// Copyright 2013 Google Inc. All Rights Reserved. // // This source file provides a basic set of unit tests for the Content // Decryption Module (CDM). It exercises much of the API that will be // required by the host application to get the license and keys for // rendering protected content. // Review the TestHost class below to observe how the CDM interfaces with // the host application. #include #include #include #include #include #include "clock.h" #include "config_test_env.h" #include "content_decryption_module.h" #include "license_request.h" #include "log.h" #include "scoped_ptr.h" #include "string_conversions.h" #include "url_request.h" #include "wv_cdm_common.h" using wvcdm::scoped_ptr; static const int kTestPolicyRenewalDelaySeconds = 60; static const int kDelayWaitToForRenewalMessageSeconds = 2; static double GetCurrentTime() { struct timeval tv; tv.tv_sec = tv.tv_usec = 0; gettimeofday(&tv, NULL); return tv.tv_sec + (tv.tv_usec / (1000.0 * 1000.0)); } // These classes below are naive implementation of the abstract classes defined // in the CDM interface (content_decryptiom_module.h), which are used for tests // only. class TestBuffer : public cdm::Buffer { public: static TestBuffer* Create(uint32_t capacity); virtual void Destroy() OVERRIDE; virtual int32_t Capacity() const OVERRIDE; virtual uint8_t* Data() OVERRIDE; virtual void SetSize(int32_t size) OVERRIDE; virtual int32_t Size() const OVERRIDE; private: // TestBuffer can only be created by calling Create(). explicit TestBuffer(uint32_t capacity); // TestBuffer can only be destroyed by calling Destroy(). virtual ~TestBuffer(); uint8_t* buffer_; int32_t capacity_; int32_t size_; CORE_DISALLOW_COPY_AND_ASSIGN(TestBuffer); }; class TestHost : public cdm::Host { public: // These structs are used to store the KeyMessages and KeyErrors passed to // this class' objects. struct KeyMessage { std::string session_id; std::string message; std::string default_url; }; struct KeyError { KeyError() : error_code(cdm::kUnknownError), system_code(0) {} std::string session_id; cdm::MediaKeyError error_code; uint32_t system_code; }; TestHost(); virtual ~TestHost(); // cdm::Host implementation. virtual cdm::Buffer* Allocate(int32_t capacity) OVERRIDE; virtual void SetTimer(int64_t delay_ms, void* context) OVERRIDE; virtual double GetCurrentWallTimeInSeconds() OVERRIDE; virtual void SendKeyMessage(const char* session_id, int32_t session_id_length, const char* message, int32_t message_length, const char* default_url, int32_t default_url_length) OVERRIDE; virtual void SendKeyError(const char* session_id, int32_t session_id_length, cdm::MediaKeyError error_code, uint32_t system_code) OVERRIDE; virtual void GetPlatformString(const std::string& name, std::string* value) OVERRIDE; virtual void SetPlatformString(const std::string& name, const std::string& value) OVERRIDE; // Methods only for this test. void FastForwardTime(double seconds); int KeyMessagesSize() const; int KeyErrorsSize() const; int NumTimers() const; // Returns Key{Message,Error} (replace Message with Error for KeyError). It // returns the most recent message passed to SendKeyMessage(). Another call // to this method without a new SendKeyMessage() call will return an empty // KeyMessage struct. KeyMessage GetLastKeyMessage(); KeyError GetLastKeyError(); KeyMessage GetKeyMessage(int index) const; KeyError GetKeyError(int index) const; void SetCdmPtr(cdm::ContentDecryptionModule* cdm); private: struct Timer { Timer(double expiry_time, void* context) : expiry_time(expiry_time), context(context) {} bool operator<(const Timer& other) const { // We want to reverse the order so that the smallest expiry times go to // the top of the priority queue. return expiry_time > other.expiry_time; } double expiry_time; void* context; }; double current_time_; std::priority_queue timers_; std::vector key_messages_; std::vector key_errors_; bool has_new_key_message_; bool has_new_key_error_; std::map platform_strings_; cdm::ContentDecryptionModule* cdm_; CORE_DISALLOW_COPY_AND_ASSIGN(TestHost); }; TestBuffer* TestBuffer::Create(uint32_t capacity) { return new TestBuffer(capacity); } void TestBuffer::Destroy() { if (buffer_) { delete[] buffer_; buffer_ = NULL; } delete this; } int32_t TestBuffer::Capacity() const { return capacity_; } uint8_t* TestBuffer::Data() { return buffer_; } void TestBuffer::SetSize(int32_t size) { size_ = size; } int32_t TestBuffer::Size() const { return size_; } TestBuffer::TestBuffer(uint32_t capacity) : buffer_(new uint8_t[capacity]), capacity_(capacity) {} TestBuffer::~TestBuffer() {} TestHost::TestHost() : current_time_(GetCurrentTime()), has_new_key_message_(false), has_new_key_error_(false), cdm_(NULL) { } TestHost::~TestHost() { if (cdm_) cdm_->Destroy(); } cdm::Buffer* TestHost::Allocate(int32_t capacity) { return TestBuffer::Create(capacity); } void TestHost::SetTimer(int64_t delay_ms, void* context) { double expiry_time = current_time_ + (delay_ms / 1000.0); timers_.push(Timer(expiry_time, context)); } double TestHost::GetCurrentWallTimeInSeconds() { return current_time_; } void TestHost::SendKeyMessage(const char* session_id, int32_t session_id_length, const char* message, int32_t message_length, const char* default_url, int32_t default_url_length) { KeyMessage key_message; key_message.session_id.assign(session_id, session_id_length); key_message.message.assign(message, message_length); key_message.default_url.assign(default_url, default_url_length); key_messages_.push_back(key_message); has_new_key_message_ = true; } void TestHost::SendKeyError(const char* session_id, int32_t session_id_length, cdm::MediaKeyError error_code, uint32_t system_code) { KeyError key_error; key_error.session_id.assign(session_id, session_id_length); key_error.error_code = error_code; key_error.system_code = system_code; key_errors_.push_back(key_error); has_new_key_error_ = true; } void TestHost::FastForwardTime(double seconds) { double goal_time = current_time_ + seconds; while (current_time_ < goal_time) { if (timers_.empty()) { current_time_ = goal_time; } else { Timer t = timers_.top(); timers_.pop(); ASSERT_GE(t.expiry_time, current_time_); current_time_ = t.expiry_time; cdm_->TimerExpired(t.context); } } } void TestHost::GetPlatformString(const std::string& name, std::string* value) { *value = platform_strings_[name]; } void TestHost::SetPlatformString(const std::string& name, const std::string& value) { platform_strings_[name] = value; } int TestHost::KeyMessagesSize() const { return key_messages_.size(); } int TestHost::KeyErrorsSize() const { return key_errors_.size(); } int TestHost::NumTimers() const { return timers_.size(); } TestHost::KeyMessage TestHost::GetLastKeyMessage() { if (!has_new_key_message_) { LOGD("No NEW"); return KeyMessage(); } if (key_messages_.empty()) { LOGD("empty"); return KeyMessage(); } LOGD("not empty"); has_new_key_message_ = false; return key_messages_.back(); } TestHost::KeyError TestHost::GetLastKeyError() { if (!has_new_key_error_) return KeyError(); if (key_errors_.empty()) return KeyError(); has_new_key_error_ = false; return key_errors_.back(); } TestHost::KeyMessage TestHost::GetKeyMessage(int index) const { return key_messages_[index]; } TestHost::KeyError TestHost::GetKeyError(int index) const { return key_errors_[index]; } void TestHost::SetCdmPtr(cdm::ContentDecryptionModule* cdm) { if (cdm_) { cdm_->Destroy(); } cdm_ = cdm; } class TestDecryptedBlock : public cdm::DecryptedBlock { public: TestDecryptedBlock(); virtual ~TestDecryptedBlock(); virtual void SetDecryptedBuffer(cdm::Buffer* buffer) OVERRIDE; virtual cdm::Buffer* DecryptedBuffer() OVERRIDE; virtual void SetTimestamp(int64_t timestamp) OVERRIDE; virtual int64_t Timestamp() const OVERRIDE; private: cdm::Buffer* buffer_; int64_t timestamp_; CORE_DISALLOW_COPY_AND_ASSIGN(TestDecryptedBlock); }; TestDecryptedBlock::TestDecryptedBlock() : buffer_(NULL), timestamp_(0) {} TestDecryptedBlock::~TestDecryptedBlock() { if (buffer_) { buffer_->Destroy(); buffer_ = NULL; } } void TestDecryptedBlock::SetDecryptedBuffer(cdm::Buffer* buffer) { if (buffer_) buffer_->Destroy(); buffer_ = buffer; } cdm::Buffer* TestDecryptedBlock::DecryptedBuffer() { return buffer_; } void TestDecryptedBlock::SetTimestamp(int64_t timestamp) { timestamp_ = timestamp; } int64_t TestDecryptedBlock::Timestamp() const { return timestamp_; } namespace { // Default license server, can be configured using --server command line option // Default key id (pssh), can be configured using --keyid command line option const char kKeySystemWidevine[] = "com.widevine.alpha"; std::string g_client_auth; wvcdm::KeyId g_key_id; wvcdm::CdmKeySystem g_key_system; std::string g_license_server; wvcdm::KeyId g_wrong_key_id; void* GetCdmHost(int host_interface_version, void* user_data) { if (host_interface_version != cdm::kHostInterfaceVersion) return NULL; return user_data; } } // namespace namespace wvcdm { class WvCdmApiTest : public testing::Test { public: WvCdmApiTest() : cdm_(NULL) {} ~WvCdmApiTest() {} protected: virtual void SetUp() { // Create the Host. host_.reset(new TestHost()); // Set various parameters that the CDM will query. host_->SetPlatformString("SecurityLevel", "L1"); host_->SetPlatformString("PrivacyOn", "False"); // Put a phony service certificate into persistent storage. static const size_t kPrivacyCertSize = 256; std::string cert(kPrivacyCertSize, '\0'); for (size_t i = 0; i < cert.size(); i++) { cert[i] = i; } host_->SetPlatformString("ServiceCertificate", cert); // Initialize the CDM module before creating a CDM instance. INITIALIZE_CDM_MODULE(); // Create the CDM. cdm_ = reinterpret_cast(::CreateCdmInstance( cdm::kCdmInterfaceVersion, kKeySystemWidevine, strlen(kKeySystemWidevine), GetCdmHost, host_.get())); // Tell the Host about the CDM. host_->SetCdmPtr(cdm_); } void GenerateKeyRequest(const std::string& key_system, const std::string& key_id) { std::string init_data = key_id; cdm::Status status = cdm_->GenerateKeyRequest( NULL, 0, (const uint8_t*)init_data.data(), init_data.length()); // cdm::Host must handle the certificate provisioning request. if (status == cdm::kNeedsDeviceCertificate) { std::string provisioning_server_url; std::string prov_request; status = cdm_->GetProvisioningRequest(&prov_request, &provisioning_server_url); if (status == cdm::kSuccess) { UrlRequest url_request(provisioning_server_url); url_request.PostCertRequestInQueryString(prov_request); std::string message; bool ok = url_request.GetResponse(&message); EXPECT_TRUE(ok); if (ok) { status = cdm_->HandleProvisioningResponse(message); if (status == cdm::kSuccess) { status = cdm_->GenerateKeyRequest(NULL, 0, (const uint8_t*)init_data.data(), init_data.length()); } } } } EXPECT_EQ(cdm::kSuccess, status); } // posts a request and extracts the drm message from the response std::string GetKeyRequestResponse(const std::string& server_url, const std::string& client_auth, int expected_response) { UrlRequest url_request(server_url + client_auth); if (!url_request.is_connected()) { return ""; } url_request.PostRequest(key_msg_); std::string response; int resp_bytes = url_request.GetResponse(&response); // Some license servers return 400 for invalid message, some // return 500; treat anything other than 200 as an invalid message. int status_code = url_request.GetStatusCode(response); int kHttpOk = 200; if (expected_response == kHttpOk) { EXPECT_EQ(kHttpOk, status_code); } else { EXPECT_NE(kHttpOk, status_code); } if (status_code != kHttpOk) { return ""; } else { std::string drm_msg; LicenseRequest lic_request; lic_request.GetDrmMessage(response, drm_msg); LOGV("drm msg: %u bytes\n%s", drm_msg.size(), HexEncode(reinterpret_cast(drm_msg.data()), drm_msg.size()).c_str()); return drm_msg; } } void CancelKeyRequest(std::string session_id) { cdm::Status status = cdm_->CancelKeyRequest(session_id.data(), session_id.length()); EXPECT_EQ(cdm::kSuccess, status); } void AddKey(std::string& session_id, std::string& drm_msg) { cdm::Status status = cdm_->AddKey(session_id.data(), session_id.size(), (const uint8_t*)drm_msg.data(), drm_msg.size(), NULL, 0); EXPECT_EQ(cdm::kSuccess, status); } // Level 1 / Level 2 payload comes back in the cpu memory as cleartext. void DecryptClearPayloadTest() { typedef struct DecryptionData { bool is_encrypted; bool is_secure; wvcdm::KeyId key_id; std::vector encrypt_data; std::vector iv; size_t block_offset; std::vector decrypt_data; } DecryptionData; DecryptionData data; data.is_encrypted = true; data.is_secure = false; // Key ID of key used to encrypt the test content. // This is used by the secure layer to look up the content key data.key_id = wvcdm::a2bs_hex("E02562E04CD55351B14B3D748D36ED8E"); // Dummy encrypted data. data.encrypt_data = wvcdm::a2b_hex( "3b2cbde084973539329bd5656da22d20396249bf4a18a51c38c4743360cc9fea" "a1c78d53de1bd7e14dc5d256fd20a57178a98b83804258c239acd7aa38f2d7d2" "eca614965b3d22049e19e236fc1800e60965d8b36415677bf2f843d50a6943c4" "683c07c114a32f5e5fbc9939c483c3a1b2ecd3d82b554d649798866191724283" "f0ab082eba2da79aaca5c4eaf186f9ee9a0c568f621f705a578f30e4e2ef7b96" "5e14cc046ce6dbf272ee5558b098f332333e95fc879dea6c29bf34acdb649650" "f08201b9e649960f2493fd7677cc3abf5ae70e5445845c947ba544456b431646" "d95a133bff5f57614dda5e4446cd8837901d074149dadf4b775b5b07bb88ca20"); data.iv = wvcdm::a2b_hex("4cca615fc013102892f91efee936639b"); data.block_offset = 0; // Expected decrypted data. data.decrypt_data = wvcdm::a2b_hex( "5a36c0b633b58faf22156d78fdfb608e54a8095788b2b0463ef78d030b4abf82" "eff34b8d9b7b6352e7d72de991b599662aa475da355033620152e2356ebfadee" "06172be9e1058fa177e223b9fdd191380cff53c3ea810c6fd852a1df4967b799" "415179a2276ec388ef763bab89605b9c6952c28dc8d6bf86b03fabbb46b392a3" "1dad15be602eeeeabb45070b3e25d6bb0217073b1fc44c9fe848594121fd6a91" "304d605e21f69615e1b57db18312b6b948725724b74e91d8aea7371e99532469" "1b358bdee873f1936b63efe83d190a53c2d21754d302d63ff285174023473755" "58b938c2e3ca4c2ce48942da97f9e45797f2c074ac6004734e93784a48af6160"); cdm::InputBuffer buf; buf.data = &data.encrypt_data[0]; buf.data_size = data.encrypt_data.size(); buf.key_id = (const uint8_t*)&data.key_id[0]; buf.key_id_size = data.key_id.length(); buf.iv = &data.iv[0]; buf.iv_size = data.iv.size(); buf.data_offset = 0; cdm::SubsampleEntry sub(0, buf.data_size); buf.subsamples = ⊂ buf.num_subsamples = 1; buf.timestamp = 10; TestDecryptedBlock output; cdm::Status status = cdm_->Decrypt(buf, &output); EXPECT_EQ(cdm::kSuccess, status); EXPECT_EQ(0, memcmp(output.DecryptedBuffer()->Data(), &data.decrypt_data[0], buf.data_size)); } // Level 1 / Level 2 payload comes back in the cpu memory as cleartext. void DecryptClearSubsampleTest() { typedef struct DecryptionData { bool is_encrypted; bool is_secure; wvcdm::KeyId key_id; std::vector encrypt_data; std::vector iv; size_t block_offset; std::vector decrypt_data; } DecryptionData; DecryptionData data; data.is_encrypted = true; data.is_secure = false; // Key ID of key used to encrypt the test content. // This is used by the secure layer to look up the content key data.key_id = wvcdm::a2bs_hex("E02562E04CD55351B14B3D748D36ED8E"); // Dummy encrypted data. This is a combination of clear and // encrypted data. data.encrypt_data = wvcdm::a2b_hex( "5a36c0b633b58faf22156d78fdfb608e54a8095788b2b0463ef78d030b4abf82" "3b2cbde084973539329bd5656da22d20396249bf4a18a51c38c4743360cc9fea" "a1c78d53de1bd7e14dc5d256fd20a57178a98b83804258c239acd7aa38f2d7d2" "5a36c0" "eca614965b" "58b938c2e3ca4c2ce4" "3d22049e19e236fc1800e60965d8b36415677bf2f843d50a6943c4" "683c07c114a32f5e5fbc9939c483c3a1b2ecd3d82b554d649798866191724283" "f0ab082eba2da79aaca5c4eaf186f9ee9a0c568f621f705a578f30e4e2ef7b96" "5e14cc046ce6dbf272ee5558b098f332333e95fc879dea6c29bf34acdb649650" "f08201b9e649960f2493fd7677cc3abf5ae70e5445845c947ba544456b431646" "d95a133bff5f57614dda5e4446cd8837901d074149dadf4b775b5b07bb88ca20"); data.iv = wvcdm::a2b_hex("4cca615fc013102892f91efee936639b"); data.block_offset = 0; // Expected decrypted data. data.decrypt_data = wvcdm::a2b_hex( "5a36c0b633b58faf22156d78fdfb608e54a8095788b2b0463ef78d030b4abf82" "5a36c0b633b58faf22156d78fdfb608e54a8095788b2b0463ef78d030b4abf82" "eff34b8d9b7b6352e7d72de991b599662aa475da355033620152e2356ebfadee" "5a36c0" "06172be9e1" "58b938c2e3ca4c2ce4" "058fa177e223b9fdd191380cff53c3ea810c6fd852a1df4967b799" "415179a2276ec388ef763bab89605b9c6952c28dc8d6bf86b03fabbb46b392a3" "1dad15be602eeeeabb45070b3e25d6bb0217073b1fc44c9fe848594121fd6a91" "304d605e21f69615e1b57db18312b6b948725724b74e91d8aea7371e99532469" "1b358bdee873f1936b63efe83d190a53c2d21754d302d63ff285174023473755" "58b938c2e3ca4c2ce48942da97f9e45797f2c074ac6004734e93784a48af6160"); cdm::InputBuffer buf; buf.data = &data.encrypt_data[0]; buf.data_size = data.encrypt_data.size(); buf.key_id = (const uint8_t*) &data.key_id[0]; buf.key_id_size = data.key_id.length(); buf.iv = &data.iv[0]; buf.iv_size = data.iv.size(); buf.data_offset = 0; std::vector sub; sub.push_back(cdm::SubsampleEntry(32, 64)); sub.push_back(cdm::SubsampleEntry(3, 5)); sub.push_back( cdm::SubsampleEntry(9, data.encrypt_data.size() - (32 + 64 + 3 + 5 + 9))); buf.subsamples = &sub[0]; buf.num_subsamples = sub.size(); buf.timestamp = 10; TestDecryptedBlock output; cdm::Status status = cdm_->Decrypt(buf, &output); EXPECT_EQ(cdm::kSuccess, status); EXPECT_EQ( 0, memcmp(output.DecryptedBuffer()->Data(), &data.decrypt_data[0], buf.data_size)); } void DecryptClearSubsampleTestWithMissingSubsampleInfo() { typedef struct DecryptionData { bool is_encrypted; bool is_secure; wvcdm::KeyId key_id; std::vector encrypt_data; std::vector iv; size_t block_offset; std::vector decrypt_data; } DecryptionData; DecryptionData data; data.is_encrypted = true; data.is_secure = false; // Key ID of key used to encrypt the test content. // This is used by the secure layer to look up the content key data.key_id = wvcdm::a2bs_hex("E02562E04CD55351B14B3D748D36ED8E"); // Dummy encrypted data. This is a combination of clear and // encrypted data. data.encrypt_data = wvcdm::a2b_hex( "5a36c0b633b58faf22156d78fdfb608e54a8095788b2b0463ef78d030b4abf82" "3b2cbde084973539329bd5656da22d20396249bf4a18a51c38c4743360cc9fea" "a1c78d53de1bd7e14dc5d256fd20a57178a98b83804258c239acd7aa38f2d7d2" "5a36c0" "eca614965b" "58b938c2e3ca4c2ce4" "3d22049e19e236fc1800e60965d8b36415677bf2f843d50a6943c4" "683c07c114a32f5e5fbc9939c483c3a1b2ecd3d82b554d649798866191724283" "f0ab082eba2da79aaca5c4eaf186f9ee9a0c568f621f705a578f30e4e2ef7b96" "5e14cc046ce6dbf272ee5558b098f332333e95fc879dea6c29bf34acdb649650" "f08201b9e649960f2493fd7677cc3abf5ae70e5445845c947ba544456b431646" "d95a133bff5f57614dda5e4446cd8837901d074149dadf4b775b5b07bb88ca20"); data.iv = wvcdm::a2b_hex("4cca615fc013102892f91efee936639b"); data.block_offset = 0; // Expected decrypted data. data.decrypt_data = wvcdm::a2b_hex( "5a36c0b633b58faf22156d78fdfb608e54a8095788b2b0463ef78d030b4abf82" "5a36c0b633b58faf22156d78fdfb608e54a8095788b2b0463ef78d030b4abf82" "eff34b8d9b7b6352e7d72de991b599662aa475da355033620152e2356ebfadee" "5a36c0" "06172be9e1" "58b938c2e3ca4c2ce4" "058fa177e223b9fdd191380cff53c3ea810c6fd852a1df4967b799" "415179a2276ec388ef763bab89605b9c6952c28dc8d6bf86b03fabbb46b392a3" "1dad15be602eeeeabb45070b3e25d6bb0217073b1fc44c9fe848594121fd6a91" "304d605e21f69615e1b57db18312b6b948725724b74e91d8aea7371e99532469" "1b358bdee873f1936b63efe83d190a53c2d21754d302d63ff285174023473755" "58b938c2e3ca4c2ce48942da97f9e45797f2c074ac6004734e93784a48af6160"); cdm::InputBuffer buf; buf.data = &data.encrypt_data[0]; buf.data_size = data.encrypt_data.size(); buf.key_id = (const uint8_t*)&data.key_id[0]; buf.key_id_size = data.key_id.length(); buf.iv = &data.iv[0]; buf.iv_size = data.iv.size(); buf.data_offset = 0; std::vector sub; sub.push_back(cdm::SubsampleEntry(32, 64)); sub.push_back(cdm::SubsampleEntry(3, 5)); sub.push_back(cdm::SubsampleEntry( 9, data.encrypt_data.size() - (32 + 64 + 3 + 5 + 9))); //buf.subsamples = &sub[0]; //buf.num_subsamples = sub.size(); buf.timestamp = 10; TestDecryptedBlock output; cdm::Status status = cdm_->Decrypt(buf, &output); EXPECT_EQ(cdm::kDecryptError, status); buf.subsamples = &sub[0]; status = cdm_->Decrypt(buf, &output); EXPECT_EQ(cdm::kDecryptError, status); buf.num_subsamples = sub.size(); status = cdm_->Decrypt(buf, &output); EXPECT_EQ(cdm::kSuccess, status); EXPECT_EQ(0, memcmp(output.DecryptedBuffer()->Data(), &data.decrypt_data[0], buf.data_size)); buf.subsamples = NULL; status = cdm_->Decrypt(buf, &output); EXPECT_EQ(cdm::kDecryptError, status); } // Level 1 passes encrypted payload straight through. By calling the // CDM's DecryptDecodeAndRenderSamples, and/or DecryptDecodeAndRenderFrame, // OEMCrypto_DecryptCTR will be told to use Direct Rendering. void SecureDecryptLevel1Test() { typedef struct DecryptionData { bool is_encrypted; bool is_secure; wvcdm::KeyId key_id; std::vector encrypt_data; std::vector iv; size_t block_offset; std::vector decrypt_data; } DecryptionData; DecryptionData data; data.is_encrypted = true; data.is_secure = false; // Key ID of key used to encrypt the test content. // This is used by the secure layer to look up the content key data.key_id = wvcdm::a2bs_hex("E02562E04CD55351B14B3D748D36ED8E"); // Dummy encrypted data. data.encrypt_data = wvcdm::a2b_hex( "3b2cbde084973539329bd5656da22d20396249bf4a18a51c38c4743360cc9fea" "a1c78d53de1bd7e14dc5d256fd20a57178a98b83804258c239acd7aa38f2d7d2" "eca614965b3d22049e19e236fc1800e60965d8b36415677bf2f843d50a6943c4" "683c07c114a32f5e5fbc9939c483c3a1b2ecd3d82b554d649798866191724283" "f0ab082eba2da79aaca5c4eaf186f9ee9a0c568f621f705a578f30e4e2ef7b96" "5e14cc046ce6dbf272ee5558b098f332333e95fc879dea6c29bf34acdb649650" "f08201b9e649960f2493fd7677cc3abf5ae70e5445845c947ba544456b431646" "d95a133bff5f57614dda5e4446cd8837901d074149dadf4b775b5b07bb88ca20"); data.iv = wvcdm::a2b_hex("4cca615fc013102892f91efee936639b"); data.block_offset = 0; // Expected decrypted data. data.decrypt_data = wvcdm::a2b_hex( "5a36c0b633b58faf22156d78fdfb608e54a8095788b2b0463ef78d030b4abf82" "eff34b8d9b7b6352e7d72de991b599662aa475da355033620152e2356ebfadee" "06172be9e1058fa177e223b9fdd191380cff53c3ea810c6fd852a1df4967b799" "415179a2276ec388ef763bab89605b9c6952c28dc8d6bf86b03fabbb46b392a3" "1dad15be602eeeeabb45070b3e25d6bb0217073b1fc44c9fe848594121fd6a91" "304d605e21f69615e1b57db18312b6b948725724b74e91d8aea7371e99532469" "1b358bdee873f1936b63efe83d190a53c2d21754d302d63ff285174023473755" "58b938c2e3ca4c2ce48942da97f9e45797f2c074ac6004734e93784a48af6160"); cdm::InputBuffer buf; buf.data = &data.encrypt_data[0]; buf.data_size = data.encrypt_data.size(); buf.key_id = (const uint8_t*)&data.key_id[0]; buf.key_id_size = data.key_id.length(); buf.iv = &data.iv[0]; buf.iv_size = data.iv.size(); buf.data_offset = 0; cdm::SubsampleEntry sub(0, buf.data_size); buf.subsamples = ⊂ buf.num_subsamples = 1; buf.timestamp = 10; cdm::Status status; status = cdm_->DecryptDecodeAndRenderSamples(buf); EXPECT_EQ(cdm::kSuccess, status); status = cdm_->DecryptDecodeAndRenderFrame(buf); EXPECT_EQ(cdm::kSuccess, status); } // Level 1 passes encrypted payload straight through. By calling the // CDM's DecryptDecodeAndRenderSamples, and/or DecryptDecodeAndRenderFrame, // OEMCrypto_DecryptCTR will be told to use Direct Rendering. void SecureDecryptLevel1MultipleSubsamplesTest() { typedef struct DecryptionData { bool is_encrypted; bool is_secure; wvcdm::KeyId key_id; std::vector encrypt_data; std::vector iv; size_t block_offset; std::vector decrypt_data; } DecryptionData; DecryptionData data; data.is_encrypted = true; data.is_secure = false; // Key ID of key used to encrypt the test content. // This is used by the secure layer to look up the content key data.key_id = wvcdm::a2bs_hex("E02562E04CD55351B14B3D748D36ED8E"); // Dummy encrypted data. This is a combination of clear and // encrypted data. data.encrypt_data = wvcdm::a2b_hex( "5a36c0b633b58faf22156d78fdfb608e54a8095788b2b0463ef78d030b4abf82" "3b2cbde084973539329bd5656da22d20396249bf4a18a51c38c4743360cc9fea" "a1c78d53de1bd7e14dc5d256fd20a57178a98b83804258c239acd7aa38f2d7d2" "5a36c0" "eca614965b" "58b938c2e3ca4c2ce4" "3d22049e19e236fc1800e60965d8b36415677bf2f843d50a6943c4" "683c07c114a32f5e5fbc9939c483c3a1b2ecd3d82b554d649798866191724283" "f0ab082eba2da79aaca5c4eaf186f9ee9a0c568f621f705a578f30e4e2ef7b96" "5e14cc046ce6dbf272ee5558b098f332333e95fc879dea6c29bf34acdb649650" "f08201b9e649960f2493fd7677cc3abf5ae70e5445845c947ba544456b431646" "d95a133bff5f57614dda5e4446cd8837901d074149dadf4b775b5b07bb88ca20"); data.iv = wvcdm::a2b_hex("4cca615fc013102892f91efee936639b"); data.block_offset = 0; // Expected decrypted data. data.decrypt_data = wvcdm::a2b_hex( "5a36c0b633b58faf22156d78fdfb608e54a8095788b2b0463ef78d030b4abf82" "5a36c0b633b58faf22156d78fdfb608e54a8095788b2b0463ef78d030b4abf82" "eff34b8d9b7b6352e7d72de991b599662aa475da355033620152e2356ebfadee" "5a36c0" "06172be9e1" "58b938c2e3ca4c2ce4" "058fa177e223b9fdd191380cff53c3ea810c6fd852a1df4967b799" "415179a2276ec388ef763bab89605b9c6952c28dc8d6bf86b03fabbb46b392a3" "1dad15be602eeeeabb45070b3e25d6bb0217073b1fc44c9fe848594121fd6a91" "304d605e21f69615e1b57db18312b6b948725724b74e91d8aea7371e99532469" "1b358bdee873f1936b63efe83d190a53c2d21754d302d63ff285174023473755" "58b938c2e3ca4c2ce48942da97f9e45797f2c074ac6004734e93784a48af6160"); cdm::InputBuffer buf; buf.data = &data.encrypt_data[0]; buf.data_size = data.encrypt_data.size(); buf.key_id = (const uint8_t*)&data.key_id[0]; buf.key_id_size = data.key_id.length(); buf.iv = &data.iv[0]; buf.iv_size = data.iv.size(); buf.data_offset = 0; std::vector sub; sub.push_back(cdm::SubsampleEntry(32, 64)); sub.push_back(cdm::SubsampleEntry(3, 5)); sub.push_back(cdm::SubsampleEntry( 9, data.encrypt_data.size() - (32 + 64 + 3 + 5 + 9))); buf.subsamples = &sub[0]; buf.num_subsamples = sub.size(); buf.timestamp = 10; cdm::Status status; status = cdm_->DecryptDecodeAndRenderSamples(buf); EXPECT_EQ(cdm::kSuccess, status); status = cdm_->DecryptDecodeAndRenderFrame(buf); EXPECT_EQ(cdm::kSuccess, status); } void WithMissingSubsampleInfoTest() { typedef struct DecryptionData { bool is_encrypted; bool is_secure; wvcdm::KeyId key_id; std::vector encrypt_data; std::vector iv; size_t block_offset; std::vector decrypt_data; } DecryptionData; DecryptionData data; data.is_encrypted = true; data.is_secure = false; // Key ID of key used to encrypt the test content. // This is used by the secure layer to look up the content key data.key_id = wvcdm::a2bs_hex("E02562E04CD55351B14B3D748D36ED8E"); // Dummy encrypted data. data.encrypt_data = wvcdm::a2b_hex( "5a36c0b633b58faf22156d78fdfb608e54a8095788b2b0463ef78d030b4abf82" "3b2cbde084973539329bd5656da22d20396249bf4a18a51c38c4743360cc9fea" "a1c78d53de1bd7e14dc5d256fd20a57178a98b83804258c239acd7aa38f2d7d2" "5a36c0" "eca614965b" "58b938c2e3ca4c2ce4" "3d22049e19e236fc1800e60965d8b36415677bf2f843d50a6943c4" "683c07c114a32f5e5fbc9939c483c3a1b2ecd3d82b554d649798866191724283" "f0ab082eba2da79aaca5c4eaf186f9ee9a0c568f621f705a578f30e4e2ef7b96" "5e14cc046ce6dbf272ee5558b098f332333e95fc879dea6c29bf34acdb649650" "f08201b9e649960f2493fd7677cc3abf5ae70e5445845c947ba544456b431646" "d95a133bff5f57614dda5e4446cd8837901d074149dadf4b775b5b07bb88ca20"); data.iv = wvcdm::a2b_hex("4cca615fc013102892f91efee936639b"); data.block_offset = 0; // Expected decrypted data. data.decrypt_data = wvcdm::a2b_hex( "5a36c0b633b58faf22156d78fdfb608e54a8095788b2b0463ef78d030b4abf82" "5a36c0b633b58faf22156d78fdfb608e54a8095788b2b0463ef78d030b4abf82" "eff34b8d9b7b6352e7d72de991b599662aa475da355033620152e2356ebfadee" "5a36c0" "06172be9e1" "58b938c2e3ca4c2ce4" "058fa177e223b9fdd191380cff53c3ea810c6fd852a1df4967b799" "415179a2276ec388ef763bab89605b9c6952c28dc8d6bf86b03fabbb46b392a3" "1dad15be602eeeeabb45070b3e25d6bb0217073b1fc44c9fe848594121fd6a91" "304d605e21f69615e1b57db18312b6b948725724b74e91d8aea7371e99532469" "1b358bdee873f1936b63efe83d190a53c2d21754d302d63ff285174023473755" "58b938c2e3ca4c2ce48942da97f9e45797f2c074ac6004734e93784a48af6160"); cdm::InputBuffer buf; buf.data = &data.encrypt_data[0]; buf.data_size = data.encrypt_data.size(); buf.key_id = (const uint8_t*)&data.key_id[0]; buf.key_id_size = data.key_id.length(); buf.iv = &data.iv[0]; buf.iv_size = data.iv.size(); buf.data_offset = 0; std::vector sub; sub.push_back(cdm::SubsampleEntry(32, 64)); sub.push_back(cdm::SubsampleEntry(3, 5)); sub.push_back(cdm::SubsampleEntry( 9, data.encrypt_data.size() - (32 + 64 + 3 + 5 + 9))); buf.timestamp = 10; cdm::Status status; status = cdm_->DecryptDecodeAndRenderSamples(buf); EXPECT_EQ(cdm::kDecryptError, status); status = cdm_->DecryptDecodeAndRenderFrame(buf); EXPECT_EQ(cdm::kDecryptError, status); buf.subsamples = &sub[0]; status = cdm_->DecryptDecodeAndRenderSamples(buf); EXPECT_EQ(cdm::kDecryptError, status); status = cdm_->DecryptDecodeAndRenderFrame(buf); EXPECT_EQ(cdm::kDecryptError, status); buf.num_subsamples = sub.size(); status = cdm_->DecryptDecodeAndRenderSamples(buf); EXPECT_EQ(cdm::kSuccess, status); status = cdm_->DecryptDecodeAndRenderFrame(buf); EXPECT_EQ(cdm::kSuccess, status); buf.subsamples = NULL; status = cdm_->DecryptDecodeAndRenderSamples(buf); EXPECT_EQ(cdm::kDecryptError, status); status = cdm_->DecryptDecodeAndRenderFrame(buf); EXPECT_EQ(cdm::kDecryptError, status); } std::string key_msg_; std::string session_id_; std::string server_url_; cdm::ContentDecryptionModule* cdm_; // owned by host_ scoped_ptr host_; }; class DummyCDM : public cdm::ContentDecryptionModule { public: DummyCDM() : timer_fired_(false), last_context_(NULL) {} virtual cdm::Status GenerateKeyRequest(const char*, int, const uint8_t*, int) OVERRIDE { return cdm::kSessionError; } virtual cdm::Status AddKey(const char*, int, const uint8_t*, int, const uint8_t*, int) OVERRIDE { return cdm::kSessionError; } virtual bool IsKeyValid(const uint8_t*, int) OVERRIDE { return false; } virtual cdm::Status CancelKeyRequest(const char*, int) OVERRIDE { return cdm::kSessionError; } virtual void TimerExpired(void* context) OVERRIDE { timer_fired_ = true; last_context_ = context; } virtual cdm::Status Decrypt(const cdm::InputBuffer&, cdm::DecryptedBlock*) OVERRIDE { return cdm::kSessionError; } virtual cdm::Status DecryptDecodeAndRenderFrame(const cdm::InputBuffer&) OVERRIDE { return cdm::kSessionError; } virtual cdm::Status DecryptDecodeAndRenderSamples(const cdm::InputBuffer&) OVERRIDE { return cdm::kSessionError; } virtual void Destroy() OVERRIDE { delete this; } virtual cdm::Status GetProvisioningRequest(std::string*, std::string*) OVERRIDE { return cdm::kSessionError; } virtual cdm::Status HandleProvisioningResponse(std::string&) OVERRIDE { return cdm::kSessionError; } bool TimerFired() const { return timer_fired_; } void* LastTimerContext() const { return last_context_; } void ResetTimerStatus() { timer_fired_ = false; last_context_ = NULL; } private: bool timer_fired_; void* last_context_; }; TEST_F(WvCdmApiTest, TestHostTimer) { // Validate that the TestHost timers are processed in the correct order. // To do this, we replace the cdm with a dummy that only tracks timers. DummyCDM* cdm = new DummyCDM(); // The old CDM is destroyed by SetCdmPtr. cdm_ = cdm; host_->SetCdmPtr(cdm); const double kTimerDelaySeconds = 1.0; const int64_t kTimerDelayMs = kTimerDelaySeconds * 1000; void* kCtx1 = reinterpret_cast(0x1); void* kCtx2 = reinterpret_cast(0x2); host_->SetTimer(kTimerDelayMs * 1, kCtx1); host_->SetTimer(kTimerDelayMs * 2, kCtx2); host_->FastForwardTime(kTimerDelaySeconds); EXPECT_TRUE(cdm->TimerFired()); EXPECT_EQ(kCtx1, cdm->LastTimerContext()); cdm->ResetTimerStatus(); host_->FastForwardTime(kTimerDelaySeconds); EXPECT_TRUE(cdm->TimerFired()); EXPECT_EQ(kCtx2, cdm->LastTimerContext()); cdm->ResetTimerStatus(); host_->FastForwardTime(kTimerDelaySeconds); EXPECT_FALSE(cdm->TimerFired()); } // Note that these tests, BaseMessageTest, NormalDecryption and TimeTest, // are dependent on getting back a license from the license server where the // url for the license server is defined in the conf_test_env.cpp. If these // tests fail immediately, verify that the license server URL is correct // and works in your test environment. TEST_F(WvCdmApiTest, DeviceCertificateTest) { GenerateKeyRequest(g_key_system, g_key_id); // It will have to provision - // in here. TestHost::KeyMessage key_msg = host_->GetLastKeyMessage(); session_id_ = key_msg.session_id; key_msg_ = key_msg.message; std::string drm_msg = GetKeyRequestResponse(g_license_server, g_client_auth, 200); AddKey(key_msg.session_id, drm_msg); CancelKeyRequest(session_id_); } TEST_F(WvCdmApiTest, BaseMessageTest) { GenerateKeyRequest(g_key_system, g_key_id); TestHost::KeyMessage key_msg = host_->GetLastKeyMessage(); session_id_ = key_msg.session_id; key_msg_ = key_msg.message; std::string drm_msg = GetKeyRequestResponse(g_license_server, g_client_auth, 200); AddKey(key_msg.session_id, drm_msg); CancelKeyRequest(session_id_); } TEST_F(WvCdmApiTest, NormalDecryption) { GenerateKeyRequest(g_key_system, g_key_id); TestHost::KeyMessage key_msg = host_->GetLastKeyMessage(); key_msg_ = key_msg.message; std::string drm_msg = GetKeyRequestResponse(g_license_server, g_client_auth, 200); AddKey(key_msg.session_id, drm_msg); DecryptClearPayloadTest(); } TEST_F(WvCdmApiTest, NormalSubSampleDecryptionWithSubsampleInfo) { GenerateKeyRequest(g_key_system, g_key_id); TestHost::KeyMessage key_msg = host_->GetLastKeyMessage(); key_msg_ = key_msg.message; std::string drm_msg = GetKeyRequestResponse(g_license_server, g_client_auth, 200); AddKey(key_msg.session_id, drm_msg); DecryptClearSubsampleTest(); } TEST_F(WvCdmApiTest, NormalSubSampleDecryptionWithMissingSubsampleInfo) { GenerateKeyRequest(g_key_system, g_key_id); TestHost::KeyMessage key_msg = host_->GetLastKeyMessage(); key_msg_ = key_msg.message; std::string drm_msg = GetKeyRequestResponse(g_license_server, g_client_auth, 200); AddKey(key_msg.session_id, drm_msg); DecryptClearSubsampleTestWithMissingSubsampleInfo(); } TEST_F(WvCdmApiTest, TimeTest) { GenerateKeyRequest(g_key_system, g_key_id); TestHost::KeyMessage key_msg = host_->GetLastKeyMessage(); session_id_ = key_msg.session_id; key_msg_ = key_msg.message; std::string drm_msg = GetKeyRequestResponse(g_license_server, g_client_auth, 200); AddKey(key_msg.session_id, drm_msg); // We expect that by the time we've added a key, the CDM has set a timer. // Otherwise, it couldn't correctly handle renewal. EXPECT_NE(0, host_->NumTimers()); host_->FastForwardTime(kTestPolicyRenewalDelaySeconds + kDelayWaitToForRenewalMessageSeconds); // When the timer expired, we should have sent a renewal, so we can // add this renewed key now, assuming things are working as expected. TestHost::KeyMessage key_msg2 = host_->GetLastKeyMessage(); session_id_ = key_msg2.session_id; key_msg_ = key_msg2.message; // Note that the client auth string is not appended when the CDM tells // us what URL to use. EXPECT_FALSE(key_msg2.default_url.empty()); drm_msg = GetKeyRequestResponse(key_msg2.default_url, "", 200); AddKey(key_msg2.session_id, drm_msg); } TEST_F(WvCdmApiTest, SecureDecryptionLevel1) { GenerateKeyRequest(g_key_system, g_key_id); TestHost::KeyMessage key_msg = host_->GetLastKeyMessage(); key_msg_ = key_msg.message; std::string drm_msg = GetKeyRequestResponse(g_license_server, g_client_auth, 200); AddKey(key_msg.session_id, drm_msg); SecureDecryptLevel1Test(); } TEST_F(WvCdmApiTest, SecureDecryptionLevel1WithSubsampleInfo) { GenerateKeyRequest(g_key_system, g_key_id); TestHost::KeyMessage key_msg = host_->GetLastKeyMessage(); key_msg_ = key_msg.message; std::string drm_msg = GetKeyRequestResponse(g_license_server, g_client_auth, 200); AddKey(key_msg.session_id, drm_msg); SecureDecryptLevel1MultipleSubsamplesTest(); } TEST_F(WvCdmApiTest, SecureDecryptionLevel1WithMissingSubsampleInfo) { GenerateKeyRequest(g_key_system, g_key_id); TestHost::KeyMessage key_msg = host_->GetLastKeyMessage(); key_msg_ = key_msg.message; std::string drm_msg = GetKeyRequestResponse(g_license_server, g_client_auth, 200); AddKey(key_msg.session_id, drm_msg); WithMissingSubsampleInfoTest(); } } // namespace wvcdm int main(int argc, char** argv) { ::testing::InitGoogleTest(&argc, argv); wvcdm::InitLogging(argc, argv); wvcdm::ConfigTestEnv config(wvcdm::kGooglePlayServer); g_client_auth.assign(config.client_auth()); g_key_system.assign(config.key_system()); g_wrong_key_id.assign(config.wrong_key_id()); // The following variables are configurable through command line options. g_license_server.assign(config.license_server()); g_key_id.assign(config.key_id()); std::string license_server(g_license_server); int show_usage = 0; static const struct option long_options[] = { {"keyid", required_argument, NULL, 'k'}, {"server", required_argument, NULL, 's'}, {NULL, 0, NULL, '\0'}}; int option_index = 0; int opt = 0; while ((opt = getopt_long(argc, argv, "k:s:v", long_options, &option_index)) != -1) { switch (opt) { case 'k': { g_key_id.clear(); g_key_id.assign(optarg); break; } case 's': { g_license_server.clear(); g_license_server.assign(optarg); break; } case 'v': { // This option has already been consumed by wvcdm::InitLogging() above. // We only tell getopt about it so that it is not an error. We ignore // the option here when seen. // TODO: Stop passing argv to InitLogging, and instead set the log // level here through the logging API. We should keep all command-line // parsing at the application level, rather than split between various // apps and various platform-specific logging implementations. break; } case '?': { show_usage = 1; break; } } } if (show_usage) { std::cout << std::endl; std::cout << "usage: " << argv[0] << " [options]" << std::endl << std::endl; std::cout << std::setw(30) << std::left << " --server="; std::cout << "configure the license server url, please include http[s] in the url" << std::endl; std::cout << std::setw(30) << std::left << " "; std::cout << "default: " << license_server << std::endl; std::cout << std::setw(30) << std::left << " --keyid="; std::cout << "configure the key id or pssh, in hex format" << std::endl; std::cout << std::setw(30) << std::left << " default keyid:"; std::cout << g_key_id << std::endl; return 0; } std::cout << std::endl; std::cout << "Server: " << g_license_server << std::endl; std::cout << "KeyID: " << g_key_id << std::endl << std::endl; g_key_id = wvcdm::a2bs_hex(g_key_id); config.set_license_server(g_license_server); config.set_key_id(g_key_id); return RUN_ALL_TESTS(); }