

asm_target_arch

Alternative Build Systems

Tests

Porting
Assumptions and Alternatives
Locking
Loggin
Protobuf
Adding a New Platform
Testing Against Your Platform's OEMCrypto

Purpose

This document gives an overview of the Widevine CE CDM 15.3.0 software stack, explains
high-level components and responsibilities, and gives brief explanations of all CDM APIs. It
also documents the build system and explains the basics porting the CDM to a new platform.

You will also need to refer to Widevine Modular DRM Security Integration Guide for Common
Encryption (CENC), which documents the OEM-provided OEMCrypto library, a critical
component of the system. The CE CDM 15.3.0 is only compatible with OEMCrypto v15.2.

Audience

This document is intended for:

e SOC and OEM device manufacturers who wish to deploy Widevine content protection on
embedded devices not running Android

e Application developers who wish to integrate the Widevine CDM directly into their
application in order to use Widevine content protection where it is not provided by the
platform

External References

Encrypted Media Extensions Specification: https://w3c.github.io/encrypted-media/

What is a CDM?

CDM stands for "Content Decryption Module". The term comes from the Encrypted Media
Extensions Specification (EME). This is a client-side component that provides content
protection services to an application, such as generating license requests and performing
decryption.

Although EME is specified in the context of a web browser, the Widevine CDM can be used for
content protection in other platforms and applications as well.

The Widevine CE CDM is intended for consumer electronics (CE) devices other than Android.
Android has its own Widevine implementation and uses a different API.

One CDM instance can have multiple sessions. Sessions are contexts for key management,
and are defined in more detail in the EME specification. One instance of the CE CDM library
can have multiple CDM instances.

https://w3c.github.io/encrypted-media/

The CDM instance is created and managed by a component that the EME specification calls a

User Agent. The user agent role may be fulfilled by a browser or a native application, as shown
in the following sections.

CE CDM Software Stack

For Browsers (HTML5/EME stack)

Figure 1 shows the architecture and playback flow for a browser integration of the Widevine CE
CDM.

Network
[Llcensi_Server] L CDN] Services
1 2180 BMFF or
8. License Requast 9. License Response {. HTTP GET WehM conianf
‘Client Device | N
/Browser I
HTMLS
application _ 3. EME
bl i ‘anerypled”
7. EME 'messags’ “ avent
avernt oS l:|
4. createSossion|) ahd
10. update) generafeKeyRequesl()
Ity] media stack

NS /
" 11. update() 5. crealteSession(] and 12, decrypi() N
CDM ganerateKeyRequest])
License Prolocol Parser J; Paolicy "-[Cryplo Session
J Engine [
Key IDs Elementary Streams

N |
(OEMGrypto OEMCryplo_LoadKeys() | OEMCrypto |
APfs OEMCrypta_RenewKeys(} OEMCryplo_Selectiey() || | OEMCryplo_Decrypt{))

Trusted Execution Environment 1

Keys
Secure DRM M decrypt/decode/render]
. ’ -

Figure 1. HTMLS/EME Playback with Widevine CDM

Please note the basic components. The browser's media stack communicates with the CDM,
which in turn communicates with the trusted execution environment through OEMCrypto. The

media stack implements IEventListener, which the CDM will use to send information
asynchronously to the media stack and browser.

Also, please note the flow of events and information, numbered from 1 to 12 in this diagram.
The HTMLS5 application requests content from the CDN (1-2), and feeds it to the browser's
media stack. The media stack detects that the content is encrypted and sends an 'encrypted"’
event (3) to the application. The application uses EME APIs createSession() and
generateRequest (), which are then proxied to the CDM itself (4-5). The CDM sends a
message to the media stack, which is then proxied to the HTML5 application (6-7). The HTML5
application relays the license request to the license server, and passes the response back to the
CDM via the EME update() method (8-11). Finally, the media stack asks the CDM to decrypt
the content (12).

For Native Applications

Figure 2 shows the architecture and playback flow for a native application using the Widevine

CE CDM.
Metworl
[Licensgj:'ierver } L CDN] Services
2. IS0 BMFF or
& License Request 4 License Response 1. HTTP GET Wb cantem!
(Client Device A
" Native)
Application
media stack
. £ il A
- [1[7- updatey) 3. createSession]) and 8. decrypt())
cCDM generateKeyRequesty)

-IJbrr “l D
License Protocol Parser = Policy
[J Engine

;Ji Ciypto Session]

Key IDs Elementary Streams
L A
s ™
OQEMCrypto OEMCrypto_Loadkeysi) OEMCrypto
APz OEMCrypto_Renewkeys{] OEMCrypio_Selectiey() OEMCryplo_Dacrypt() |
(Trusted Execution Environment \

Keys
Secure DRM decrypt'decode/render

A

Figure 2. Native Application Playback with Widevine CDM

Please note the basic components. Like in the HTML5 diagram above, the media stack
communicates with the CDM, which in turn communicates with the trusted execution
environment through OEMCrypto. The application implements IEventListener, which the
CDM will use to send information asynchronously to the application.

The flow of events and information, numbered 1-8, is very similar to the HTML5 diagram above,
but with less proxying.

The application requests content from the CDN (1-2), and feed it to the media stack. The media
stack detects that the content is encrypted and calls createSession() and
generateRequest () on the CDM (3). The CDM sends a message to the application, which
relays the license request to the license server and passes the response back to the CDM via
the update() method (4-7). Finally, the media stack asks the CDM to decrypt the content (8).

Responsibilities
The application is responsible for:

All networking and communications

All persistent storage (must implement interface IStorage)

All time-related functionality (must implement IClock)

All asynchronous timers (must implement ITimer)

Relaying messages to the license server and provisioning server (must implement

IEventListener)

e Managing service certificates for authenticating license server and provisioning server
transactions

e Managing the lifetime of CDM instances and the sessions contained within them

The CDM is responsible for:

e Generating license requests and interpreting license responses

e Enforcing content policies

e Managing crypto resources

e NOTE: The CDM has no networking or filesystem access except through the application.

OEMCrypto is responsible for:

Securely storing content keys
Securely decrypting content
Providing a root of trust for the system

NOTE: Some applications may use the CDM for license exchange only and bypass the CDM for
decryption, using instead either direct calls to OEMCrypto or to a private interface in the Trusted
Execution Environment (TEE).

Build Requirements

The CE CDM requires a few things to build. The root of the build system uses a python script,
so python is required:

e python2 (v2.7+).
Additional dependent tools and libraries are collected into the third_party folder:

gyp (open-source build automation tool, uses python)

protobuf (v3.8.0, used by the CDM as part of the license protocol. Note that the CDM
does not require v3.8.0 specifically. See the section Protobuf for more details.)
gTest and gMock (v1.8.0, for unit tests)

jsmn (v1.0.0, open-source JSON parser, used for processing an HLS playlist)
boringssl (rev: ceb4c72b6d4c6f4828a373ec454bd646390017d4)

fuzz (currently in limited use, will be used for fuzz-testing the OEMCrypto and CDM
interfaces)

The CE CDM will also require an implementation of a compatible version of OEMCrypto. For CE
CDM 15.3.0, the only compatible version of OEMCrypto is v15.2. The CE CDM ships with a
Reference OEMCrypto implementation in order to allow you to test the CE CDM code before
your platform’s OEMCrypto implementation is ready. However, the Reference OEMCrypto is
not suitable for production use. It is not sufficiently secure and is not intended for use on
shipping products. It is intended solely to enable testing of your CE CDM port before your own
implementation of OEMCrypto is ready and does not absolve you of the need to implement
OEMCrypto for your hardware.

Application Responsibilities

Networking

The CDM relies on the application to relay messages to servers. The CDM has no networking
capability of its own. The application must implement the IEventListener interface to receive
messages from the CDM via IEventListener: :onMessage(). The CDM also requires the
caller to provision a device certificate. (See below.)

Device Certificate Provisioning

Starting with v3.1, the Widevine CE CDM requires a unique certificate for each device and for
each origin. Before opening any sessions or generating any license requests, the caller should
verify that the device is provisioned by calling isProvisioned(). If the device is not
provisioned, the caller should generate a provisioning request with
getProvisioningRequest (), exchange it with the provisioning server, and return the
provisioning response to handleProvisioningResponse().

Prior to CE CDM 15.0.0, the CE CDM would also automatically generate provisioning requests
under certain circumstances and send them to
IEventListener::onDirectIndividualizationRequest (), but this behavior is deprecated
and that callback no longer exists.

Certificate Provisioning Message Formats

The request message supplied in response to getProvisioningRequest() is a URL-encoded
(also known as web-safe) base64 signed message that must to be sent to the provisioning
server. ltis safe to pass the data directly as a URL query-parameter. The default provisioning
server expects this data as the signedRequest parameter as shown here:

https://www.googleapis.com/certificateprovisioning/vl/devicecerti
ficates/create?key=AIzaSyB-50LKTx2iU5mko18DfdwkK56113IjbUhE&signed
Request=<request_data>

Note that there are two possible provisioning servers. The URL above is for the Production
provisioning server. The Production provisioning server will only accept requests from devices
that have been marked as “released” in the Widevine Integration Platform. During development
and testing, you will likely be using the testing-only Reference OEMCrypto or using your own
OEMCrypto on a device that has not been marked as “released” yet. These will not work with
the Production provisioning server, and you should use the Staging provisioning server instead:

https://staging-www.sandbox.googleapis.com/certificateprovisionin
g/vl/devicecertificates/create?key=AIzaSyB-50LKTx2iU5mko18DfdwK56
11JIjbUhE&signedRequest=<request_data>

Regardless of the server you use, the response message from the provisioning server will be in
a similar format to the request, with the actual message data in a quoted signedResponse
parameter, similar to the following:

HTTP/1.1 200 OK
X-Google-Netmon-Label:

Accept-Ranges: none
Vary: Origin,Accept-Encoding
Connection: close

{

"kind": "certificateprovisioning#ficertificateProvisioningResponse",
"signedResponse": "<response_data>”

}

This form is used by Widevine’s provisioning server. The CDM produces only the
<request_data> string for the request, and accepts only the full response message containing
the “signedResponse:” field, from which it extracts the <response_data> string.

Other provisioning servers may have different methods for conveying the request and response.
The CDM has a Property called “provisioning_messages_are_binary”, which is set false by
default. It can be set to true for a provisioning server that consumes and produces binary
protobuf message strings. Any other filtering or data conversion required for messages to or
from a particular provisioning server to conform to these CDM-supported formats must be
handled outside the CDM.

Device Certificate Provisioning v3.0

Starting with v3.2, the Widevine CE CDM has a new provisioning scheme. It replaces the
keybox as an authentication object with an X.509 certificate called an OEM Certificate. This
Certificate is passed to the Provisioning Server in a Provisioning Request. The Provisioing
Server returns a Provisioning Response message containing a unique DRM Device Certificate
and corresponding private key. The Widevine CE CDM passes the DRM Device Certificate and
Private Key to OEMCrypto for verification. OEMCrypto also rewraps the private key using its
own private key. The result is stored on the file system for use in future sessions. The DRM
Device Certificate is used in License Server requests to identify and authenticate the device with
the license server.

OEMCrypto can support either Keybox or certificate-based provisioning, but not both. The
provisioning method is hard-coded into OEMCrypto.

Service Certificates

Service Certificates are only used when privacy mode is enabled. Service Certificates are
associated with license and provisioning servers. The Service Certificate provides the public key
for the service, and is used to encrypt parts of communications between the CDM and the
server. The CDM API provides calls for registering a Service Certificate with the CDM.
Applications frequently have a copy of the Service Certificate for the servers they communicate
with. In addition, the License Server supports a query to obtain a copy of its Service Certificate;
the CDM provides APIs to generate the request message and process the response for this
query.

Storage

The application is responsible for storage on behalf of the CDM. The application must
implement the IStorage interface, which is a simple key-value storage mechanism. The
application is not required to use a filesystem for this information, but it must be persisted in
some non-volatile form from one application launch to the next.

It is required to store data per-app or per-origin for security reasons (see
https://w3c.qithub.io/encrypted-media/#privacy-leakage for more information). This is done by
using multiple instances of IStorage. Passing an IStorage instance to Cdm::create() will cause
the resulting CDM instance to only act within that “storage”.

There is also a global IStorage instance that must be passed into Cdm::initialize(). This is used
for storing objects that are not associated with a specific origin. An example is the usage table
header, which is persistent data that spans all per-origin usage tables.

In CE CDM version 3.5.0 and earlier, one could pass a NULL IStorage pointer into
Cdm::create(). This would signal the CDM to use the default IStorage instance. This is no
longer supported. If a non-per-origin IStorage object is to be used for a CDM instance, one can
pass a copy of the pointer to the default IStorage object (i.e., the one passed in to
Cdm::initialize()) to Cdm::create(). If this method is used, the default IStorage object must not be
deleted until all the objects referring to it have been destroyed.

NOTE: It is important for users of your application to be able to clear stored data somehow.
See http.//www.w3.0rg/TR/encrypted-media/#privacy-storedinfo for more information.

Clock

The CDM also has no internal clock mechanism. The application must implement the IClock
interface, which provides the current time when queried.

Timers

The CDM will sometimes need to do asynchronous processing. The CDM does not create any
threads. Instead, it requires the application to implement the ITimer mechanism, which allows
the CDM to request a callback after a specific amount of time has passed.

Implementers only need to keep track of one timer per CDM instance. Each CDM will not
request more than one timer be running simultaneously. It is an error if the CDM does this. If the
CDM erroneously requests a new timer when one is already running, partners are
recommended to cancel the existing timer and start the new timer.

NOTE: These timers are one-shot timers. If the CDM asks for a callback after 2 seconds, the
application should not call the CDM back every 2 seconds.

Managing Persistent Licenses

Acquiring Persisted Licenses

Persisted licenses are requested from license service when using a cdm message type of
kPersistentLicense. Please refer to the Cdm: : createSession() call for more information on
creating persistent license sessions.

https://w3c.github.io/encrypted-media/#privacy-leakage
http://www.w3.org/TR/encrypted-media/#privacy-storedinfo

The output parameter session_id will be used to identify the persistent session in calls to all
other CDM methods. The session_id will also be used to reference and manage licenses that
have been persisted in client storage.

Upon calling the Cdm: : generateRequest () API with the kPersistentLicense message type,
a persistent license request will be generated.

LoadingPersisted Licenses

Licenses that have been acquired and stored in client storage can be reloaded using the
session_id. The session_id is the output parameter identifying the session used to request the
peristed license. Please refer to the Cdm: : 1oad() call for more information on loading persisted
licenses.

Removing Persisted Licenses

Licenses that have been acquired and stored in client storage can be released and removed
using the session_id. The session_id is the output parameter identifying the session used to
request the peristed license. Please refer to the Cdm: : remove () call for more information on
releasing licenses.

CDM APIs

Starting with v3.0, the CE CDM APIs are very similar to the JavaScript APIs specified in the
EME spec. Here we will give a brief overview of the methods, their purpose, and any important
caveats to their use.

The header "cdm/include/cdm.h" is the only header used by the integrator or application
developer. More detail on methods and types is available in cdm.h, and that header should be
viewed as the canonical reference for the CDM API. Should this document conflict with the
header, the header takes precedence.

The CE CDM has no method corresponding to EME's requestMediaKeySystemAccess()
method. This is used by EME for negotiating which CDM to use and what features it has, and is
therefore outside the scope of the CDM.

Methods in EME that operate on a session object are implemented in the CDM as methods that
have a session ID argument.

All CDM methods return a Status value. Some values are defined by the CDM, while others
correspond to specific DOM exceptions specified in EME. Error conditions specified by EME
return corresponding Status values. For example, where EME says certain inputs trigger a
TypeError, we would return kTypeError for the same inputs.

The Status constant kUnexpectedError is used to cover all unexpected error cases. This
status may indicate a bug or misconfiguration of the CDM, and generally should not occur. Any
time you see this return value from the CDM, there should be more detailed information
available in the log, including Widevine-internal error codes.

initialize

Used to initialize the library. Before any other method can be called, the caller must have
received a successful return value from calling this function.

This function takes pointers to several interfaces that provide access to system functionality for
storage, timers, and a clock. These are stored globally by the CDM library for future use. It is the
responsibility of the caller to ensure that they outlive the CDM library, which likely means they
must live for the lifetime of the program.

There are two overloads of the initialize() function. Most partners will want to use the first
overload, which does not take a Sandbox ID parameter. Only partners whose OEMCrypto is
using Sandbox IDs should use the second overload, which allows them to pass in their Sandbox
ID.

version

Queries the Widevine CE CDM library’s version string.

Note that this is *not* the version information for the underlying OEMCrypto integration. See
getOemCryptoBuildInfo() below for that information.

create

Creates and returns a CDM instance. Multiple CDM instances can coexist. CDM instances are
destroyed by a typical C++ delete.

The privacy_mode argument controls the encryption of client identification. If privacy_mode is
true, the CDM will require a service certificate to encrypt the client identification in provisioning
and licensing requests. Privacy mode complicates provisioning and licensing. As such, we
recommend privacy mode be turned off for most CE devices. Privacy mode is only useful for
web browsers, because they execute arbitrary, untrusted Javascript from the internet.

There are two overloads of the create() function. Most partners will want to use the first
overload, which has fewer parameters. However, some partners have read-only storage that is
pre-populated with certificates and licenses. This is currently only done for ATSC 3.0. Partners
who are providing an IStorage that should never be written to should use the second overload
and pass true for the storage_is_read_only parameter. Passing false for the
storage_is_read_only parameter is identical to calling the first overload of create().

setServiceCertificate

Allows the application to provide a service certificate to the CDM. This certificate is used to
encrypt client identification information in provisioning and license requests as part of "privacy
mode" (See create()). Itis also needed to sign and verify the messages for certificate
provisioning, as the certificate holds a provider_id string that is needed for constructing the
provisioning request. When privacy mode is turned on, some methods will return the error
kNeedsServiceCertificate until service certificates have been installed.

Depending on the value of the role parameter, the CDM may install the certificate for use with
the provisioning service, the licensing service, or both. It is possible to install different service
certificates for the provisioning and licensing services. Installing a certificate for one service
does not remove the certificate installed for the other service.

If no service certificate is installed for the provisioning service, a default certificate for the
Widevine provisioning service will be used. This is the correct service certificate for all
provisioning requests unless a content provider is operating their own provisioning server.

There is no default licensing service certificate. If privacy mode is enabled, a licensing service
certificate must be installed by the app to generate license requests.

It is preferred that the service certificate be supplied by the client application, but the CDM client
can also request a Service Certificate from the License Server. The API calls
getServiceCertificateRequest and parseAndLoadServiceCertificateResponse (see
below) are provided to assist with this operation and can be used instead of
setServiceCertificate.

In previous versions of the CDM (v3.2 and earlier), a Service Certificate would be automatically
fetched if needed, as part of the license request flow. This is no longer supported. If a Service
Certificate is needed and none has been registered with the CDM, an error will be returned.

getServiceCertificateRequest

Generate a License Server protocol message to get a copy of the server’s Service Certificate.
The returned string should be sent to the License Server, which will reply with a Service
Certificate Response message. This message should be passed to
parseAndLoadServiceCertificateResponse as discussed below.

parseAndLoadServiceCertificateResponse

Process the message from the License Server in response to a Service Certificate request. If no
error is reported, the Service Certificate is registered with the CDM Session and will be used as
needed until the next parseAndLoadServiceCertificateResponse or setServiceCertificate

call, or until the session ends. A copy of the Service Certificate is also returned that may be
stored and used for future sessions (by passing the string in a call to setServiceCertificate)

Depending on the value of the role parameter, the CDM may install the certificate for use with
the provisioning service, the licensing service, or both. It is possible to install different service
certificates for the provisioning and licensing services. Installing a certificate for one service
does not remove the certificate installed for the other service.

createSession

Creates a new CDM session. A session is a context for a license and its associated keys. The
output parameter session_id will be used to identify the session in calls to all other CDM
methods.

If session_type is kPersistentLicense, the session will be stored on disk for offline use, and
can be subsequently loaded using load().

If session_type is kPersistentUsageRecord, the session will persist, but the keys will not. A
record of session usage will be sent on remove().

Prior to CE CDM 15.3.0, it was not possible to create a session if privacy mode was enabled
and no service certificate had been installed for the licensing service. Starting in 15.3.0, it is
possible to create sessions even when no service certificate is installed.

generateRequest

Generates a license request to be relayed to the license server by the application. The request
will be delivered to the application synchronously via IEventListener: :onMessage().

getRobustnessLevel

Retrieves the robustness level of the underlying OEMCrypto integration, either L1, L2, or L3.
Most devices are L1 or L3.

Note that this function is not cryptographically secure and it should only be relied upon for
informational purposes (e.g. determining which content to show in the Ul) and not security
purposes. (e.g. determining which content to allow the device to play) Only secure
communication between OEMCrypto and the license service should be used to make security
decisions.

getResourceRatingTier

Retrives the Resource Rating Tier reported by the underlying OEMCrypto integration. This
information can be used to help determine what kind of content the device is capable of playing

back. The full list of resource tiers can be found in the Widevine Modular DRM Security
Integration Guide for Common Encryption.

getOemCryptoBuildInfo

Retrieves the build information for the underlying OEMCrypto integration. This may include
version numbers, build dates, or other relevant information. The format of this string is up to the
integrator, and applications wishing to use it will need to speak with device integrators directly.

isProvisioned

Returns true if the device has been provisioned (i.e., has a Device Certificate). Provisioning is
performed per-origin. The result of this method applies only to the current origin of the CDM
instance as determined by its IStorage object.

If this returns false, a provisioning exchange as described in Device Certificate Provisioning
should be performed before opening sessions. Attempting to generate license requests or load
persistent licenses will fail so long as the origin is not provisioned.

getProvisioningRequest

Generates a provisioning request. This message should be exchanged with the provisioning
server as described in Certificate Provisioning Message Formats. The resulting response should
be passed to handleProvisioningResponse().

handleProvisioningResponse

After a successful provisioning exchange with the provisioning server as described in Certificate
Provisioning Message Formats, the response should be passed to this method. If this returns a
successful status code, then the device is now provisioned and isProvisioned() will return
true.

removeProvisioning

Deletes the current Device Certificate. Distinct Device Certificates are maintained for each origin
- only the current origin of the CDM instance, as determined by its IStorage object, is affected.

listStoredLicenses

Returns a vector of Key Set ID strings, representing the licenses currently stored in the current
(origin-specific) file system.

listUsageRecords

Returns a vector of Key Set ID strings, representing the usage records currently stored in the
current (origin-specific) file system.

deleteUsageRecord

Accepts a Key Set ID string, and deletes the usage record for that ID if it exists.
deleteAllUsageRecords

Delete all usage records currently stored in the current (origin-specific) file system.

removeUsageTable

Deletes the current usage table. This affects all applications and origins on the device, not just
the current one. This is a dangerous procedure and is generally not desired by most apps.

load

Loads a persisted session from storage. The session_id parameter should be the same session
ID generated by the CDM when the session was first created. Note that sessions of type
kTemporary may not be loaded again, and that sessions of type kPersistentLicense that are still
open may not be loaded a second time.

update

Used to pass messages from the license server to the CDM. When the application receives a
message via IEventListener: :onMessage() and relays it to the license server, the HTTP
response (not including HTTP headers) should be given back to the CDM via update().

loadEmbeddedKeys

(Prior to CE CDM 15.0.0, this function shared the name load() with the function still known as
load().)

Initiates the loading of key data embedded in the pssh. The session must have been already
opened and loaded with a license granting permission to use the embedded keys. For more
information about embedding keys for use in key rotation contact Google’s Widevine
Engineering team.

getExpiration

Used to query key expiration time for a session.

getKeyStatuses

Used to query the statuses of all keys for a session. Typical key statuses are kUsable and
kExpired. If a key is notin a kUsable state, it can't be used to decrypt content.

getKeyAllowedUsages

Used to query how a particular key may be used. Keys may be constrained to a particular
usage or set of of usages in addition to or instead of normal content decryption. Key usages
include: media content decryption (to a buffer in the clear), media content decryption (to a
secure buffer), generic encryption, generic decryption, generic signing, and generic signature
verification. The allowed usage for a key is independent of the key status, which indicates
whether or not a media content key is currently usable.

close

Used to close an active session and release temporary resources associated with it. If it is of
type kPersistentLicense, the session will not be removed from storage. No release
messages (type kLicenseRelease) will be generated.

remove

Used to remove a persistent session and all resources associated with it. Not used for sessions
of type kTemporary. Session must be loaded before removal.

Generates a message of type kLicenseRelease, which must be relayed to the license server.
The server's reply to the release message must be passed to update() before removal is
complete. Session information remains stored on disk until this process is complete. Once a
session has been fully removed via update(), the session is considered closed, and close()
need not be called.

A "partially-removed" session is one for which remove () has been called, but the release has
not been confirmed via update(). A partially-removed session from an earlier run of the
application may be fully removed in a subsequent run. Simply load() the session and
complete the removal via update().

“License removal sequence"
Comclertape
T T

coMclientApp inplements :
widevine::Cdm:IStorage and I
widevine:.Cdm:IEventListener |,

| load(string persisted license _id)

| _ Read license file via IStorage: read

| : . ;
| Open session with stored license

| remove(string persisted_license_id)

i Generate license release message

I
! | _ Send removal request via |EventListener::ionMessage(type = klicenseRelease)

i
License service requestfresponsg |

| updatelresponse)

I
| _ Delete license file via IStorage::remove

| Close the session
T

| Removal completion done via IEventListener::onRemove Complete(string persisted_license_id) i

Concterian

forceRemove

Used to remove a persistent session without doing a server roundtrip. All usage information for
the session is lost. This is generally not desired. Most applications should use remove.

decrypt

Used to decrypt content. Some applications may wish to use the CDM for license exchange
only. These applications may therefore bypass the CDM for decryption and initiate decryption
through OEMCrypto or directly in the TEE.

The IV must be 16 bytes long. If the content is using 8-byte IVs with an implied 8-byte counter,
as recommended by the ISO-CENC standard, then it is the application’s responsibility to
zero-pad the IV to 16 bytes, as specified by ISO-CENC.

Starting with v3.1, the Widevine CDM supports all four encryption modes from the ISO-CENC
3.0 standard. These are known as cenc, cens, cbc1, and cbcs. The CDM will automatically
select the correct mode depending on the input parameters passed into decrypt(). It bases
this decision on the pattern and encryption_scheme parameters. If the pattern parameter is
left at its default value of (0,0), then pattern usage will be disabled. If a pattern other than (0,0) is
specified, then pattern usage will be enabled. In combination with the encryption_scheme
parameter, the CDM can determine which CENC 3.0 mode to use:

No Pattern Pattern Specified

kAesCtr cenc cens

kAesCbc cbc1 cbcs

Starting with Widevine CE CDM 15.0.0, it is possible to specify an explicit Session ID to use for
decryption. If the specified Session ID does not have the correct key loaded into it, then
decrypt () will return an error. Specifying a Session ID is optional. When no Session ID is
specified, the CDM will find a session that has the correct key loaded and use that. If no session
has the correct key loaded, decrypt () will return an error.

setAppParameter, getAppParameter, removeAppParameter,
clearAppParameters

These methods have been added for the convenience of Android application developers. If you
have an Android app that uses the optionalParameters argument in MediaDrm.getKeyRequest,
this interface will allow to maintain compatibility with your Android app on other platforms.

Parameters set through these methods are arbitrary key-value pairs to be included in license
requests. These methods have no counterpart in EME, and their use is discouraged.

genericEncrypt, genericDecrypt, genericSign, genericVerify

These methods provide an application with basic crypto operations independent of the CDM’s
content decryption support. They can be used to handle encryption, decryption, signing, and
signature verification for messages exchanged between the application and its server. The
keys for these operations are supplied through the same licensing protocol used for content
keys.

setVideoResolution

This method allows an application to inform the CDM of the resolution of the device (width and
height in pixels). The information is used in conjunction with license constraints to determine
whether a particular key can be used on this device. If this call is not made, the resolution
constraint enforcement is not performed.

Recoverable OEMCrypto Errors

It is generally up to the caller to determine how to handle any errors returned by the CE CDM.
However, certain errors are considered “recoverable” in that there are specific known remedies
that the caller may take in response to them.

kResourceContention

This error indicates that too many calls are accessing the OEMCrypto integration at the same
time and have either exceeded its capacity or have tripped anti-abuse protections. The action
that triggered this response should be retried after a delay, typically 1 second.

kSessionStateLost

This error indicates that the OEMCrypto integration has lost some state essential to the session.
The current session is no longer valid and there is nothing the caller can do to recover it,
however other sessions are still valid and the caller should be able to close and then recreate
the current session to continue operations.

kSystemStateLost

This error indicates that the OEMCrypto integration has lost some essential internal state
necessary for its continued operation. All DRM operations except total termination of the CDM
are likely to fail. However, closing all CDMs and recreating them should reinitialize OEMCrypto
and allow operations to continue.

kOutputTooLarge

This error indicates that the output buffer passed to decrypt is too large for some part of the
decrypt/decode pipeline to handle. There is nothing the caller can do to change this, and the
frame that was being decrypted should be skipped.

Using the CDM With HLS Content

Starting with v3.1, the Widevine CDM supports the CENC 3.0 cens mode. This mode can also
be used to decrypt content that is in Apple’s HLS format and that uses its SAMPLE-AES
encryption mode. However, there are some additional considerations that applications must be
aware of before attempting to do this.

Using the Correct CENC 3.0 Mode

HLS content should always be decrypted in the CENC 3.0 cens mode. This means that when
calling decrypt (), the encryption_scheme parameter should be set to kAesCbc and the
pattern parameter should be set to something other than (0,0). For video frames, HLS
SAMPLE-AES mandates a pattern of (1,9). For audio frames, patterns are not used. However,
setting the pattern parameter to (0,0) will cause the CDM to operate in cbc1 mode, which is
incorrect. Therefore, Widevine recommends using a pattern of (1,0) for HLS audio content, in
order to activate cens mode while still decrypting every crypto block.

Extra Start Code Emulation Prevention

The Widevine CDM only handles decryption and does not know anything about the file formats
the data comes from. As such, the Widevine CDM does not do any special handling for the
extra start code emulation prevention in Apple’s HLS format.

HLS uses H.264 video in the H.264 Annex B bytestream format. This format defines a process
called “start code emulation prevention” which must be applied to the H.264 NAL Units during
encoding in order to prevent false start codes from appearing in the bytestream. The HLS
SAMPLE-AES specification adds to this that, after encryption is applied, start code emulation
prevention must be applied a second time to any NAL Units that contain encrypted data, in case
encryption created any new false start codes. This is applied to the entire NAL Unit, including
the unencrypted portions.

The CDM expects that content passed to it with an encryption_scheme of kClear is ready to
be decoded without further processing. And it expects that content passed to it with an
encryption_scheme other than kClear is ready to be decrypted without further processing,
after which it will be ready to be decoded.

As such, it is the responsibility of any users of the CDM to remove the extra start code emulation
prevention from any H.264 NAL Units that contain encrypted data. They should not remove the
single layer of start code emulation prevention from the NAL Units that do not contain encrypted
data.

The video decoder will expect exactly one layer of start code emulation prevention to be on the
video data when it decodes it. So content passed to the CDM with an encryption_scheme of
kClear should already have just one layer of start code emulation prevention. And content
passed to the CDM with an encryption_scheme of kAesCbc should already have its second,
extra layer of start code emulation prevention removed so that it can be immediately decrypted,
after which it will also only have one layer of start code emulation prevention.

Special Treatment of the Last 16 Bytes of a Video Frame

The SAMPLE-AES specification defines special handling for video frames with an encrypted
area that is an exact number of crypto blocks (16 bytes) long. This handling is unique to video
frames in HLS and is different from CENC 3.0 or the handling of audio frames in HLS.
Applications will need to pass the last 16 bytes of any such video frames as a separate clear
decrypt call.

HLS uses AES-CBC encryption. Because AES-CBC does not support partial crypto blocks, if
the encrypted area of a frame is not an even multiple of 16 bytes long, then there will be some
extra bytes at the end after the last full crypto block. In both HLS and CENC 3.0, these bytes are
left clear and thus do not need to be decrypted by the CDM. If an encrypted input that is not an

even multiple of crypto blocks long is passed into the CDM when using AES-CBC, the CDM wiill
follow the CENC 3.0 standard and will automatically leave the extra bytes clear.

However, if the encrypted area is an even multiple of crypto blocks long, the HLS SAMPLE-AES
specification states that video frames should be treated differently than other content. For HLS
audio frames and for CENC 3.0 content, an CBC-encrypted input that is an even multiple of
crypto blocks long will all be decrypted. For HLS video frames, the last crypto block (16 bytes) is
instead changed into “extra bytes” and left in the clear.

Because the CDM follows the CENC 3.0 standard and does not handle this HLS video edge
case specially, it is the responsibility of users of the CDM to not pass these 16 extra bytes as
part of an encrypted input to decrypt () and instead pass them as part of a separate, clear
input to decrypt ().

Widevine recommends that, as a simple way to do this, applications always pass the extra bytes
of HLS video frames as a separate clear crypto call, regardless of how many there are.
Furthermore, because encrypted data in an HLS stream is almost always followed by clear data,
it is acceptable to merge the extra bytes into the next clear data call that would have happened
anyway, rather than making a separate clear decrypt () call just for the extra bytes.

Build System

The Widevine CE CDM uses a gyp-based build system. gyp is an open-source build system
written in python. We provide a simple build script called "build.py", which wraps around the gyp
build system and configures the build with platform-specific settings. We will go into more detail
on this in the "Porting" section below.

To build the CDM for x86, simply run "./build.py x86-64". This will produce a debug build. To
produce a release build, run "./build.py x86-64 -r". Build output goes into the "out" folder. A
debug build for x86 will appear in "out/x86-64/Debug". The important outputs are:

e libwidevine ce cdm_static.a
e libwidevine _ce cdm_shared.so
e widevine _ce cdm_unittest

We build the CDM as both a static and shared library as a convenience to you. You only need
to link against one or the other. The header "cdm/include/cdm.h" is the only one you need in
order to use the compiled CDM library.

NOTE: OEMCrypto is not linked into the CDM shared library. You must link your application
against both the CDM and OEMCrypto. This allows you the flexibility to change OEMCrypto
implementations when you build your app instead of when you build the CDM.

Supported Compilers

The Widevine CE CDM should compile on any compiler that supports the C++11 standard.
However, Widevine only verifies the code ourselves with the following compilers and CPU
architectures:

e GCC 4.8.4 x86-64 Linux

e GCC 7.3.0 x86-64 Linux

e Clang 4.0 x86-64 Linux

e Clang 5.0 x86-64 Linux
Due to subtle differences in their default build flags, other compilers may or may not
successfully compile the Widevine CE CDM using the default build files. The most common
cause of incompatibilities is more- or less-stringent error-checking, which is almost always
fixable by making small changes to your platform-specific build flags. The sample settings.gypi
file turns warnings into errors by default, so if you copy this flag, differences in your compiler’s
warning settings may end up treated as errors.

Compile-time Options and Configuration

The file "cdm/cdm.gyp" contains the main part of the build description. The "variables" section
contains three main options, detailed below. The defaults in cdm.gyp can be overridden with
platform-specific values in a platform-specific build file. This will be covered in the "Porting"
section below. We strongly recommend that you not edit the defaults in cdm.gyp.

oemcrypto_version

There are several revisions of the OEMCrypto interface in existence. Previous CE CDM
releases used this variable to track which OEMCrypto version was in use. However, the
Widevine CE CDM 15.3.0 only supports the latest revision of OEMCrypto, version 15.
Therefore, this variable should always be set to 15 and the CE CDM should always be compiled
with an OEMCrypto v15 implementation.

protobuf_config

The CDM relies on protobuf as part of the Widevine license protocol. There are three values for
this variable, which offer three different ways of integrating protobuf into the build:

system

The protobuf compiler (protoc) and libraries (libprotobuf-lite) are expected to be installed
system-wide. When cross-compiling, protoc should be compiled for the host platform, while
libprotobuf-lite should be compiled for the target platform.

This setting requires two additional variables:

e protobuf _lib - The protobuf library to link in, such as "-Iprotobuf-lite" or
"fusr/arm-linux-myarch/lib/libprotobuf-lite.a".

e protoc_bin - The path to protoc, such as "/usr/bin/protoc" or
"/usr/local/bin/arm-linux-myarch-protoc".

target

Used for gyp-based projects which already have protobuf in their project's build.
This setting requires three additional variables:

e protobuf lib_target - The gyp target for the target-toolchain build of libprotobuf-lite, such
as "path/to/protobuf.gyp:protobuf _lite".

e protoc_host target - The gyp target for the host-toolchain build of protoc, such as
"path/to/protobuf.gyp:protoc#host".

e protoc_bin - The path to the output of protoc_host_target, typically
"<(PRODUCT_DIR)/protoc".

source

This is the default, and is very useful for projects which don't have protobuf already. You
provide a path to the source, and the build system will handle compilation of libprotobuf for you.
Extremely convenient for cross-compiling, and highly recommended for use when porting the
CDM to your target platform.

This setting requires one additional variable:

e protobuf_source - The path to protobuf library and compiler sources, such as
"path/to/protobuf-3.8.0". You must have a valid config.h for your target platform in this
folder. The supplied config.h is appropriate for linux. You may need to adjust config.h
for your target platform.

asm_target_arch

The CDM depends on BoringSSL, which can optionally be built with optimized assembly
language files to increase its speed at the cost of additional binary size. By default, this is turned
off, but we recommend turning it on by setting this variable to one of the following values:

e Xx86
Xx86-64
arm
arme4
ppc64
You should choose the value that matches your compilation target. If your compilation target is
not listed, then assembly language optimizations are not available for your target, but the CDM
will still work fine with assembly language turned off.

The default is none, which disables the use of assembly language files. This setting is suitable if
you prefer to optimize for small binary size rather than speed.

Alternative Build Systems

The gyp-based build system we provide is not the only way to build the CDM sources. As an
alternative, you can use the lists of source files in cdm.gyp to integrate the CDM source into
your project's existing build system. Please note that although Widevine will not provide support
for this, it should be fairly straightforward.

If your project is gyp-based, you can also refer to our gyp files from your own. Make sure the
variables described above are properly set in the context of cdm.gyp.

Tests

The Widevine CE CDM comes with a suite of unit tests covering various parts of the codebase.
Some tests exercise OEMCrypto, some exercise the CDM's internals (core), and some exercise
the CDM APIs at the highest level.

The complete test suite can take several minutes to run, since some of the OEMCrypto tests are
quite long. You can exclude any of these large test sets temporarily by commenting out the
corresponding lines in cdm_unittest.gyp:

"includes': [
‘oemcrypto_unittests.gypi',
'core_unittests.gypi',
‘cdm_unittests.gypi’,

Is

You may also filter the tests on the command-line using the "gtest_filter" argument. For
example, to run only the CdmTest and CdmSession groups:

out/x86-64/Debug/widevine_ce_cdm_unittest \
--gtest filter=CdmTest.*:CdmSession.*

Or to negate a set of tests, prefix the filter with a minus sign. For example, to run all tests
except the OEMCryptoClientTest and GenericCryptoTest groups:

out/x86-64/Debug/widevine_ce cdm _unittest \
--gtest_filter=-OEMCryptoClientTest.*:GenericCryptoTest.*

Unit test verbosity can be controlled using the "-v" argument. It may be repeated multiple times
to increase verbosity. For example:

out/x86-64/Debug/widevine_ce_cdm_unittest # show error logs
out/x86-64/Debug/widevine ce cdm unittest -v # show warnings
out/x86-64/Debug/widevine_ce_cdm_unittest -vv # show info

out/x86-64/Debug/widevine _ce cdm _unittest -vvv # show debug

out/x86-64/Debug/widevine_ce_cdm_unittest -vvvv # show verbose
Porting

Assumptions and Alternatives

The default build makes several assumptions about your platform, but there are some
alternatives available to you.

Locking

The file "cdm/src/lock.cpp" assumes the existence of pthread on your platform. If this is not
available, one alternative is to write a simple wrapper to implement the pthread functions
pthread_mutex_{init,destroy, lock,unlock} using your platform's locking primitives. We
do not use any other part of the pthread library.

Another alternative to pthread is to exclude "lock.cpp" from the build by commenting it out in
cdm.gyp, then implement this same interface differently in your application or platform. The
pthread-based implementation is only 30 lines or so, and should be very easy to replace.

Logging

The file "cdm/src/log.cpp" assumes that you can log to stderr. If this is not available, one
alternative is to exclude this file from the build and implement the logging interface differently in
your application or platform. The stderr-based implementation is only 40 lines or so, and should
be very easy to replace.

Protobuf

Protobuf is a critical component of the system, and must be available. The Widevine CE CDM
ships with a copy of Protobuf v3.8.0 in “third_party/”, which we recommend using. However, the
nature of your platform and the other applications you are compiling the CE CDM into may
require you to use a different version of Protobuf. For those who need a different version of
Protobuf, the Widevine CE CDM theoretically works with all versions of protobuf back to v2.6.
However, we only verify it with the version of Protobuf included in the “third_party/” directory.

Cross-compiling protobuf and installing it system-wide can be tricky. Therefore, we strongly
recommend using the default "source" setting for the gyp variable "protobuf_config", as
described above in the "Compile-time Options and Configuration" section. This will leverage our
build system to handle cross-compilation for you, and does not necessitate system-wide
installation.

To use this setting, config.h in the protobuf sources must be appropriate for your target platform.
The supplied config.h is appropriate for linux. You can produce a config.h for your target

platform in two ways. Either run protobuf's configure script using appropriate flags for your
platform, or edit config.h manually to tailor to your target platform.

Adding a New Platform

Platform settings live in the "platforms" folder. When compiling with "./build.py x86-64", the
settings in "platforms/x86-64/settings.gypi" and "platforms/x86-64/environment.py" are used.

To add a new platform, make a copy of the x86-64 folder and rename it to the name of your
platform. For this example, we will use "HAL9000".

Next, edit "platforms/HAL9000/environment.py" to set the compilers used by your platform and
any additional environment variables required by them. For example:

tooldir = '/usr/local/hal9eee’
export_variables = {
'CC': tooldir + 'hal9e@0-cc',
'CXX': tooldir + 'hal90@0-c++',
'AR': tooldir + 'hal9eeo-ar',
The toolchain requires this env. var to work correctly:
"CROSS_C_ROOT_PATH': '/build/sdks/hal9ee0/sdk’,
}

Next, edit "platforms/HAL9000/settings.gypi" to override settings specific to your platform. For
example:

'variables': {
'oemcrypto_version': 14,
'protobuf_config': 'source',
"protobuf_source': '/path/to/protobuf-2.6.0",
}, # end variables

Finally, run "./build.py HAL9000" to build for your platform.

Testing Against Your Platform's OEMCrypto

By default, the unit tests link against a testing-only implementation of OEMCrypto known as the
Reference OEMCrypto. Before you can ship your device, you must link with your own
implementation of OEMCrypto that is specific to your platform. To link the unit tests against your
platform's OEMCrypto, edit your platform's "settings.gypi" file and set the variable
"oemcrypto_lib". For example, in "platforms/HAL9000/settings.gypi":

'variables': {
'oemcrypto_version': 14,
'oemcrypto_lib': '-1hal9@@@ oec’,

}, # end variables

Finally, run "./build.py HAL9000" to rebuild the tests.

