// Copyright 2013 Google Inc. All Rights Reserved. // // This source file provides a basic set of unit tests for the Content // Decryption Module (CDM). It exercises much of the API that will be // required by the host application to get the license and keys for // rendering protected content. // Review the TestHost class below to observe how the CDM interfaces with // the host application. #include #include #include #include #include #include "clock.h" #include "config_test_env.h" #include "content_decryption_module.h" #include "device_cert.h" #include "license_request.h" #include "log.h" #include "scoped_ptr.h" #include "string_conversions.h" #include "url_request.h" #include "wv_cdm_common.h" using wvcdm::scoped_ptr; static const int kTestPolicyRenewalDelaySeconds = 180; static const int kDelayWaitToForRenewalMessageSeconds = 2; static const int kHttpOk = 200; static double GetCurrentTime() { struct timeval tv; tv.tv_sec = tv.tv_usec = 0; gettimeofday(&tv, NULL); return tv.tv_sec + (tv.tv_usec / (1000.0 * 1000.0)); } // These classes below are naive implementation of the abstract classes defined // in the CDM interface (content_decryptiom_module.h), which are used for tests // only. class TestBuffer : public cdm::Buffer { public: static TestBuffer* Create(uint32_t capacity); virtual void Destroy() OVERRIDE; virtual int32_t Capacity() const OVERRIDE; virtual uint8_t* Data() OVERRIDE; virtual void SetSize(int32_t size) OVERRIDE; virtual int32_t Size() const OVERRIDE; private: // TestBuffer can only be created by calling Create(). explicit TestBuffer(uint32_t capacity); // TestBuffer can only be destroyed by calling Destroy(). virtual ~TestBuffer(); uint8_t* buffer_; int32_t capacity_; int32_t size_; CORE_DISALLOW_COPY_AND_ASSIGN(TestBuffer); }; class TestHost : public cdm::Host { public: // These structs are used to store the KeyMessages and KeyErrors passed to // this class' objects. struct KeyMessage { std::string session_id; std::string message; std::string default_url; }; struct KeyError { KeyError() : error_code(cdm::kUnknownError), system_code(0) {} std::string session_id; cdm::MediaKeyError error_code; uint32_t system_code; }; TestHost(); virtual ~TestHost(); // cdm::Host implementation. virtual cdm::Buffer* Allocate(int32_t capacity) OVERRIDE; virtual void SetTimer(int64_t delay_ms, void* context) OVERRIDE; virtual double GetCurrentWallTimeInSeconds() OVERRIDE; virtual void SendKeyMessage(const char* session_id, int32_t session_id_length, const char* message, int32_t message_length, const char* default_url, int32_t default_url_length) OVERRIDE; virtual void SendKeyError(const char* session_id, int32_t session_id_length, cdm::MediaKeyError error_code, uint32_t system_code) OVERRIDE; virtual void GetPlatformString(const std::string& name, std::string* value) OVERRIDE; virtual void SetPlatformString(const std::string& name, const std::string& value) OVERRIDE; // Methods only for this test. void FastForwardTime(double seconds); int KeyMessagesSize() const; int KeyErrorsSize() const; int NumTimers() const; // Returns Key{Message,Error} (replace Message with Error for KeyError). It // returns the most recent message passed to SendKeyMessage(). Another call // to this method without a new SendKeyMessage() call will return an empty // KeyMessage struct. KeyMessage GetLastKeyMessage(); KeyError GetLastKeyError(); KeyMessage GetKeyMessage(int index) const; KeyError GetKeyError(int index) const; void SetCdmPtr(cdm::ContentDecryptionModule* cdm); private: struct Timer { Timer(double expiry_time, void* context) : expiry_time(expiry_time), context(context) {} bool operator<(const Timer& other) const { // We want to reverse the order so that the smallest expiry times go to // the top of the priority queue. return expiry_time > other.expiry_time; } double expiry_time; void* context; }; double current_time_; std::priority_queue timers_; std::vector key_messages_; std::vector key_errors_; bool has_new_key_message_; bool has_new_key_error_; std::map platform_strings_; cdm::ContentDecryptionModule* cdm_; CORE_DISALLOW_COPY_AND_ASSIGN(TestHost); }; TestBuffer* TestBuffer::Create(uint32_t capacity) { return new TestBuffer(capacity); } void TestBuffer::Destroy() { if (buffer_) { delete[] buffer_; buffer_ = NULL; } delete this; } int32_t TestBuffer::Capacity() const { return capacity_; } uint8_t* TestBuffer::Data() { return buffer_; } void TestBuffer::SetSize(int32_t size) { size_ = size; } int32_t TestBuffer::Size() const { return size_; } TestBuffer::TestBuffer(uint32_t capacity) : buffer_(new uint8_t[capacity]), capacity_(capacity) {} TestBuffer::~TestBuffer() {} TestHost::TestHost() : current_time_(GetCurrentTime()), has_new_key_message_(false), has_new_key_error_(false), cdm_(NULL) { } TestHost::~TestHost() { if (cdm_) cdm_->Destroy(); } cdm::Buffer* TestHost::Allocate(int32_t capacity) { return TestBuffer::Create(capacity); } void TestHost::SetTimer(int64_t delay_ms, void* context) { double expiry_time = current_time_ + (delay_ms / 1000.0); timers_.push(Timer(expiry_time, context)); } double TestHost::GetCurrentWallTimeInSeconds() { return current_time_; } void TestHost::SendKeyMessage(const char* session_id, int32_t session_id_length, const char* message, int32_t message_length, const char* default_url, int32_t default_url_length) { KeyMessage key_message; key_message.session_id.assign(session_id, session_id_length); key_message.message.assign(message, message_length); key_message.default_url.assign(default_url, default_url_length); key_messages_.push_back(key_message); has_new_key_message_ = true; } void TestHost::SendKeyError(const char* session_id, int32_t session_id_length, cdm::MediaKeyError error_code, uint32_t system_code) { KeyError key_error; key_error.session_id.assign(session_id, session_id_length); key_error.error_code = error_code; key_error.system_code = system_code; key_errors_.push_back(key_error); has_new_key_error_ = true; } void TestHost::FastForwardTime(double seconds) { double goal_time = current_time_ + seconds; while (current_time_ < goal_time) { if (timers_.empty()) { current_time_ = goal_time; } else { Timer t = timers_.top(); timers_.pop(); ASSERT_GE(t.expiry_time, current_time_); current_time_ = t.expiry_time; cdm_->TimerExpired(t.context); } } } void TestHost::GetPlatformString(const std::string& name, std::string* value) { *value = platform_strings_[name]; } void TestHost::SetPlatformString(const std::string& name, const std::string& value) { platform_strings_[name] = value; } int TestHost::KeyMessagesSize() const { return key_messages_.size(); } int TestHost::KeyErrorsSize() const { return key_errors_.size(); } int TestHost::NumTimers() const { return timers_.size(); } TestHost::KeyMessage TestHost::GetLastKeyMessage() { if (!has_new_key_message_) { LOGD("No NEW"); return KeyMessage(); } if (key_messages_.empty()) { LOGD("empty"); return KeyMessage(); } LOGD("not empty"); has_new_key_message_ = false; return key_messages_.back(); } TestHost::KeyError TestHost::GetLastKeyError() { if (!has_new_key_error_) return KeyError(); if (key_errors_.empty()) return KeyError(); has_new_key_error_ = false; return key_errors_.back(); } TestHost::KeyMessage TestHost::GetKeyMessage(int index) const { return key_messages_[index]; } TestHost::KeyError TestHost::GetKeyError(int index) const { return key_errors_[index]; } void TestHost::SetCdmPtr(cdm::ContentDecryptionModule* cdm) { if (cdm_) { cdm_->Destroy(); } cdm_ = cdm; } class TestDecryptedBlock : public cdm::DecryptedBlock { public: TestDecryptedBlock(); virtual ~TestDecryptedBlock(); virtual void SetDecryptedBuffer(cdm::Buffer* buffer) OVERRIDE; virtual cdm::Buffer* DecryptedBuffer() OVERRIDE; virtual void SetTimestamp(int64_t timestamp) OVERRIDE; virtual int64_t Timestamp() const OVERRIDE; private: cdm::Buffer* buffer_; int64_t timestamp_; CORE_DISALLOW_COPY_AND_ASSIGN(TestDecryptedBlock); }; TestDecryptedBlock::TestDecryptedBlock() : buffer_(NULL), timestamp_(0) {} TestDecryptedBlock::~TestDecryptedBlock() { if (buffer_) { buffer_->Destroy(); buffer_ = NULL; } } void TestDecryptedBlock::SetDecryptedBuffer(cdm::Buffer* buffer) { if (buffer_) buffer_->Destroy(); buffer_ = buffer; } cdm::Buffer* TestDecryptedBlock::DecryptedBuffer() { return buffer_; } void TestDecryptedBlock::SetTimestamp(int64_t timestamp) { timestamp_ = timestamp; } int64_t TestDecryptedBlock::Timestamp() const { return timestamp_; } namespace { // Default license server, can be configured using --server command line option // Default key id (pssh), can be configured using --keyid command line option const char kKeySystemWidevine[] = "com.widevine.alpha"; std::string g_client_auth; wvcdm::KeyId g_key_id; std::string g_license_server; wvcdm::KeyId g_wrong_key_id; void* GetCdmHost(int host_interface_version, void* user_data) { if (host_interface_version != cdm::kHostInterfaceVersion) return NULL; return user_data; } } // namespace namespace wvcdm { class WvCdmApiTest : public testing::Test { public: WvCdmApiTest() : cdm_(NULL) {} ~WvCdmApiTest() {} protected: virtual void SetUp() { // Create the Host. host_.reset(new TestHost()); // Set various parameters that the CDM will query. host_->SetPlatformString("SecurityLevel", "L1"); host_->SetPlatformString("PrivacyOn", "False"); std::string cert(kDeviceCert, sizeof(kDeviceCert)); host_->SetPlatformString("DeviceCertificate", cert); // Initialize the CDM module before creating a CDM instance. INITIALIZE_CDM_MODULE(); // Create the CDM. cdm_ = reinterpret_cast(::CreateCdmInstance( cdm::kCdmInterfaceVersion, kKeySystemWidevine, strlen(kKeySystemWidevine), GetCdmHost, host_.get())); // Tell the Host about the CDM. host_->SetCdmPtr(cdm_); } cdm::Status GenerateKeyRequest(const std::string& init_data) { cdm::Status status = cdm_->GenerateKeyRequest( NULL, 0, (const uint8_t*)init_data.data(), init_data.length()); return status; } // posts a request and extracts the drm message from the response std::string GetKeyRequestResponse(const TestHost::KeyMessage& key_msg) { std::string url; if (key_msg.default_url.empty()) { url = g_license_server + g_client_auth; } else { // Note that the client auth string is not appended when the CDM tells // us what URL to use. url = key_msg.default_url; } UrlRequest url_request(url); EXPECT_TRUE(url_request.is_connected()); if (!url_request.is_connected()) { return ""; } url_request.PostRequest(key_msg.message); std::string response; int resp_bytes = url_request.GetResponse(&response); // Some license servers return 400 for invalid message, some // return 500; treat anything other than 200 as an invalid message. int status_code = url_request.GetStatusCode(response); EXPECT_EQ(kHttpOk, status_code); if (status_code != kHttpOk) { return ""; } else { std::string drm_msg; LicenseRequest lic_request; lic_request.GetDrmMessage(response, drm_msg); LOGV("drm msg: %u bytes\n%s", drm_msg.size(), HexEncode(reinterpret_cast(drm_msg.data()), drm_msg.size()).c_str()); return drm_msg; } } void ProcessKeyResponse() { TestHost::KeyMessage key_msg = host_->GetLastKeyMessage(); EXPECT_TRUE(key_msg.default_url.empty()); std::string drm_msg = GetKeyRequestResponse(key_msg); EXPECT_EQ(cdm::kSuccess, AddKey(key_msg.session_id, drm_msg)); } void ProcessKeyRenewalResponse() { TestHost::KeyMessage key_msg = host_->GetLastKeyMessage(); EXPECT_FALSE(key_msg.default_url.empty()); std::string drm_msg = GetKeyRequestResponse(key_msg); EXPECT_EQ(cdm::kSuccess, AddKey(key_msg.session_id, drm_msg)); } void CloseSession(const std::string& session_id) { cdm::Status status = cdm_->CloseSession(session_id.data(), session_id.length()); EXPECT_EQ(cdm::kSuccess, status); } cdm::Status AddKey(const std::string& session_id, const std::string& drm_msg) { cdm::Status status = cdm_->AddKey(session_id.data(), session_id.size(), (const uint8_t*)drm_msg.data(), drm_msg.size(), NULL, 0); return status; } // Level 1 / Level 2 payload comes back in the cpu memory as cleartext. void DecryptClearPayloadTest() { typedef struct DecryptionData { bool is_encrypted; bool is_secure; wvcdm::KeyId key_id; std::vector encrypt_data; std::vector iv; size_t block_offset; std::vector decrypt_data; } DecryptionData; DecryptionData data; data.is_encrypted = true; data.is_secure = false; // Key ID of key used to encrypt the test content. // This is used by the secure layer to look up the content key data.key_id = wvcdm::a2bs_hex("371ea35e1a985d75d198a7f41020dc23"); // Dummy encrypted data. data.encrypt_data = wvcdm::a2b_hex( "64ab17b3e3dfab47245c7cce4543d4fc7a26dcf248f19f9b59f3c92601440b36" "17c8ed0c96c656549e461f38708cd47a434066f8df28ccc28b79252eee3f9c2d" "7f6c68ebe40141fe818fe082ca523c03d69ddaf183a93c022327fedc5582c5ab" "ca9d342b71263a67f9cb2336f12108aaaef464f17177e44e9b0c4e56e61da53c" "2150b4405cc82d994dfd9bf4087c761956d6688a9705db4cf350381085f383c4" "9666d4aed135c519c1f0b5cba06e287feea96ea367bf54e7368dcf998276c6e4" "6497e0c50e20fef74e42cb518fe7f22ef27202428688f86404e8278587017012" "c1d65537c6cbd7dde04aae338d68115a9f430afc100ab83cdadf45dca39db685"); data.iv = wvcdm::a2b_hex("f6f4b1e600a5b67813ed2bded913ba9f"); data.block_offset = 0; // Expected decrypted data. data.decrypt_data = wvcdm::a2b_hex( "217ce9bde99bd91e9733a1a00b9b557ac3a433dc92633546156817fae26b6e1c" "942ac20a89ff79f4c2f25fba99d6a44618a8c0420b27d54e3da17b77c9d43cca" "595d259a1e4a8b6d7744cd98c5d3f921adc252eb7d8af6b916044b676a574747" "8df21fdc42f166880d97a2225cd5c9ea5e7b752f4cf81bbdbe98e542ee10e1c6" "ad868a6ac55c10d564fc23b8acff407daaf4ed2743520e02cda9680d9ea88e91" "029359c4cf5906b6ab5bf60fbb3f1a1c7c59acfc7e4fb4ad8e623c04d503a3dd" "4884604c8da8a53ce33db9ff8f1c5bb6bb97f37b39906bf41596555c1bcce9ed" "08a899cd760ff0899a1170c2f224b9c52997a0785b7fe170805fd3e8b1127659"); cdm::InputBuffer buf; buf.data = &data.encrypt_data[0]; buf.data_size = data.encrypt_data.size(); buf.key_id = (const uint8_t*)&data.key_id[0]; buf.key_id_size = data.key_id.length(); buf.iv = &data.iv[0]; buf.iv_size = data.iv.size(); buf.data_offset = 0; cdm::SubsampleEntry sub(0, buf.data_size); buf.subsamples = ⊂ buf.num_subsamples = 1; buf.timestamp = 10; TestDecryptedBlock output; cdm::Status status = cdm_->Decrypt(buf, &output); EXPECT_EQ(cdm::kSuccess, status); EXPECT_EQ(0, memcmp(output.DecryptedBuffer()->Data(), &data.decrypt_data[0], buf.data_size)); } // Level 1 / Level 2 payload comes back in the cpu memory as cleartext. void DecryptClearSubsampleTest() { typedef struct DecryptionData { bool is_encrypted; bool is_secure; wvcdm::KeyId key_id; std::vector encrypt_data; std::vector iv; size_t block_offset; std::vector decrypt_data; } DecryptionData; DecryptionData data; data.is_encrypted = true; data.is_secure = false; // Key ID of key used to encrypt the test content. // This is used by the secure layer to look up the content key data.key_id = wvcdm::a2bs_hex("371ea35e1a985d75d198a7f41020dc23"); // Dummy encrypted data. This is a combination of clear and // encrypted data. data.encrypt_data = wvcdm::a2b_hex( // subsample 0 "abcdef" "53cc758763904ea5870458e6b23d36db1e6d7f7aaa2f3eeebb5393a7264991e7" "ce4f57b198326e1a208a821799b2a29c90567ab57321b06e51fc20dc9bc5fc55" "10720a8bb1f5e002c3e50ff70d2d806a9432cad237050d09581f5b0d59b00090" "b3ad69b4087f5a155b17e13c44d33fa007475d207fc4ac2ef3b571ecb9" // subsample 1 "0123456789" "f3c852" "ce00dc4806f0c6856ae1732e20308096478e1d822d75c2bb768119565d3bd6e6" "901e36164f4802355ee758fc46ef6cf5f852dd5256c7b1e5f96d29" // subsample 2 "deadbeefbaadf00d" "3b20525d5e" "78b8e5aa344d5c4e425e67ddf889ea7c4bb1d49af67eba67718b765e0a940402" "8d306f4ce693ad6dc0a931d507fa14fff4d293d4170280b3e0fca2d628f722e8" ); data.iv = wvcdm::a2b_hex("6ba18dd40f49da7f64c368e4db43fc88"); data.block_offset = 0; // Expected decrypted data. data.decrypt_data = wvcdm::a2b_hex( // subsample 0 "abcdef" "52e65334501acadf78e2b26460def3ac973771ed7c64001a2e82917342a7eab3" "047f5e85449692fae8f677be425a47bdea850df5a3ffff17043afb1f2b437ab2" "b1d5e0784c4ed8f97fc24b8f565e85ed63fb7d1365980d9aea7b8b58f488f83c" "1ce80b6096c60f3b113c988ff185b26e798da8fc6f327e4ff00e4b3fbf" // subsample 1 "0123456789" "b1ed0a" "a054bce40ccb0ebc70b181d1a12055f46ac55e29c7c2473a29d2a366d240ec48" "7cede274f012813a877f99159e7062b6a37cfc9327a7bc2195814e" // subsample 2 "deadbeefbaadf00d" "653b818d1d" "4ab9a9128361d8ca6a9d2766df5c096ee29f4f5204febdf217a94a5b560cd692" "cc36d3e071df789fdeac2fb7ec6dcd7af94bb1f85c22025b25e702e38212b927" ); cdm::InputBuffer buf; buf.data = &data.encrypt_data[0]; buf.data_size = data.encrypt_data.size(); buf.key_id = (const uint8_t*) &data.key_id[0]; buf.key_id_size = data.key_id.length(); buf.iv = &data.iv[0]; buf.iv_size = data.iv.size(); buf.data_offset = 0; std::vector sub; sub.push_back(cdm::SubsampleEntry(3, 125)); sub.push_back(cdm::SubsampleEntry(5, 62)); sub.push_back(cdm::SubsampleEntry(8, 69)); buf.subsamples = &sub[0]; buf.num_subsamples = sub.size(); buf.timestamp = 10; TestDecryptedBlock output; cdm::Status status = cdm_->Decrypt(buf, &output); EXPECT_EQ(cdm::kSuccess, status); EXPECT_EQ( 0, memcmp(output.DecryptedBuffer()->Data(), &data.decrypt_data[0], buf.data_size)); } void DecryptClearSubsampleTestWithMissingSubsampleInfo() { typedef struct DecryptionData { bool is_encrypted; bool is_secure; wvcdm::KeyId key_id; std::vector encrypt_data; std::vector iv; size_t block_offset; std::vector decrypt_data; } DecryptionData; DecryptionData data; data.is_encrypted = true; data.is_secure = false; // Key ID of key used to encrypt the test content. // This is used by the secure layer to look up the content key data.key_id = wvcdm::a2bs_hex("371ea35e1a985d75d198a7f41020dc23"); // Dummy encrypted data. This is a combination of clear and // encrypted data. data.encrypt_data = wvcdm::a2b_hex( // subsample 0 "abcdef" "53cc758763904ea5870458e6b23d36db1e6d7f7aaa2f3eeebb5393a7264991e7" "ce4f57b198326e1a208a821799b2a29c90567ab57321b06e51fc20dc9bc5fc55" "10720a8bb1f5e002c3e50ff70d2d806a9432cad237050d09581f5b0d59b00090" "b3ad69b4087f5a155b17e13c44d33fa007475d207fc4ac2ef3b571ecb9" // subsample 1 "0123456789" "f3c852" "ce00dc4806f0c6856ae1732e20308096478e1d822d75c2bb768119565d3bd6e6" "901e36164f4802355ee758fc46ef6cf5f852dd5256c7b1e5f96d29" // subsample 2 "deadbeefbaadf00d" "3b20525d5e" "78b8e5aa344d5c4e425e67ddf889ea7c4bb1d49af67eba67718b765e0a940402" "8d306f4ce693ad6dc0a931d507fa14fff4d293d4170280b3e0fca2d628f722e8" ); data.iv = wvcdm::a2b_hex("6ba18dd40f49da7f64c368e4db43fc88"); data.block_offset = 0; // Expected decrypted data. data.decrypt_data = wvcdm::a2b_hex( // subsample 0 "abcdef" "52e65334501acadf78e2b26460def3ac973771ed7c64001a2e82917342a7eab3" "047f5e85449692fae8f677be425a47bdea850df5a3ffff17043afb1f2b437ab2" "b1d5e0784c4ed8f97fc24b8f565e85ed63fb7d1365980d9aea7b8b58f488f83c" "1ce80b6096c60f3b113c988ff185b26e798da8fc6f327e4ff00e4b3fbf" // subsample 1 "0123456789" "b1ed0a" "a054bce40ccb0ebc70b181d1a12055f46ac55e29c7c2473a29d2a366d240ec48" "7cede274f012813a877f99159e7062b6a37cfc9327a7bc2195814e" // subsample 2 "deadbeefbaadf00d" "653b818d1d" "4ab9a9128361d8ca6a9d2766df5c096ee29f4f5204febdf217a94a5b560cd692" "cc36d3e071df789fdeac2fb7ec6dcd7af94bb1f85c22025b25e702e38212b927" ); cdm::InputBuffer buf; buf.data = &data.encrypt_data[0]; buf.data_size = data.encrypt_data.size(); buf.key_id = (const uint8_t*)&data.key_id[0]; buf.key_id_size = data.key_id.length(); buf.iv = &data.iv[0]; buf.iv_size = data.iv.size(); buf.data_offset = 0; std::vector sub; sub.push_back(cdm::SubsampleEntry(3, 125)); sub.push_back(cdm::SubsampleEntry(5, 62)); sub.push_back(cdm::SubsampleEntry(8, 69)); //buf.subsamples = &sub[0]; //buf.num_subsamples = sub.size(); buf.timestamp = 10; TestDecryptedBlock output; cdm::Status status = cdm_->Decrypt(buf, &output); EXPECT_EQ(cdm::kDecryptError, status); buf.subsamples = &sub[0]; status = cdm_->Decrypt(buf, &output); EXPECT_EQ(cdm::kDecryptError, status); buf.num_subsamples = sub.size(); status = cdm_->Decrypt(buf, &output); EXPECT_EQ(cdm::kSuccess, status); EXPECT_EQ(0, memcmp(output.DecryptedBuffer()->Data(), &data.decrypt_data[0], buf.data_size)); buf.subsamples = NULL; status = cdm_->Decrypt(buf, &output); EXPECT_EQ(cdm::kDecryptError, status); } // Level 1 passes encrypted payload straight through. By calling the // CDM's DecryptDecodeAndRenderSamples, and/or DecryptDecodeAndRenderFrame, // OEMCrypto_DecryptCTR will be told to use Direct Rendering. void SecureDecryptLevel1Test() { typedef struct DecryptionData { bool is_encrypted; bool is_secure; wvcdm::KeyId key_id; std::vector encrypt_data; std::vector iv; size_t block_offset; std::vector decrypt_data; } DecryptionData; DecryptionData data; data.is_encrypted = true; data.is_secure = false; // Key ID of key used to encrypt the test content. // This is used by the secure layer to look up the content key data.key_id = wvcdm::a2bs_hex("371ea35e1a985d75d198a7f41020dc23"); // Dummy encrypted data. data.encrypt_data = wvcdm::a2b_hex( "64ab17b3e3dfab47245c7cce4543d4fc7a26dcf248f19f9b59f3c92601440b36" "17c8ed0c96c656549e461f38708cd47a434066f8df28ccc28b79252eee3f9c2d" "7f6c68ebe40141fe818fe082ca523c03d69ddaf183a93c022327fedc5582c5ab" "ca9d342b71263a67f9cb2336f12108aaaef464f17177e44e9b0c4e56e61da53c" "2150b4405cc82d994dfd9bf4087c761956d6688a9705db4cf350381085f383c4" "9666d4aed135c519c1f0b5cba06e287feea96ea367bf54e7368dcf998276c6e4" "6497e0c50e20fef74e42cb518fe7f22ef27202428688f86404e8278587017012" "c1d65537c6cbd7dde04aae338d68115a9f430afc100ab83cdadf45dca39db685"); data.iv = wvcdm::a2b_hex("f6f4b1e600a5b67813ed2bded913ba9f"); data.block_offset = 0; // Expected decrypted data. data.decrypt_data = wvcdm::a2b_hex( "217ce9bde99bd91e9733a1a00b9b557ac3a433dc92633546156817fae26b6e1c" "942ac20a89ff79f4c2f25fba99d6a44618a8c0420b27d54e3da17b77c9d43cca" "595d259a1e4a8b6d7744cd98c5d3f921adc252eb7d8af6b916044b676a574747" "8df21fdc42f166880d97a2225cd5c9ea5e7b752f4cf81bbdbe98e542ee10e1c6" "ad868a6ac55c10d564fc23b8acff407daaf4ed2743520e02cda9680d9ea88e91" "029359c4cf5906b6ab5bf60fbb3f1a1c7c59acfc7e4fb4ad8e623c04d503a3dd" "4884604c8da8a53ce33db9ff8f1c5bb6bb97f37b39906bf41596555c1bcce9ed" "08a899cd760ff0899a1170c2f224b9c52997a0785b7fe170805fd3e8b1127659"); cdm::InputBuffer buf; buf.data = &data.encrypt_data[0]; buf.data_size = data.encrypt_data.size(); buf.key_id = (const uint8_t*)&data.key_id[0]; buf.key_id_size = data.key_id.length(); buf.iv = &data.iv[0]; buf.iv_size = data.iv.size(); buf.data_offset = 0; cdm::SubsampleEntry sub(0, buf.data_size); buf.subsamples = ⊂ buf.num_subsamples = 1; buf.timestamp = 10; cdm::Status status; status = cdm_->DecryptDecodeAndRenderSamples(buf); EXPECT_EQ(cdm::kSuccess, status); status = cdm_->DecryptDecodeAndRenderFrame(buf); EXPECT_EQ(cdm::kSuccess, status); } // Level 1 passes encrypted payload straight through. By calling the // CDM's DecryptDecodeAndRenderSamples, and/or DecryptDecodeAndRenderFrame, // OEMCrypto_DecryptCTR will be told to use Direct Rendering. void SecureDecryptLevel1MultipleSubsamplesTest() { typedef struct DecryptionData { bool is_encrypted; bool is_secure; wvcdm::KeyId key_id; std::vector encrypt_data; std::vector iv; size_t block_offset; std::vector decrypt_data; } DecryptionData; DecryptionData data; data.is_encrypted = true; data.is_secure = false; // Key ID of key used to encrypt the test content. // This is used by the secure layer to look up the content key data.key_id = wvcdm::a2bs_hex("371ea35e1a985d75d198a7f41020dc23"); // Dummy encrypted data. This is a combination of clear and // encrypted data. data.encrypt_data = wvcdm::a2b_hex( // subsample 0 "abcdef" "53cc758763904ea5870458e6b23d36db1e6d7f7aaa2f3eeebb5393a7264991e7" "ce4f57b198326e1a208a821799b2a29c90567ab57321b06e51fc20dc9bc5fc55" "10720a8bb1f5e002c3e50ff70d2d806a9432cad237050d09581f5b0d59b00090" "b3ad69b4087f5a155b17e13c44d33fa007475d207fc4ac2ef3b571ecb9" // subsample 1 "0123456789" "f3c852" "ce00dc4806f0c6856ae1732e20308096478e1d822d75c2bb768119565d3bd6e6" "901e36164f4802355ee758fc46ef6cf5f852dd5256c7b1e5f96d29" // subsample 2 "deadbeefbaadf00d" "3b20525d5e" "78b8e5aa344d5c4e425e67ddf889ea7c4bb1d49af67eba67718b765e0a940402" "8d306f4ce693ad6dc0a931d507fa14fff4d293d4170280b3e0fca2d628f722e8" ); data.iv = wvcdm::a2b_hex("6ba18dd40f49da7f64c368e4db43fc88"); data.block_offset = 0; // Expected decrypted data. data.decrypt_data = wvcdm::a2b_hex( // subsample 0 "abcdef" "52e65334501acadf78e2b26460def3ac973771ed7c64001a2e82917342a7eab3" "047f5e85449692fae8f677be425a47bdea850df5a3ffff17043afb1f2b437ab2" "b1d5e0784c4ed8f97fc24b8f565e85ed63fb7d1365980d9aea7b8b58f488f83c" "1ce80b6096c60f3b113c988ff185b26e798da8fc6f327e4ff00e4b3fbf" // subsample 1 "0123456789" "b1ed0a" "a054bce40ccb0ebc70b181d1a12055f46ac55e29c7c2473a29d2a366d240ec48" "7cede274f012813a877f99159e7062b6a37cfc9327a7bc2195814e" // subsample 2 "deadbeefbaadf00d" "653b818d1d" "4ab9a9128361d8ca6a9d2766df5c096ee29f4f5204febdf217a94a5b560cd692" "cc36d3e071df789fdeac2fb7ec6dcd7af94bb1f85c22025b25e702e38212b927" ); cdm::InputBuffer buf; buf.data = &data.encrypt_data[0]; buf.data_size = data.encrypt_data.size(); buf.key_id = (const uint8_t*)&data.key_id[0]; buf.key_id_size = data.key_id.length(); buf.iv = &data.iv[0]; buf.iv_size = data.iv.size(); buf.data_offset = 0; std::vector sub; sub.push_back(cdm::SubsampleEntry(3, 125)); sub.push_back(cdm::SubsampleEntry(5, 62)); sub.push_back(cdm::SubsampleEntry(8, 69)); buf.subsamples = &sub[0]; buf.num_subsamples = sub.size(); buf.timestamp = 10; cdm::Status status; status = cdm_->DecryptDecodeAndRenderSamples(buf); EXPECT_EQ(cdm::kSuccess, status); status = cdm_->DecryptDecodeAndRenderFrame(buf); EXPECT_EQ(cdm::kSuccess, status); } void WithMissingSubsampleInfoTest() { typedef struct DecryptionData { bool is_encrypted; bool is_secure; wvcdm::KeyId key_id; std::vector encrypt_data; std::vector iv; size_t block_offset; std::vector decrypt_data; } DecryptionData; DecryptionData data; data.is_encrypted = true; data.is_secure = false; // Key ID of key used to encrypt the test content. // This is used by the secure layer to look up the content key data.key_id = wvcdm::a2bs_hex("371ea35e1a985d75d198a7f41020dc23"); // Dummy encrypted data. data.encrypt_data = wvcdm::a2b_hex( // subsample 0 "abcdef" "53cc758763904ea5870458e6b23d36db1e6d7f7aaa2f3eeebb5393a7264991e7" "ce4f57b198326e1a208a821799b2a29c90567ab57321b06e51fc20dc9bc5fc55" "10720a8bb1f5e002c3e50ff70d2d806a9432cad237050d09581f5b0d59b00090" "b3ad69b4087f5a155b17e13c44d33fa007475d207fc4ac2ef3b571ecb9" // subsample 1 "0123456789" "f3c852" "ce00dc4806f0c6856ae1732e20308096478e1d822d75c2bb768119565d3bd6e6" "901e36164f4802355ee758fc46ef6cf5f852dd5256c7b1e5f96d29" // subsample 2 "deadbeefbaadf00d" "3b20525d5e" "78b8e5aa344d5c4e425e67ddf889ea7c4bb1d49af67eba67718b765e0a940402" "8d306f4ce693ad6dc0a931d507fa14fff4d293d4170280b3e0fca2d628f722e8" ); data.iv = wvcdm::a2b_hex("6ba18dd40f49da7f64c368e4db43fc88"); data.block_offset = 0; // Expected decrypted data. data.decrypt_data = wvcdm::a2b_hex( // subsample 0 "abcdef" "52e65334501acadf78e2b26460def3ac973771ed7c64001a2e82917342a7eab3" "047f5e85449692fae8f677be425a47bdea850df5a3ffff17043afb1f2b437ab2" "b1d5e0784c4ed8f97fc24b8f565e85ed63fb7d1365980d9aea7b8b58f488f83c" "1ce80b6096c60f3b113c988ff185b26e798da8fc6f327e4ff00e4b3fbf" // subsample 1 "0123456789" "b1ed0a" "a054bce40ccb0ebc70b181d1a12055f46ac55e29c7c2473a29d2a366d240ec48" "7cede274f012813a877f99159e7062b6a37cfc9327a7bc2195814e" // subsample 2 "deadbeefbaadf00d" "653b818d1d" "4ab9a9128361d8ca6a9d2766df5c096ee29f4f5204febdf217a94a5b560cd692" "cc36d3e071df789fdeac2fb7ec6dcd7af94bb1f85c22025b25e702e38212b927" ); cdm::InputBuffer buf; buf.data = &data.encrypt_data[0]; buf.data_size = data.encrypt_data.size(); buf.key_id = (const uint8_t*)&data.key_id[0]; buf.key_id_size = data.key_id.length(); buf.iv = &data.iv[0]; buf.iv_size = data.iv.size(); buf.data_offset = 0; std::vector sub; sub.push_back(cdm::SubsampleEntry(3, 125)); sub.push_back(cdm::SubsampleEntry(5, 62)); sub.push_back(cdm::SubsampleEntry(8, 69)); buf.timestamp = 10; cdm::Status status; status = cdm_->DecryptDecodeAndRenderSamples(buf); EXPECT_EQ(cdm::kDecryptError, status); status = cdm_->DecryptDecodeAndRenderFrame(buf); EXPECT_EQ(cdm::kDecryptError, status); buf.subsamples = &sub[0]; status = cdm_->DecryptDecodeAndRenderSamples(buf); EXPECT_EQ(cdm::kDecryptError, status); status = cdm_->DecryptDecodeAndRenderFrame(buf); EXPECT_EQ(cdm::kDecryptError, status); buf.num_subsamples = sub.size(); status = cdm_->DecryptDecodeAndRenderSamples(buf); EXPECT_EQ(cdm::kSuccess, status); status = cdm_->DecryptDecodeAndRenderFrame(buf); EXPECT_EQ(cdm::kSuccess, status); buf.subsamples = NULL; status = cdm_->DecryptDecodeAndRenderSamples(buf); EXPECT_EQ(cdm::kDecryptError, status); status = cdm_->DecryptDecodeAndRenderFrame(buf); EXPECT_EQ(cdm::kDecryptError, status); } cdm::ContentDecryptionModule* cdm_; // owned by host_ scoped_ptr host_; }; class DummyCDM : public cdm::ContentDecryptionModule { public: DummyCDM() : timer_fired_(false), last_context_(NULL) {} virtual cdm::Status GenerateKeyRequest(const char*, int, const uint8_t*, int) OVERRIDE { return cdm::kSessionError; } virtual cdm::Status AddKey(const char*, int, const uint8_t*, int, const uint8_t*, int) OVERRIDE { return cdm::kSessionError; } virtual bool IsKeyValid(const uint8_t*, int) OVERRIDE { return false; } virtual cdm::Status CloseSession(const char*, int) OVERRIDE { return cdm::kSessionError; } virtual void TimerExpired(void* context) OVERRIDE { timer_fired_ = true; last_context_ = context; } virtual cdm::Status Decrypt(const cdm::InputBuffer&, cdm::DecryptedBlock*) OVERRIDE { return cdm::kSessionError; } virtual cdm::Status DecryptDecodeAndRenderFrame(const cdm::InputBuffer&) OVERRIDE { return cdm::kSessionError; } virtual cdm::Status DecryptDecodeAndRenderSamples(const cdm::InputBuffer&) OVERRIDE { return cdm::kSessionError; } virtual void Destroy() OVERRIDE { delete this; } virtual cdm::Status GetProvisioningRequest(std::string*, std::string*) OVERRIDE { return cdm::kSessionError; } virtual cdm::Status HandleProvisioningResponse(std::string&) OVERRIDE { return cdm::kSessionError; } bool TimerFired() const { return timer_fired_; } void* LastTimerContext() const { return last_context_; } void ResetTimerStatus() { timer_fired_ = false; last_context_ = NULL; } private: bool timer_fired_; void* last_context_; }; TEST_F(WvCdmApiTest, TestHostTimer) { // Validate that the TestHost timers are processed in the correct order. // To do this, we replace the cdm with a dummy that only tracks timers. DummyCDM* cdm = new DummyCDM(); // The old CDM is destroyed by SetCdmPtr. cdm_ = cdm; host_->SetCdmPtr(cdm); const double kTimerDelaySeconds = 1.0; const int64_t kTimerDelayMs = kTimerDelaySeconds * 1000; void* kCtx1 = reinterpret_cast(0x1); void* kCtx2 = reinterpret_cast(0x2); host_->SetTimer(kTimerDelayMs * 1, kCtx1); host_->SetTimer(kTimerDelayMs * 2, kCtx2); host_->FastForwardTime(kTimerDelaySeconds); EXPECT_TRUE(cdm->TimerFired()); EXPECT_EQ(kCtx1, cdm->LastTimerContext()); cdm->ResetTimerStatus(); host_->FastForwardTime(kTimerDelaySeconds); EXPECT_TRUE(cdm->TimerFired()); EXPECT_EQ(kCtx2, cdm->LastTimerContext()); cdm->ResetTimerStatus(); host_->FastForwardTime(kTimerDelaySeconds); EXPECT_FALSE(cdm->TimerFired()); } // Note that these tests, BaseMessageTest, NormalDecryption and TimeTest, // are dependent on getting back a license from the license server where the // url for the license server is defined in the conf_test_env.cpp. If these // tests fail immediately, verify that the license server URL is correct // and works in your test environment. TEST_F(WvCdmApiTest, DeviceCertificateTest) { // Clear any existing device cert. host_->SetPlatformString("DeviceCertificate", ""); ASSERT_EQ(cdm::kNeedsDeviceCertificate, GenerateKeyRequest(g_key_id)); // The Host must handle the certificate provisioning request. std::string server_url; std::string request; cdm::Status status = cdm_->GetProvisioningRequest(&request, &server_url); ASSERT_EQ(cdm::kSuccess, status); UrlRequest url_request(server_url); url_request.PostCertRequestInQueryString(request); std::string message; bool ok = url_request.GetResponse(&message); ASSERT_TRUE(ok); status = cdm_->HandleProvisioningResponse(message); ASSERT_EQ(cdm::kSuccess, status); // Now we are provisioned, so GKR should succeed. EXPECT_EQ(cdm::kSuccess, GenerateKeyRequest(g_key_id)); } TEST_F(WvCdmApiTest, BaseMessageTest) { EXPECT_EQ(cdm::kSuccess, GenerateKeyRequest(g_key_id)); ProcessKeyResponse(); } TEST_F(WvCdmApiTest, NormalDecryption) { EXPECT_EQ(cdm::kSuccess, GenerateKeyRequest(g_key_id)); ProcessKeyResponse(); DecryptClearPayloadTest(); } TEST_F(WvCdmApiTest, NormalSubSampleDecryptionWithSubsampleInfo) { EXPECT_EQ(cdm::kSuccess, GenerateKeyRequest(g_key_id)); ProcessKeyResponse(); DecryptClearSubsampleTest(); } TEST_F(WvCdmApiTest, NormalSubSampleDecryptionWithMissingSubsampleInfo) { EXPECT_EQ(cdm::kSuccess, GenerateKeyRequest(g_key_id)); ProcessKeyResponse(); DecryptClearSubsampleTestWithMissingSubsampleInfo(); } TEST_F(WvCdmApiTest, TimeTest) { EXPECT_EQ(cdm::kSuccess, GenerateKeyRequest(g_key_id)); ProcessKeyResponse(); // We expect that by the time we've added a key, the CDM has set a timer. // Otherwise, it couldn't correctly handle renewal. EXPECT_NE(0, host_->NumTimers()); host_->FastForwardTime(kTestPolicyRenewalDelaySeconds + kDelayWaitToForRenewalMessageSeconds); // When the timer expired, we should have sent a renewal, so we can // add this renewed key now, assuming things are working as expected. ProcessKeyRenewalResponse(); } TEST_F(WvCdmApiTest, SecureDecryptionLevel1) { EXPECT_EQ(cdm::kSuccess, GenerateKeyRequest(g_key_id)); ProcessKeyResponse(); SecureDecryptLevel1Test(); } TEST_F(WvCdmApiTest, SecureDecryptionLevel1WithSubsampleInfo) { EXPECT_EQ(cdm::kSuccess, GenerateKeyRequest(g_key_id)); ProcessKeyResponse(); SecureDecryptLevel1MultipleSubsamplesTest(); } TEST_F(WvCdmApiTest, SecureDecryptionLevel1WithMissingSubsampleInfo) { EXPECT_EQ(cdm::kSuccess, GenerateKeyRequest(g_key_id)); ProcessKeyResponse(); WithMissingSubsampleInfoTest(); } TEST_F(WvCdmApiTest, GenerateKeyRequestFailureSendsKeyError) { // Pass a bogus key id and expect failure. EXPECT_EQ(cdm::kSessionError, GenerateKeyRequest("")); // Expect the CDM to pass a key error back to the host. EXPECT_EQ(1, host_->KeyErrorsSize()); } TEST_F(WvCdmApiTest, AddKeyFailureSendsKeyError) { EXPECT_EQ(cdm::kSuccess, GenerateKeyRequest(g_key_id)); // Get the message and response. TestHost::KeyMessage key_msg = host_->GetLastKeyMessage(); EXPECT_TRUE(key_msg.default_url.empty()); std::string drm_msg = GetKeyRequestResponse(key_msg); // Call AddKey with a bad session id and expect failure. EXPECT_EQ(cdm::kSessionError, AddKey("BLAH", drm_msg)); // Expect the CDM to pass a key error back to the host. EXPECT_EQ(1, host_->KeyErrorsSize()); // Call AddKey with a bad license and expect failure. EXPECT_EQ(cdm::kSessionError, AddKey(key_msg.session_id, "BLAH")); // Expect the CDM to pass one more key error back to the host. EXPECT_EQ(2, host_->KeyErrorsSize()); } } // namespace wvcdm int main(int argc, char** argv) { ::testing::InitGoogleTest(&argc, argv); wvcdm::InitLogging(argc, argv); wvcdm::ConfigTestEnv config(wvcdm::kContentProtectionServer); g_client_auth.assign(config.client_auth()); g_wrong_key_id.assign(config.wrong_key_id()); // The following variables are configurable through command line options. g_license_server.assign(config.license_server()); g_key_id.assign(config.key_id()); std::string license_server(g_license_server); int show_usage = 0; static const struct option long_options[] = { {"keyid", required_argument, NULL, 'k'}, {"server", required_argument, NULL, 's'}, {NULL, 0, NULL, '\0'}}; int option_index = 0; int opt = 0; while ((opt = getopt_long(argc, argv, "k:s:v", long_options, &option_index)) != -1) { switch (opt) { case 'k': { g_key_id.clear(); g_key_id.assign(optarg); break; } case 's': { g_license_server.clear(); g_license_server.assign(optarg); break; } case 'v': { // This option has already been consumed by wvcdm::InitLogging() above. // We only tell getopt about it so that it is not an error. We ignore // the option here when seen. // TODO: Stop passing argv to InitLogging, and instead set the log // level here through the logging API. We should keep all command-line // parsing at the application level, rather than split between various // apps and various platform-specific logging implementations. break; } case '?': { show_usage = 1; break; } } } if (show_usage) { std::cout << std::endl; std::cout << "usage: " << argv[0] << " [options]" << std::endl << std::endl; std::cout << std::setw(30) << std::left << " --server="; std::cout << "configure the license server url, please include http[s] in the url" << std::endl; std::cout << std::setw(30) << std::left << " "; std::cout << "default: " << license_server << std::endl; std::cout << std::setw(30) << std::left << " --keyid="; std::cout << "configure the key id or pssh, in hex format" << std::endl; std::cout << std::setw(30) << std::left << " default keyid:"; std::cout << g_key_id << std::endl; return 0; } std::cout << std::endl; std::cout << "Server: " << g_license_server << std::endl; std::cout << "KeyID: " << g_key_id << std::endl << std::endl; g_key_id = wvcdm::a2bs_hex(g_key_id); config.set_license_server(g_license_server); config.set_key_id(g_key_id); return RUN_ALL_TESTS(); }