O WIDEVINE

Widevine CE CDM v3.3.x
Integration Guide

Document version 2.3

Revision History

Version Date Description Author

0.1 2015-06-13 Initial draft. Joey Parrish

1.0 2015-06-18 Addresses internal feedback: fixed typographical Joey Parrish
consistency problems, corrected unclear language,
simplified API headings, corrected OpenSSL notes.

1.1 2015-09-11 Added new methods from v3.0.1 interface: Joey Parrish
Cdm::*AppParameter

1.2 2015-10-08 Most third party dependencies are now included, and | Joey Parrish
install_third_party.sh has been removed.

1.3 2015-12-04 v3.0.4 interface: updated type names and added Joey Parrish
kPersistentUsageRecord.

1.4 2015-12-15 v3.0.5: Add openssl_config gyp variable. Joey Parrish

2.0 2016-07-18 v3.1.0: New certificate provisioning flow, per-origin Gene Morgan, Jacob
storage, CENC 3.0 support, decryption of HLS Trimble, John Bruce
content, generic crypto operations and querying
allowed key usage.

2.1 2016-09-02 v3.1.1: Corrected provisioning URL parameter from Joey Parrish
signedMessage to signedRequest.

2.2 2016-12-12 Begin v3.2.x updates. Gene Morgan

2.2 2016-12-19 Add Cdm::setVideoResolution() Gene Morgan
Add Cdm::isProvisioned(), Cdm::removeProvisioning

2.2 2016-01-24 Add IStorage::list() Gene Morgan
Add Cdm::listStoredLicenses

2.2 2016-01-25 Support Provisioning v3.0 Gene Morgan

Removed default service certificates. Client must
supply valid service certificates for the provisioning
and license servers (see setServerCertificate() and

setDeviceProvisioningServerCertificate() for details.

23

2017-05-03

Support Provisioning v3.0

Added APIs for managing Service Certificates and
Usage Table Entries.

Added section describing Service Certificates.
Added section describing Provisioning Server
message formats.

Gene Morgan

Table of Contents
Purpose

Audience

External References

What is a CDM?

CE CDM Software Stack
For Browsers (HTML5/EME stack)
For Native Applications
Responsibilities
Build Requirements

Application Responsibilities

Networking
Device Certificate Provisioning

Certificate Provisioning Message Formats

Device Certificate Provisioning v3.0

Service Certificates

Storage
Clock

Timers

CDM APls
initialize
create
setServiceCertificate

getServiceCertificateRequest

parseServiceCertificateResponse
createSession

generateRequest

isProvisioned

removeProvisioning
removeUsageTable
listStoredLicenses

listUsageRecords

deleteUsageRecord
deleteAllUsageRecords
load

update

getExpiration
getKeyStatuses

getKeyAllowedUsages

close

remove

decrypt

setAppParameter, getAppParameter, removeAppParameter, clearAppParameters
genericEncrypt, genericDecrypt, genericSign, genericVerify

setVideoResolution

Using the CDM With HLS Content
Using the Correct CENC 3.0 Mode
Extra Start Code Emulation Prevention
Special Treatment of the Last 16 Bytes of a Video Frame

Build System
Compile-time Options and Configuration

oemcrypto_version

protobuf config

system

target
source

openssl _config

system
target
Alternative Build Systems
Tests
Porting
Assumptions and Alternatives
Locking
Logagin
Protobuf

Adding a New Platform
Testing Against Your Platform's OEMCrypto

Purpose

This document gives an overview of the Widevine CE CDM 3.2 software stack, explains
high-level components and responsibilities, and gives brief explanations of all CDM APIs. It
also documents the build system and explains the basics porting the CDM to a new platform.

You may also want to refer to Widevine Modular DRM Security Integration Guide for Common
Encryption (CENC), which documents the OEM-provided OEMCrypto library, a critical
component of the system.

Audience

This document is intended for:

e SOC and OEM device manufacturers who wish to deploy Widevine content protection on
embedded devices not running Android

e Application developers who wish to integrate the Widevine CDM directly into their
application in order to use Widevine content protection where it is not provided by the
platform

External References

Encrypted Media Extensions Specification: https://w3c.github.io/encrypted-media/

What is a CDM?

CDM stands for "Content Decryption Module". The term comes from the Encrypted Media
Extensions Specification (EME). This is a client-side component that provides content
protection services to an application, such as generating license requests and performing
decryption.

Although EME is specified in the context of a web browser, the Widevine CDM can be used for
content protection in other platforms and applications as well.

The Widevine CE CDM is intended for consumer electronics (CE) devices other than Android.
Android has its own Widevine implementation and uses a different API.

One CDM instance can have multiple sessions. Sessions are contexts for key management,
and are defined in more detail in the EME specification. One instance of the CE CDM library
can have multiple CDM instances.

https://w3c.github.io/encrypted-media/

The CDM instance is created and managed by a component that the EME specification calls a
User Agent. The user agent role may be fulfilled by a browser or a native application, as shown
in the following sections.

CE CDM Software Stack

For Browsers (HTML5/EME stack)

Figure 1 shows the architecture and playback flow for a browser integration of the Widevine CE

CDM.
MNetwork
[Llcensf__Server] L CDN] Services
] 2150 BMFF ar
8. License Request 9. License Response 1. HTTP GET WebM content
(Client Device | | h
f"ﬁmwser] H\'
HTMLS
application _ 3. EME
;- ._ 'Ewﬂr_‘r
7. EME ‘massags’ ewvet
4. createSession]) and
10. upciats() generatekeyRequest)
v media stack
S 2/
"~ 11. update() 5. createSession|] and 12 decrypt) A
CDM generateKeyRequest])
License Protocol Parser ,_] Palicy [Crypio Session
=
Key IDs Elementary Streams
(oEMCrypto OEMCrypto_LoadKeys() OEMCrypto |
| APt OEMCryplo_Renewkeys() OEMCrypio_Selectiey() OEMCrypto_Decrypt() |
[Trusted Execution Environment)
Secure DRM M decrypt/decode/render
M ’ o

Figure 1. HTMLS/EME Playback with Widevine CDM

Please note the basic components. The browser's media stack communicates with the CDM,
which in turn communicates with the trusted execution environment through OEMCrypto. The

media stack implements IEventListener, which the CDM will use to send information
asynchronously to the media stack and browser.

Also, please note the flow of events and information, numbered from 1 to 12 in this diagram.
The HTMLS5 application requests content from the CDN (1-2), and feeds it to the browser's
media stack. The media stack detects that the content is encrypted and sends an 'encrypted"’
event (3) to the application. The application uses EME APIs createSession() and
generateRequest (), which are then proxied to the CDM itself (4-5). The CDM sends a
message to the media stack, which is then proxied to the HTML5 application (6-7). The HTML5
application relays the license request to the license server, and passes the response back to the
CDM via the EME update() method (8-11). Finally, the media stack asks the CDM to decrypt
the content (12).

For Native Applications

Figure 2 shows the architecture and playback flow for a native application using the Widevine
CE CDM.

. Metwork
[License Server] L CDN] Services
. L 2. IS0 BMFF or
5 License Reques! 6. License Response 1. HTTP GET WebM comlent
(Client Device || h
 Native)
Application
media stack
e ~
"~ 7. updateq) 3. crealeSession|) and & decrypty))
CDM genemtakeyRequest)
Licanse Protocol Parsar] Policy : |' Crypto Session
J Engine l
Key IDs Elementary Straams
(OEMCrypto OEMCrypta_Loadieys() OEMCrypto h
APz OEMCrypto_Renewkeys() OEMCrypto_Sebectiay() OEMCrypto_Decrypt() |
(Trusted Execution Environment |
[Secure DRM JHE“—J decryptidecode/render]
b ’ -

Figure 2. Native Application Playback with Widevine CDM

Please note the basic components. Like in the HTML5 diagram above, the media stack
communicates with the CDM, which in turn communicates with the trusted execution
environment through OEMCrypto. The application implements IEventListener, which the
CDM will use to send information asynchronously to the application.

The flow of events and information, numbered 1-8, is very similar to the HTML5 diagram above,
but with less proxying.

The application requests content from the CDN (1-2), and feed it to the media stack. The media
stack detects that the content is encrypted and calls createSession() and
generateRequest() on the CDM (3). The CDM sends a message to the application, which
relays the license request to the license server and passes the response back to the CDM via
the update() method (4-7). Finally, the media stack asks the CDM to decrypt the content (8).

Responsibilities
The application is responsible for:

All networking and communications

All persistent storage (must implement interface IStorage)

All time-related functionality (must implement IClock)

All asynchronous timers (must implement ITimer)

Relaying messages to the license server and provisioning server (must implement

IEventListener)

e Managing service certificates for authenticating license server and provisioning server
transactions

e Managing the lifetime of CDM instances and the sessions contained within them

The CDM is responsible for:

e Generating license requests and interpreting license responses

e Enforcing content policies

e Managing crypto resources

e NOTE: The CDM has no networking or filesystem access except through the application.

OEMCrypto is responsible for:

Securely storing content keys
Securely decrypting content
Providing a root of trust for the system

NOTE: Some applications may use the CDM for license exchange only and bypass the CDM for
decryption, using instead either direct calls to OEMCrypto or to a private interface in the Trusted
Execution Environment (TEE).

Build Requirements

The CE CDM requires a few things to build. There are a few prerequisites you must handle
yourself:

e python2 (v2.7+, used by the build system)
e OpenSSL (v1.0.1g+, used by the CDM and the OEMCrypto reference implementation)

o NOTE: variants such as BoringSSL are also permitted.
We provide the rest in the third_party folder:

gyp (open-source build automation tool, uses python)

protobuf (v2.6.1 specifically, used by the CDM as part of the license protocol)
stringencoders (open-source base64 library in C)

gTest and gMock (v1.8.0, for unit tests)

jsmn (open-source JSON parser, used for processing an HLS playlist)

Application Responsibilities

Networking

The CDM relies on the application to relay messages to servers. The CDM has no networking
capability of its own. The application must implement the IEventListener interface to receive
messages from the CDM via IEventListener: :onMessage(). The CDM may also require the
owner of IEventListener to provision a device certificate. (See below.)

Device Certificate Provisioning

Starting with v3.1, the Widevine CE CDM requires a unique certificate for each device and for
each origin. If, when creating a session, a device certificate is not available, the CDM will
require the user agent to relay a message to the provisioning server to get a device certificate.
That certificate will be stored (via the IStorage interface) and used for future sessions.

During a call to generateRequest() or load(), if Device Certificate Provisioning is required, the
CDM will issue an IEventListener::onDirectindividualizationRequest() callback instead of
processing the call immediately. The callback contains a message to be sent to the
provisioning server. The response must be passed back to to the CDM via Cdm::update() the
same as any other message. After this, the CDM will handle the generateRequest() or load()
calls.

If multiple sessions are created before the device is fully provisioned, the calls will return
kDeferred. This indicates that a message was not generated yet, but will be once the device is
provisioned. Once the device is provisioned, a call to IEventListener: :onDeferredComplete
will be made with the result of the call. (i.e. kSuccess or the error code)

Certificate Provisioning Message Formats

The request message supplied in the IEventListener::onDirectindividualizationRequest()
callback is a URL-encoded (also known as web-safe) base64 signed message that must to be
sent to the provisioning server. It is safe to pass the data directly as a URL query-parameter.
The default provisioning server expects this data as the signedRequest parameter as shown
here:

https://www.googleapis.com/certificateprovisioning/vl/devicecertificates/crea
te?key=AIzaSyB-50LKTx2iU5mko18Dfdwk5611JIjbUhE&signedRequest=<request_data>

The response message from the provisioning server will be in a similar format, with the actual
message data in a quoted signedResponse parameter, similar to the following:

HTTP/1.1 200 OK
X-Google-Netmon-Label:

Accept-Ranges: none
Vary: Origin,Accept-Encoding
Connection: close

{

"kind": "certificateprovisioning#certificateProvisioningResponse”,
"signedResponse": "<response_data>”

}

This form is used by Widevine’s provisioning server. The CDM produces only the
<request_data> string for the request, and accepts only the full response message containing
the “signedResponse:” field, from which it extracts the <response_data> string. Other
provisioning servers may have different methods for conveying the request and response. The
CDM has a Property called “provisioning_messages_are_binary”, which is set false by default. It
can be set to true for a provisioning server that consumes and produces binary protobuf
message strings. Any other filtering or data conversion required for messages to or from a
particular provisioning server to conform to these CDM-supported formats must be handled
outside the CDM.

Device Certificate Provisioning v3.0

Starting with v3.2, the Widevine CE CDM has a new provisioning scheme. It replaces the
keybox as an authentication object with an X.509 certificate called an OEM Certificate. This
Certificate is passed to the Provisioning Server in a Provisioning Request. The Provisioing
Server returns a Provisioning Response message containing a unique DRM Device Certificate
and corresponding private key. The Widevine CE CDM passes the DRM Device Certificate and
Private Key to OEMCrypto for verification. OEMCrypto also rewraps the private key using its
own private key. The result is stored on the file system for use in future sessions. The DRM

Device Certificate is used in License Server requests to identify and authenticate the device with
the license server.

Provisioning V3.0 requires OEMCrypto V12 or better. Older OEMCrypto versions are still
supported by the CDM, but the “traditional” Keybox-based provisioning will be used. OEMCrypto
V12 and newer systems can support either Keybox or certificate-based provisioning, but not
both. The provisioning method is hard-coded into OEMCrypto. The CDM can determine the
system’s provisioning method and construct the correct Provisioning Request in all these cases.

Service Certificates

Service Certificates are associated with license and provisioning servers. The Service
Certificate provides the public key for the service, and is used to sign and verify communications
between the CDM and the server. The CDM API provides calls for registering a Service
Certificate with the CDM. Applications frequently have a copy of the Service Certificate for the
servers they communicate with. In addition, the License Server supports a query to obtain a
copy of its Service Certificate; the CDM provides APIs to generate the request message and
process the response for this query.

Storage

The application is responsible for storage on behalf of the CDM. The application must
implement the IStorage interface, which is a simple key-value storage mechanism. The
application is not required to use a filesystem for this information, but it must be persisted in
some non-volatile form from one application launch to the next.

It is required to store data per-app or per-origin for security reasons (see
https://w3c.qithub.io/encrypted-media/#privacy-leakage for more information). This is done by
using multiple instances of IStorage. Passing a different instance to create() will cause the
resulting CDM instance to only act within that “storage”. There is also a “global” IStorage
instance passed to initialize(), which must contain the device keybox. Passing a NULL IStorage
pointer to create() will will cause the resulting CDM to use the default IStorage instance
passed to initialize().

NOTE: It is important for users of your application to be able to clear stored data somehow.
See http.//www.w3.org/TR/encrypted-media/#privacy-storedinfo for more information.

Clock

The CDM also has no internal clock mechanism. The application must implement the IClock
interface, which provides the current time when queried.

http://www.w3.org/TR/encrypted-media/#privacy-storedinfo
https://w3c.github.io/encrypted-media/#privacy-leakage

Timers

The CDM will sometimes need to do asynchronous processing. The CDM does not create any
threads. Instead, it requires the application to implement the ITimer mechanism, which allows
the CDM to request a callback after a specific amount of time has passed.

NOTE: These timers are one-shot timers! If the CDM asks for a callback after 2 seconds, the
application should not call the CDM back every 2 seconds.

CDM APIs

Starting with v3.0, the CE CDM APIs are very similar to the JavaScript APIs specified in the
EME spec. Here we will give a brief overview of the methods, their purpose, and any important
caveats to their use.

The header "cdm/include/cdm.h" is the only header used by the integrator or application
developer. More detail on methods and types is available in cdm.h, and that header should be
viewed as the canonical reference for the CDM API. Should this document conflict with the
header, the header takes precedence.

The CE CDM has no method corresponding to EME's requestMediaKeySystemAccess()
method. This is used by EME for negotiating which CDM to use and what features it has, and is
therefore outside the scope of the CDM.

Methods in EME that operate on a session object are implemented in the CDM as methods that
have a session ID argument.

All CDM methods return a Status value. Some values are defined by the CDM, while others
correspond to specific DOM exceptions specified in EME. Error conditions specified by EME
return corresponding Status values. For example, where EME says certain inputs trigger a
TypeError, we would return kTypeError for the same inputs.

The Status constant kUnexpectedError is used to cover all unexpected error cases. This
status may indicate a bug or misconfiguration of the CDM, and generally should not occur. Any
time you see this return value from the CDM, there should be more detailed information
available in the log, including Widevine-internal error codes.

initialize
Used to initialize the library. Must be called before any other method.
create

Creates and returns a CDM instance. Multiple CDM instances can coexist. CDM instances are
destroyed by a typical C++ delete.

The privacy_mode argument controls the encryption of client identification. If privacy mode is
true, the CDM will use a server certificate to encrypt the client identification in the license
request. We strongly recommend the use of privacy mode whenever possible.

setServiceCertificate
This was previously named setServerCertificate().

Allows the application to provide a service certificate to the CDM. This certificate is used to
encrypt client identification information in license requests as part of "privacy mode" (See
create()). Itis also needed to sign and verify the messages for certificate provisioning, and
the certificate holds a provider_id string that is needed for constructing the provisioning request.

It is preferred that the service certificate be supplied by the client application, but the CDM client
can also request a Service Certificate from the License Server. The API calls
getServiceCertificateRequest and parseServiceCertificateResponse (see below) are
provided to assist with this operation.

In previous versions of the CDM (v3.2 and earlier), a Service Certificate would be automatically
fetched if needed, as part of the license request flow. This is no longer supported. If a Service
Certificate is needed and none has been registered with the CDM, an error will be returned.

getServiceCertificateRequest

Generate a License Server protocol message to get a copy of the server’s Service Certificate.
The returned string should be sent to the License Server, which will reply with a Service
Certificate Response message. This message should be passed to
parseServiceCertificateResponse as discussed below.

parseServiceCertificateResponse

Process the message from the License Server in response to a Service Certificate request. If no
error is reported, the Service Certificate is registered with the CDM Session and will be used as
needed until the next parseServiceCertificateResponse or setServiceCertificate call, or until
the session ends. A copy of the Service Certificate is also returned that may be stored and used
for future sessions (by passing the string in a call to setServiceCertificate)

createSession

Creates a new CDM session. A session is a context for a license and its associated keys. The
output parameter session_id will be used to identify the session in calls to all other CDM
methods.

If session_type is kPersistentLicense, the session will be stored on disk for offline use, and
can be subsequently loaded using load().

If session_type is kPersistentUsageRecord, the session will persist, but the keys will not. A
record of session usage will be sent on remove().

generateRequest

Generates a license request to be relayed to the license server by the application. The request
will be delivered to the application synchronously via IEventListener: :onMessage().

If a server certificate needs to be provisioned before requesting a license, the CDM will issue a
server certificate request before the license request (both will be of type kLicenseRequest).
Applications will not need to handle the additional message differently and should simply relay
each request to the license server.

If multiple sessions are created while the device is unprovisioned, this method may return
kDeferred. This indicates that a message has not been sent yet and will be sent once the
device is provisioned. Once the message is sent, IEventListener: :onDeferredComplete()
will be called with the result of this function. (i.e. kSuccess or the error code)

isProvisioned

Returns true if the device has been provisioned (i.e., has a Device Certificate). Provisioning is
performed per-origin - the test applies only to the current origin of the CDM instance as
determined by its IStorage object.

removeProvisioning

Deletes the current Device Certificate. Distinct Device Certificates are maintained for each origin
- only the current origin of the CDM instance, as determined by its IStorage object, is affected.

removeUsageTable
Deletes the current usage table. This is performed using an existing OEMCrypto call.
listStoredLicenses

Returns a vector of Key Set ID strings, representing the licenses currently stored in the current
(origin-specific) file system.

listUsageRecords

Returns a vector of Key Set ID strings, representing the usage records currently stored in the
current (origin-specific) file system.

deleteUsageRecord

Accepts a Key Set ID string, and deletes the usage record for that ID if it exists.
deleteAllUsageRecords

Delete all usage records currently stored in the current (origin-specific) file system.

load

Loads a persisted session from storage. The session_id parameter should be the same
session ID generated by the CDM when the session was first created. Note that sessions of
type kTemporary may not be loaded again, and that sessions of type kPersistentLicense
that are still open may not be loaded a second time.

Similar to generateRequest(), this may return kDeferred if the device is unprovisioned.

update

Used to pass messages from the license server to the CDM. When the application receives a
message via IEventListener: :onMessage() and relays it to the license server, the HTTP
response (not including HTTP headers) should be given back to the CDM via update().

getExpiration
Used to query key expiration time for a session.

getKeyStatuses

Used to query the statuses of all keys for a session. Typical key statuses are kUsable and
kExpired. If a key is notin a kUsable state, it can't be used to decrypt content.

getKeyAllowedUsages

Used to query how a particular key may be used. Keys may be constrained to a particular
usage or set of of usages in addition to or instead of normal content decryption. Key usages
include: media content decryption (to a buffer in the clear), media content decryption (to a
secure buffer), generic encryption, generic decryption, generic signing, and generic signature
verification. The allowed usage for a key is independent of the key status, which indicates
whether or not a media content key is currently usable.

close

Used to close an active session and release temporary resources associated with it. If it is of
type kPersistentLicense, the session will not be removed from storage. No release
messages (type kLicenseRelease) will be generated.

remove

Used to remove a persistent session and all resources associated with it. Not used for sessions
of type kTemporary. Session must be loaded before removal.

Generates a message of type kLicenseRelease, which must be relayed to the license server.
The server's reply to the release message must be passed to update() before removal is
complete. Session information remains stored on disk until this process is complete. Once a
session has been fully removed via update(), the session is considered closed, and close()
need not be called.

A "partially-removed" session is one for which remove () has been called, but the release has
not been confirmed via update(). A partially-removed session from an earlier run of the
application may be fully removed in a subsequent run. Simply load() the session and
complete the removal via update().

decrypt

Used to decrypt content. Some applications may wish to use the CDM for license exchange
only. These applications may therefore bypass the CDM for decryption and initiate decryption
through OEMCrypto or directly in the TEE.

Starting with v3.1, the Widevine CDM supports all four encryption modes from the ISO-CENC
3.0 standard. These are known as cenc, cens, cbc1, and cbcs. The CDM will automatically
select the correct mode depending on the input parameters passed into decrypt(). It bases
this decision on the pattern and encryption_scheme parameters. If the pattern parameter is
left at its default value of (0,0), then pattern usage will be disabled. If a pattern other than (0,0) is
specified, then pattern usage will be enabled. In combination with the encryption_scheme
parameter, the CDM can determine which CENC 3.0 mode to use:

No Pattern Pattern Specified
kAesCtr cenc cens
kAesCbc cbc1 cbcs

setAppParameter, getAppParameter, removeAppParameter,
clearAppParameters

These methods have been added for the convenience of Android application developers. If you
have an Android app that uses the optionalParameters argument in MediaDrm.getKeyRequest,
this interface will allow to maintain compatibility with your Android app on other platforms.

Parameters set through these methods are arbitrary key-value pairs to be included in license
requests. These methods have no counterpart in EME, and their use is discouraged.

genericEncrypt, genericDecrypt, genericSign, genericVerify

These methods provide an application with basic crypto operations independent of the CDM’s
content decryption support. They can be used to handle encryption, decryption, signing, and
signature verification for messages exchanged between the application and its server. The
keys for these operations are supplied through the same licensing protocol used for content
keys.

setVideoResolution

This method allows an application to inform the CDM of the resolution of the device (width and
height in pixels). The information is used in conjunction with license constraints to determine
whether a particular key can be used on this device. If this call is not made, the resolution
constraint enforcement is not performed.

Using the CDM With HLS Content

Starting with v3.1, the Widevine CDM supports the CENC 3.0 cens mode. This mode can also
be used to decrypt content that is in Apple’s HLS format and that uses its SAMPLE-AES
encryption mode. However, there are some additional considerations that applications must be
aware of before attempting to do this.

Using the Correct CENC 3.0 Mode

HLS content should always be decrypted in the CENC 3.0 cens mode. This means that when
calling decrypt (), the encryption_scheme parameter should be set to kAesCbc and the
pattern parameter should be set to something other than (0,0). For video frames, HLS
SAMPLE-AES mandates a pattern of (1,9). For audio frames, patterns are not used. However,
setting the pattern parameter to (0,0) will cause the CDM to operate in cbc1 mode, which is
incorrect. Therefore, Widevine recommends using a pattern of (1,0) for HLS audio content, in
order to activate cens mode while still decrypting every crypto block.

Extra Start Code Emulation Prevention

The Widevine CDM only handles decryption and does not know anything about the file formats
the data comes from. As such, the Widevine CDM does not do any special handling for the
extra start code emulation prevention in Apple’s HLS format.

HLS uses H.264 video in the H.264 Annex B bytestream format. This format defines a process
called “start code emulation prevention” which must be applied to the H.264 NAL Units during
encoding in order to prevent false start codes from appearing in the bytestream. The HLS
SAMPLE-AES specification adds to this that, after encryption is applied, start code emulation

prevention must be applied a second time to any NAL Units that contain encrypted data, in case
encryption created any new false start codes. This is applied to the entire NAL Unit, including
the unencrypted portions.

The CDM expects that content passed to it with an encryption_scheme of kClear is ready to
be decoded without further processing. And it expects that content passed to it with an
encryption_scheme other than kClear is ready to be decrypted without further processing,
after which it will be ready to be decoded.

As such, it is the responsibility of any users of the CDM to remove the extra start code emulation
prevention from any H.264 NAL Units that contain encrypted data. They should not remove the
single layer of start code emulation prevention from the NAL Units that do not contain encrypted
data.

The video decoder will expect exactly one layer of start code emulation prevention to be on the
video data when it decodes it. So content passed to the CDM with an encryption_scheme of
kClear should already have just one layer of start code emulation prevention. And content
passed to the CDM with an encryption_scheme of kAesCbc should already have its second,
extra layer of start code emulation prevention removed so that it can be immediately decrypted,
after which it will also only have one layer of start code emulation prevention.

Special Treatment of the Last 16 Bytes of a Video Frame

The SAMPLE-AES specification defines special handling for video frames with an encrypted
area that is an exact number of crypto blocks (16 bytes) long. This handling is unique to video
frames in HLS and is different from CENC 3.0 or the handling of audio frames in HLS.
Applications will need to pass the last 16 bytes of any such video frames as a separate clear
decrypt call.

HLS uses AES-CBC encryption. Because AES-CBC does not support partial crypto blocks, if
the encrypted area of a frame is not an even multiple of 16 bytes long, then there will be some
extra bytes at the end after the last full crypto block. In both HLS and CENC 3.0, these bytes are
left clear and thus do not need to be decrypted by the CDM. If an encrypted input that is not an
even multiple of crypto blocks long is passed into the CDM when using AES-CBC, the CDM wiill
follow the CENC 3.0 standard and will automatically leave the extra bytes clear.

However, if the encrypted area is an even multiple of crypto blocks long, the HLS SAMPLE-AES
specification states that video frames should be treated differently than other content. For HLS
audio frames and for CENC 3.0 content, an CBC-encrypted input that is an even multiple of
crypto blocks long will all be decrypted. For HLS video frames, the last crypto block (16 bytes) is
instead changed into “extra bytes” and left in the clear.

Because the CDM follows the CENC 3.0 standard and does not handle this HLS video edge
case specially, it is the responsibility of users of the CDM to not pass these 16 extra bytes as
part of an encrypted input to decrypt() and instead pass them as part of a separate, clear
input to decrypt().

Widevine recommends that, as a simple way to do this, applications always pass the extra bytes
of HLS video frames as a separate clear crypto call, regardless of how many there are.
Furthermore, because encrypted data in an HLS stream is almost always followed by clear data,
it is acceptable to merge the extra bytes into the next clear data call that would have happened
anyway, rather than making a separate clear decrypt () call just for the extra bytes.

Build System

The Widevine CE CDM uses a gyp-based build system. gyp is an open-source build system
written in python. We provide a simple build script called "build.py", which wraps around the gyp
build system and configures the build with platform-specific settings. We will go into more detail
on this in the "Porting" section below.

To build the CDM for x86, simply run "./build.py x86-64". This will produce a debug build. To
produce a release build, run "./build.py x86-64 -r". Build output goes into the "out" folder. A
debug build for x86 will appear in "out/x86-64/Debug". The important outputs are:

e libwidevine ce cdm_static.a
e libwidevine ce cdm_shared.so
e widevine_ce cdm_unittest

We build the CDM as both a static and shared library as a convenience to you. You only need
to link against one or the other. The header "cdm/include/cdm.h" is the only one you need in
order to use the compiled CDM library.

NOTE: OEMCrypto is not linked into the CDM shared library. You must link your application
against both the CDM and OEMCrypto. This allows you the flexibility to change OEMCrypto
implementations when you build your app instead of when you build the CDM.

Compile-time Options and Configuration

The file "cdm/cdm.gyp" contains the main part of the build description. The "variables" section
contains three main options, detailed below. The defaults in cdm.gyp can be overridden with
platform-specific values in a platform-specific build file. This will be covered in the "Porting"
section below. We strongly recommend that you not edit the defaults in cdm.gyp.

oemcrypto_version

There are several revisions of the OEMCrypto interface in existence (currently v9, v10, and
V11). Based on this variable, the CDM will be built with adapters to allow it to interoperate with
older OEMCrypto versions if that is what your platform provides.

protobuf_config

The CDM relies on protobuf as part of the Widevine license protocol. There are three values for
this variable, which offer three different ways of integrating protobuf into the build:

system

The protobuf compiler (protoc) and libraries (libprotobuf-lite) are expected to be installed
system-wide. When cross-compiling, protoc should be compiled for the host platform, while
libprotobuf-lite should be compiled for the target platform.

This setting requires two additional variables:

e protobuf_lib - The protobuf library to link in, such as "-Iprotobuf-lite" or
"fusr/arm-linux-myarch/lib/libprotobuf-lite.a".

e protoc_bin - The path to protoc, such as "/usr/bin/protoc" or
"fusr/local/bin/arm-linux-myarch-protoc".

target

Used for gyp-based projects which already have protobuf in their project's build.
This setting requires three additional variables:

e protobuf lib_target - The gyp target for the target-toolchain build of libprotobuf-lite, such
as "path/to/protobuf.gyp:protobuf_lite".

e protoc_host target - The gyp target for the host-toolchain build of protoc, such as
"path/to/protobuf.gyp:protoc#host".

e protoc_bin - The path to the output of protoc_host_target, typically
"<(PRODUCT_DIR)/protoc".

source

This is the default, and is very useful for projects which don't have protobuf already. You
provide a path to the source, and the build system will handle compilation of libprotobuf for you.
Extremely convenient for cross-compiling, and highly recommended for use when porting the
CDM to your target platform.

This setting requires one additional variable:

e protobuf source - The path to protobuf v2.5.0 sources, such as "path/to/protobuf-2.5.0".
You must have a valid config.h for your target platform in this folder. The supplied
config.h is appropriate for linux. You may need to adjust config.h for your target
platform.

openssl_config

The CDM relies on OpenSSL for privacy features. There are two values for this variable, which
offer two different ways of integrating openssl into the build:

system

OpenSSL is expected to be installed system-wide for the target platform.

target

Used for gyp-based projects which already have OpenSSL in their project's build.
This setting requires one additional variable:

e openssl_target - The gyp target for the target-toolchain build of OpenSSL, such as
"path/to/openssl.gyp:openssl”.

Alternative Build Systems

The gyp-based build system we provide is not the only way to build the CDM sources. As an
alternative, you can use the lists of source files in cdm.gyp to integrate the CDM source into
your project's existing build system. Please note that although Widevine will not provide support
for this, it should be fairly straightforward.

If your project is gyp-based, you can also refer to our gyp files from your own. Make sure the
variables described above are properly set in the context of cdm.gyp.

Tests

The Widevine CE CDM comes with a suite of unit tests covering various parts of the codebase.
Some tests exercise OEMCrypto, some exercise the CDM's internals (core), and some exercise
the CDM APIs at the highest level.

The complete test suite can take several minutes to run, since some of the OEMCrypto tests are
quite long. You can exclude any of these large test sets temporarily by commenting out the
corresponding lines in cdm_unittest.gyp:

"includes': [
'oemcrypto_unittests.gypi’,
'core_unittests.gypi’',
'cdm_unittests.gypi’,

Is

You may also filter the tests on the command-line using the "gtest_filter" argument. For
example, to run only the CdmTest and CdmSession groups:

out/x86-64/Debug/widevine_ce_cdm_unittest \
--gtest_filter=CdmTest.*:CdmSession.*

Or to negate a set of tests, prefix the filter with a minus sign. For example, to run all tests
except the OEMCryptoClientTest and GenericCryptoTest groups:

out/x86-64/Debug/widevine_ce_cdm_unittest \
--gtest_filter=-OEMCryptoClientTest.*:GenericCryptoTest.*

Unit test verbosity can be controlled using the "-v" argument. It may be repeated multiple times
to increase verbosity. For example:

out/x86-64/Debug/widevine_ce_cdm _unittest # show error logs
out/x86-64/Debug/widevine_ce_cdm_unittest -v # show warnings
out/x86-64/Debug/widevine_ce_cdm_unittest -vv # show info
out/x86-64/Debug/widevine_ce_cdm_unittest -vvv # show debug
out/x86-64/Debug/widevine_ce_cdm_unittest -vvvv # show verbose

Porting

Assumptions and Alternatives

The default build makes several assumptions about your platform, but there are some
alternatives available to you.

Locking

The file "cdm/src/lock.cpp" assumes the existence of pthread on your platform. If this is not
available, one alternative is to write a simple wrapper to implement the pthread functions
pthread_mutex_{init,destroy, lock,unlock} using your platform's locking primitives. We
do not use any other part of the pthread library.

Another alternative to pthread is to exclude "lock.cpp" from the build by commenting it out in
cdm.gyp, then implement this same interface differently in your application or platform. The
pthread-based implementation is only 30 lines or so, and should be very easy to replace.

Logging

The file "cdm/src/log.cpp" assumes that you can log to stderr. If this is not available, one
alternative is to exclude this file from the build and implement the logging interface differently in

your application or platform. The stderr-based implementation is only 40 lines or so, and should
be very easy to replace.

Protobuf

Protobuf is a critical component of the system, and must be available. Cross-compiling protobuf
and installing it system-wide can be tricky. Therefore, we strongly recommend using the default
"source" setting for the gyp variable "protobuf_config", as described above in the "Compile-time
Options and Configuration" section. This will leverage our build system to handle
cross-compilation for you, and does not necessitate system-wide installation.

To use this setting, config.h in the protobuf sources must be appropriate for your target platform.
The supplied config.h is appropriate for linux. You can produce a config.h for your target
platform in two ways. Either run protobuf's configure script using appropriate flags for your
platform, or edit config.h manually to tailor to your target platform.

Adding a New Platform

Platform settings live in the "platforms" folder. When compiling with "./build.py x86-64", the
settings in "platforms/x86-64/settings.gypi" and "platforms/x86-64/environment.py" are used.

To add a new platform, make a copy of the x86-64 folder and rename it to the name of your
platform. For this example, we will use "HAL9000".

Next, edit "platforms/HAL9000/environment.py" to set the compilers used by your platform and
any additional environment variables required by them. For example:

tooldir = '/usr/local/haloeo0’
export_variables = {
'CC': tooldir + 'hal9e@@e-cc',
"CXX': tooldir + 'hal9000-c++',
'AR': tooldir + 'hal9eee-ar',
The toolchain requires this env. var to work correctly:
"CROSS_C_ROOT_PATH': '/build/sdks/halgeee/sdk",

}

Next, edit "platforms/HAL9000/settings.gypi" to override settings specific to your platform. For
example:

'variables': {
‘oemcrypto_version': 9,
'protobuf_config': 'source',
'protobuf_source': '/path/to/protobuf-2.5.0"',
}, # end variables

Finally, run "./build.py HAL9000" to build for your platform.

Testing Against Your Platform's OEMCrypto

By default, the unit tests link against a reference implementation of OEMCrypto. To link the unit
tests against your platform's OEMCrypto, edit your platform's "settings.gypi" file and set the
variable "oemcrypto_lib". For example, in "platforms/HAL9000/settings.gypi":

'variables': {
'oemcrypto_version': 9,
‘oemcrypto_1lib': '-1hal9e0@ oec’,
}, # end variables

Finally, run "./build.py HAL9000" to rebuild the tests.

