// Copyright 2013 Google Inc. All Rights Reserved. // // This source file provides a basic set of unit tests for the Content // Decryption Module (CDM). It exercises much of the API that will be // required by the host application to get the license and keys for // rendering protected content. // Review the TestHost class below to observe how the CDM interfaces with // the host application. // #include #include #include #include #include #include "clock.h" #include "config_test_env.h" #include "content_decryption_module.h" #include "gmock/gmock.h" #include "gtest/gtest.h" #include "license_request.h" #include "log.h" #include "scoped_ptr.h" #include "string_conversions.h" #include "url_request.h" #include "wv_cdm_types.h" #include "wv_cdm_common.h" using ::testing::_; using ::testing::AtLeast; using ::testing::Invoke; using ::testing::Return; using wvcdm::scoped_ptr; static const int kTestPolicyRenewalDelaySeconds = 60; static const int kDelayWaitToForRenewalMessageSeconds = 2; // Linux based get time for host. // This can be tailored if required. double GetCurrentTestTime() { struct timeval tv; tv.tv_sec = tv.tv_usec = 0; gettimeofday(&tv, NULL); return tv.tv_sec; } using wvcdm::StringPairs; using wvcdm::VectorPairs; // These classes below are naive implementation of the abstract classes defined // in the CDM interface (content_decryptiom_module.h), which are used for tests // only. class TestBuffer : public cdm::Buffer { public: static TestBuffer* Create(uint32_t capacity); virtual void Destroy() OVERRIDE; virtual int32_t Capacity() const OVERRIDE; virtual uint8_t* Data() OVERRIDE; virtual void SetSize(int32_t size) OVERRIDE; virtual int32_t Size() const OVERRIDE; private: // TestBuffer can only be created by calling Create(). explicit TestBuffer(uint32_t capacity); // TestBuffer can only be destroyed by calling Destroy(). virtual ~TestBuffer(); uint8_t* buffer_; int32_t capacity_; int32_t size_; CORE_DISALLOW_COPY_AND_ASSIGN(TestBuffer); }; class TestHostFile { public: TestHostFile() : fname_(""), file_(NULL) {} virtual ~TestHostFile() { if (file_) fclose(file_); } virtual bool Init(const std::string& name); virtual bool Exists(); virtual bool Remove(); virtual size_t Size(); virtual size_t Read(char* buffer, size_t bytes); virtual size_t Write(const char* buffer, size_t bytes); virtual std::string GetFileName() { return fname_;} private: std::string fname_; FILE* file_; CORE_DISALLOW_COPY_AND_ASSIGN(TestHostFile); }; bool TestHostFile::Init(const std::string& name) { fname_ = name; return true; } bool TestHostFile::Exists() { file_ = fopen(fname_.c_str(), "rb"); bool exists = file_; if (file_) { fclose(file_); file_ = NULL; } return (exists); } bool TestHostFile::Remove() { if (Exists()) { if (remove(fname_.c_str())) { return true; } } return false; } size_t TestHostFile::Size() { file_ = fopen(fname_.c_str(), "rb"); if (file_) { fseek (file_, 0, SEEK_END); size_t size = ftell (file_); rewind (file_); if (file_) { fclose(file_); file_ = NULL; } return size; } return 0; } size_t TestHostFile::Read(char* buffer, size_t bytes) { file_ = fopen(fname_.c_str(), "rb"); if (file_) { fseek (file_, 0, SEEK_END); size_t size = ftell (file_); rewind (file_); size_t check = fread (buffer,1,size,file_); if (file_) { fclose(file_); file_ = NULL; } return check; } return 0; } size_t TestHostFile::Write(const char* buffer, size_t bytes) { FILE* file_ = fopen(fname_.c_str(), "w+"); if (file_) { size_t check = fwrite (buffer,1,bytes,file_); if (file_) { fclose(file_); file_ = NULL; } return check; } return 0; } class IHostTime { public: virtual double GetCurrentTestTime() = 0; }; class SimplePThread { public: SimplePThread(); ~SimplePThread(); void Start(uint64_t periodicity, void* host_ptr, void* context); void Stop(); uint32_t GetTickCount(); private: static bool is_running_; pthread_t simple_timer_thread_; typedef void* (*TimeThreadFunc)(void *arg_list); static void* Tthread_function(void *arg_list); TimeThreadFunc time_thread_function_; struct arg_list_struct { uint64_t periodicity; void* host_ptr; void* context; }; static uint32_t tick_count_; }; bool SimplePThread::is_running_ = false; uint32_t SimplePThread::tick_count_ = 0; SimplePThread::SimplePThread() : simple_timer_thread_(0) { } SimplePThread::~SimplePThread() { LOGI("SimplePThread DTOR: calling Stop() to shutdown thread."); Stop(); } void SimplePThread::Stop() { if (is_running_) { void* result = NULL; LOGI("SimplePThread is running and now it will be cancelled\n"); pthread_cancel(simple_timer_thread_); pthread_join(simple_timer_thread_, &result); is_running_ = false; tick_count_ = 0; } } void SimplePThread::Start(uint64_t periodicity, void* host_ptr, void* context) { struct arg_list_struct* arg_list = new(struct arg_list_struct); arg_list->periodicity = periodicity; arg_list->host_ptr = host_ptr; arg_list->context = context; time_thread_function_ = &Tthread_function; Stop(); is_running_ = true; if(pthread_create(&simple_timer_thread_, NULL, time_thread_function_, arg_list)) { LOGI("Error creating pthread\n"); return; } LOGI("Created the Simple thread to support the timer callback\n"); } void* SimplePThread::Tthread_function(void *arg_list) { LOGI("Entered the SimplePThread::Tthread_function\n"); uint64_t periodicity = (static_cast(arg_list))->periodicity; void* host_ptr = (static_cast(arg_list))->host_ptr; void* context = (static_cast(arg_list))->context; delete static_cast(arg_list); LOGI("starting the while loop in the secondary thread\n"); while (is_running_) { usleep(static_cast(periodicity * 1000)); if (is_running_) { ((cdm::ContentDecryptionModule*)host_ptr)->TimerExpired(context); tick_count_++; } } return NULL; } uint32_t SimplePThread::GetTickCount() { return tick_count_; } class TestHost : public cdm::Host, public IHostTime { public: // These structs are used to store the KeyMessages and KeyErrors passed to // this class' objects. struct KeyMessage { KeyMessage() {} std::string session_id; std::string message; std::string default_url; }; struct KeyError { KeyError() : error_code(cdm::kUnknownError), system_code(0) {} std::string session_id; cdm::MediaKeyError error_code; uint32_t system_code; }; TestHost(); virtual ~TestHost(); // cdm::Host implementation. virtual cdm::Buffer* Allocate(int32_t capacity) OVERRIDE; MOCK_METHOD2(SetTimer, void(int64_t, void*)); virtual void DoSetTimer(int64_t delay_ms, void* context); // Returns the current "global" time from the GetCurrentTestTime() function // unless the time is manually set using TestHost::SetCurrentTime()(). MOCK_METHOD0(GetCurrentWallTimeInSeconds, double(void)); virtual void SendKeyMessage(const char* session_id, int32_t session_id_length, const char* message, int32_t message_length, const char* default_url, int32_t default_url_length) OVERRIDE; virtual void SendKeyError(const char* session_id, int32_t session_id_length, cdm::MediaKeyError error_code, uint32_t system_code) OVERRIDE; virtual void GetPrivateData(int32_t* instance, GetPrivateInterface* get_interface) OVERRIDE; virtual int GetPlatformString(const std::string& name, std::string* value) OVERRIDE; virtual int SetPlatformString(const std::string& name, const std::string& value) OVERRIDE;; virtual int PersistPlatformString(const std::string& name, const std::string& value) OVERRIDE;; virtual int GetPlatformByteArray(const std::string& name, std::vector* value) OVERRIDE; virtual int SetPlatformByteArray(const std::string& name, const std::vector& value) OVERRIDE; virtual int PersistPlatformByteArray(const std::string& name, const std::vector& value) OVERRIDE; // Methods only for this test. void SetCurrentTime(double current_time); void FastForwardTimeForNextTimerEvent(); int KeyMessagesSize() const; int KeyErrorsSize() const; // Returns Key{Message,Error} (replace Message with Error for KeyError). It // returns the most recent message passed to SendKeyMessage(). Another call // to this method without a new SendKeyMessage() call will return an empty // KeyMessage struct. KeyMessage GetLastKeyMessage(); KeyError GetLastKeyError(); KeyMessage GetKeyMessage(int index) const; KeyError GetKeyError(int index) const; void* context() { return context_; } void SetCdmPtr(cdm::ContentDecryptionModule* host_cdm_ptr); virtual double GetCurrentTestTime(); uint32_t GetTickCount(); private: // This is used in GetCurrentWallTimeInSeconds(). This field is used to // control the "current time". double current_time_; bool current_time_is_set_; std::vector key_messages_; std::vector key_errors_; bool has_new_key_message_; bool has_new_key_error_; void* context_; int64_t delay_ms_; cdm::ContentDecryptionModule* host_cdm_ptr_; // These are containers for the platform sharing data. std::set platform_strings_set_; std::set platform_vectors_set_; TestHostFile test_host_file_; void LoadPersistentValues(); SimplePThread simple_thread_; CORE_DISALLOW_COPY_AND_ASSIGN(TestHost); }; class TestHostFactory { public: TestHost* GetTestHost(); private: scoped_ptr test_host_; }; TestBuffer* TestBuffer::Create(uint32_t capacity) { return new TestBuffer(capacity); } void TestBuffer::Destroy() { if (buffer_) { delete[] buffer_; buffer_ = NULL; } delete this; } int32_t TestBuffer::Capacity() const { return capacity_; } uint8_t* TestBuffer::Data() { return buffer_; } void TestBuffer::SetSize(int32_t size) { size_ = size; } int32_t TestBuffer::Size() const { return size_; } TestBuffer::TestBuffer(uint32_t capacity) : buffer_(new uint8_t[capacity]), capacity_(capacity) {} TestBuffer::~TestBuffer() {} TestHost::TestHost() : current_time_(::GetCurrentTestTime()), current_time_is_set_(false), has_new_key_message_(false), has_new_key_error_(false), context_(NULL), delay_ms_(0), host_cdm_ptr_(NULL) { LoadPersistentValues(); } TestHost::~TestHost() {} cdm::Buffer* TestHost::Allocate(int32_t capacity) { return TestBuffer::Create(capacity); } // SetTimer is a mock method mapping to DoSetTimer(). The cdm::Host // calls back to the TimerExpired callback // every delay_ms. Zero delay_ms means WV is requesting // termination of timer services. void TestHost::DoSetTimer(int64_t delay_ms, void* context) { if (delay_ms == 0) { simple_thread_.Stop(); return; } simple_thread_.Start(delay_ms, (void*)host_cdm_ptr_, context); } void TestHost::SendKeyMessage(const char* session_id, int32_t session_id_length, const char* message, int32_t message_length, const char* default_url, int32_t default_url_length) { KeyMessage key_message; key_message.session_id.assign(session_id, session_id_length); key_message.message.assign(message, message_length); key_message.default_url.assign(default_url, default_url_length); key_messages_.push_back(key_message); has_new_key_message_ = true; } void TestHost::SendKeyError(const char* session_id, int32_t session_id_length, cdm::MediaKeyError error_code, uint32_t system_code) { KeyError key_error; key_error.session_id.assign(session_id, session_id_length); key_error.error_code = error_code; key_error.system_code = system_code; key_errors_.push_back(key_error); has_new_key_error_ = true; } void TestHost::SetCurrentTime(double current_time) { current_time_is_set_ = true; current_time_ = current_time; } void TestHost::FastForwardTimeForNextTimerEvent() { current_time_is_set_ = true; current_time_ += (delay_ms_ / 1000.0); delay_ms_ = 0; } void TestHost::GetPrivateData(int32_t* instance, GetPrivateInterface* get_interface) { LOGI("NOTIMPLEMENTED()"); } // The Platform methods below are implemented to fill and retrieve // platform specific information. The host application takes responsibility for // this interface. int TestHost::GetPlatformString(const std::string& name, std::string* value) { std::set::iterator it; for (it = platform_strings_set_.begin(); it != platform_strings_set_.end(); ++it) { StringPairs sp = *it; std::string x = sp.first; std::string y = sp.second; if (x == name) { *value = y; return 1; } } *value = "Not Found!"; return 0; } int TestHost::SetPlatformString(const std::string& name, const std::string& value) { StringPairs sp(name, value); platform_strings_set_.insert(sp); return 1; } int TestHost::PersistPlatformString(const std::string& name, const std::string& value) { StringPairs sp(name, value); // Write the pairs to a file such that they can be retrieved by // GetPlatformString() even after a power cycle. return 1; } int TestHost::SetPlatformByteArray(const std::string& name, const std::vector& value) { // A zero value pair is an erase only. std::set::iterator it; for (it = platform_vectors_set_.begin(); it != platform_vectors_set_.end(); ++it) { VectorPairs vp = *it; if (vp.first == name) { platform_vectors_set_.erase(vp); } } if (value.size() > 0) { VectorPairs vp(name, value); platform_vectors_set_.insert(vp); } return 1; } int TestHost::PersistPlatformByteArray(const std::string& name, const std::vector& value) { // Assume input name = "DeviceCertificate" and // test_host_file.fname_ == "cert.bin" // No other cases are currently needed or supported. if (value.size() == 0) { remove(test_host_file_.GetFileName().c_str()); } else { std::string string_buffer; string_buffer.resize(value.size()); memcpy(&string_buffer[0], &value[0], value.size()); test_host_file_.Write(&string_buffer[0], value.size()); } VectorPairs vp(name, value); SetPlatformByteArray(name, value); // open file and persist this so that it can be retrieved as a string/vector // correlated pair. Vendor needs to implement this! return 1; } int TestHost::GetPlatformByteArray(const std::string& name, std::vector* value) { std::set::iterator it; for (it = platform_vectors_set_.begin(); it != platform_vectors_set_.end(); ++it) { VectorPairs vp = *it; std::string x = vp.first; if (x == name) { *value = vp.second; return 1; } } value = NULL; return 0; } int TestHost::KeyMessagesSize() const { return key_messages_.size(); } int TestHost::KeyErrorsSize() const { return key_errors_.size(); } double TestHost::GetCurrentTestTime() { current_time_is_set_ = true; FastForwardTimeForNextTimerEvent(); return current_time_; } TestHost::KeyMessage TestHost::GetLastKeyMessage() { if (!has_new_key_message_) { LOGD("No NEW"); return KeyMessage(); } if (key_messages_.empty()) { LOGD("empty"); return KeyMessage(); } LOGD("not empty"); has_new_key_message_ = false; return key_messages_.back(); } TestHost::KeyError TestHost::GetLastKeyError() { if (!has_new_key_error_) return KeyError(); if (key_errors_.empty()) return KeyError(); has_new_key_error_ = false; return key_errors_.back(); } TestHost::KeyMessage TestHost::GetKeyMessage(int index) const { return key_messages_[index]; } TestHost::KeyError TestHost::GetKeyError(int index) const { return key_errors_[index]; } void TestHost::SetCdmPtr(cdm::ContentDecryptionModule* host_cdm_ptr) { host_cdm_ptr_ = host_cdm_ptr; } uint32_t TestHost::GetTickCount() { return simple_thread_.GetTickCount(); } TestHost* TestHostFactory::GetTestHost() { if (!test_host_.get()) test_host_.reset(new TestHost()); return test_host_.get(); return NULL; } // The CDM::Host object is responsible for storing and retrieving items // that are accessed via GetPlatformByteArray. Currently, support for // the device certificate is all that is required. void TestHost::LoadPersistentValues() { test_host_file_.Init("cert.bin"); if (test_host_file_.Exists()) { size_t size = test_host_file_.Size(); std::string string_buffer; string_buffer.resize(size); test_host_file_.Read(&string_buffer[0], size); std::vector vector_buffer(size); memcpy(&vector_buffer[0], &string_buffer[0], size); SetPlatformByteArray("DeviceCertificate", vector_buffer); } } class TestDecryptedBlock : public cdm::DecryptedBlock { public: TestDecryptedBlock(); virtual ~TestDecryptedBlock(); virtual void SetDecryptedBuffer(cdm::Buffer* buffer) OVERRIDE; virtual cdm::Buffer* DecryptedBuffer() OVERRIDE; virtual void SetTimestamp(int64_t timestamp) OVERRIDE; virtual int64_t Timestamp() const OVERRIDE; private: cdm::Buffer* buffer_; int64_t timestamp_; CORE_DISALLOW_COPY_AND_ASSIGN(TestDecryptedBlock); }; TestDecryptedBlock::TestDecryptedBlock() : buffer_(NULL), timestamp_(0) {} TestDecryptedBlock::~TestDecryptedBlock() { if (buffer_) { buffer_->Destroy(); buffer_ = NULL; } } void TestDecryptedBlock::SetDecryptedBuffer(cdm::Buffer* buffer) { if (buffer_) buffer_->Destroy(); buffer_ = buffer; } cdm::Buffer* TestDecryptedBlock::DecryptedBuffer() { return buffer_; } void TestDecryptedBlock::SetTimestamp(int64_t timestamp) { timestamp_ = timestamp; } int64_t TestDecryptedBlock::Timestamp() const { return timestamp_; } namespace { // Default license server, can be configured using --server command line option // Default key id (pssh), can be configured using --keyid command line option const char kKeySystemWidevine[] = "com.widevine.alpha"; std::string g_client_auth; wvcdm::KeyId g_key_id; wvcdm::CdmKeySystem g_key_system; std::string g_license_server; wvcdm::KeyId g_wrong_key_id; int g_use_full_path = 0; // cannot use boolean in getopt_long } // namespace namespace wvcdm { void* GetCdmHost(int host_interface_version, void* user_data); class WvCdmApiTest : public testing::Test { public: WvCdmApiTest() : cdm_(NULL) {} ~WvCdmApiTest() { if (cdm_) cdm_->Destroy(); } protected: virtual void SetUp() { cdm_ = reinterpret_cast(::CreateCdmInstance( cdm::kCdmInterfaceVersion, kKeySystemWidevine, strlen(kKeySystemWidevine), GetCdmHost, &host_factory_)); host_ = host_factory_.GetTestHost(); host_->SetCdmPtr(cdm_); host_->SetPlatformString("SecurityLevel", "L1"); host_->SetPlatformString("PrivacyOn", "False"); host_->SetPlatformString("UsesServiceCertificates", "False"); // By default we allow the timer to fire twice; once // when the addkey comes, and once when the wvcdm destructs and // disables the timer. EXPECT_CALL(*host_, SetTimer(_,_)) .Times(AtLeast(2)) .WillRepeatedly(Invoke(host_, &TestHost::DoSetTimer)); EXPECT_CALL(*host_, GetCurrentWallTimeInSeconds()) .Times(AtLeast(1)) .WillRepeatedly(Invoke(host_, &TestHost::GetCurrentTestTime)); // emulate pulling a certificate out of persistent storage. static const size_t kPrivacyCertSize = 256; VectorBytes cert(kPrivacyCertSize); for (size_t i = 0; i < cert.size(); i++) { cert[i] = i; } host_->SetPlatformByteArray("ServiceCertificate", cert); INITIALIZE_CDM_MODULE(); } void GenerateKeyRequest(const std::string& key_system, const std::string& key_id) { std::string init_data = key_id; cdm::Status status = cdm_->GenerateKeyRequest( NULL, 0, (const uint8_t*)init_data.data(), init_data.length()); // cdm::Host must handle the certificate provisioning request. if (status == cdm::kNeedsDeviceCertificate) { std::string provisioning_server_url; std::string prov_request; status = cdm_->GetProvisioningRequest(&prov_request, &provisioning_server_url); if (status == cdm::kSuccess) { UrlRequest url_request(provisioning_server_url); url_request.PostCertRequestInQueryString(prov_request); std::string message; bool ok = url_request.GetResponse(&message); EXPECT_TRUE(ok); if (ok) { status = cdm_->HandleProvisioningResponse(message); if (status == cdm::kSuccess) { status = cdm_->GenerateKeyRequest(NULL, 0, (const uint8_t*)init_data.data(), init_data.length()); } } } } EXPECT_EQ(cdm::kSuccess, status); } // posts a request and extracts the drm message from the response std::string GetKeyRequestResponse(const std::string& server_url, const std::string& client_auth, int expected_response) { // Use secure connection and chunk transfer coding. UrlRequest url_request(server_url + client_auth); if (!url_request.is_connected()) { return ""; } url_request.PostRequest(key_msg_); std::string response; int resp_bytes = url_request.GetResponse(&response); LOGD("response:\r\n%s", response.c_str()); LOGD("end %d bytes response dump", resp_bytes); // Some license servers return 400 for invalid message, some // return 500; treat anything other than 200 as an invalid message. int status_code = url_request.GetStatusCode(response); int kHttpOk = 200; if (expected_response == kHttpOk) { EXPECT_EQ(kHttpOk, status_code); } else { EXPECT_NE(kHttpOk, status_code); } if (status_code != kHttpOk) { return ""; } else { std::string drm_msg; LicenseRequest lic_request; lic_request.GetDrmMessage(response, drm_msg); LOGV("drm msg: %u bytes\r\n%s", drm_msg.size(), HexEncode(reinterpret_cast(drm_msg.data()), drm_msg.size()).c_str()); return drm_msg; } } void CancelKeyRequest(std::string session_id) { cdm::Status status = cdm_->CancelKeyRequest(session_id.data(), session_id.length()); EXPECT_EQ(cdm::kSuccess, status); } void AddKey(std::string& session_id, std::string& drm_msg) { cdm::Status status = cdm_->AddKey(session_id.data(), session_id.size(), (const uint8_t*)drm_msg.data(), drm_msg.size(), NULL, 0); EXPECT_EQ(cdm::kSuccess, status); } // Level 1 / Level 2 payload comes back in the cpu memory as cleartext. void DecryptClearPayloadTest() { typedef struct DecryptionData { bool is_encrypted; bool is_secure; wvcdm::KeyId key_id; std::vector encrypt_data; std::vector iv; size_t block_offset; std::vector decrypt_data; } DecryptionData; DecryptionData data; data.is_encrypted = true; data.is_secure = false; // Key ID of key used to encrypt the test content. // This is used by the secure layer to look up the content key data.key_id = wvcdm::a2bs_hex("E02562E04CD55351B14B3D748D36ED8E"); // Dummy encrypted data. data.encrypt_data = wvcdm::a2b_hex( "3b2cbde084973539329bd5656da22d20396249bf4a18a51c38c4743360cc9fea" "a1c78d53de1bd7e14dc5d256fd20a57178a98b83804258c239acd7aa38f2d7d2" "eca614965b3d22049e19e236fc1800e60965d8b36415677bf2f843d50a6943c4" "683c07c114a32f5e5fbc9939c483c3a1b2ecd3d82b554d649798866191724283" "f0ab082eba2da79aaca5c4eaf186f9ee9a0c568f621f705a578f30e4e2ef7b96" "5e14cc046ce6dbf272ee5558b098f332333e95fc879dea6c29bf34acdb649650" "f08201b9e649960f2493fd7677cc3abf5ae70e5445845c947ba544456b431646" "d95a133bff5f57614dda5e4446cd8837901d074149dadf4b775b5b07bb88ca20"); data.iv = wvcdm::a2b_hex("4cca615fc013102892f91efee936639b"); data.block_offset = 0; // Expected decrypted data. data.decrypt_data = wvcdm::a2b_hex( "5a36c0b633b58faf22156d78fdfb608e54a8095788b2b0463ef78d030b4abf82" "eff34b8d9b7b6352e7d72de991b599662aa475da355033620152e2356ebfadee" "06172be9e1058fa177e223b9fdd191380cff53c3ea810c6fd852a1df4967b799" "415179a2276ec388ef763bab89605b9c6952c28dc8d6bf86b03fabbb46b392a3" "1dad15be602eeeeabb45070b3e25d6bb0217073b1fc44c9fe848594121fd6a91" "304d605e21f69615e1b57db18312b6b948725724b74e91d8aea7371e99532469" "1b358bdee873f1936b63efe83d190a53c2d21754d302d63ff285174023473755" "58b938c2e3ca4c2ce48942da97f9e45797f2c074ac6004734e93784a48af6160"); cdm::InputBuffer buf; buf.data = &data.encrypt_data[0]; buf.data_size = data.encrypt_data.size(); buf.key_id = (const uint8_t*)&data.key_id[0]; buf.key_id_size = data.key_id.length(); buf.iv = &data.iv[0]; buf.iv_size = data.iv.size(); buf.data_offset = 0; cdm::SubsampleEntry sub(0, buf.data_size); buf.subsamples = ⊂ buf.num_subsamples = 1; buf.timestamp = 10; TestDecryptedBlock output; cdm::Status status = cdm_->Decrypt(buf, &output); EXPECT_EQ(cdm::kSuccess, status); EXPECT_EQ(0, memcmp(output.DecryptedBuffer()->Data(), &data.decrypt_data[0], buf.data_size)); } // Level 1 / Level 2 payload comes back in the cpu memory as cleartext. void DecryptClearSubsampleTest() { typedef struct DecryptionData { bool is_encrypted; bool is_secure; wvcdm::KeyId key_id; std::vector encrypt_data; std::vector iv; size_t block_offset; std::vector decrypt_data; } DecryptionData; DecryptionData data; data.is_encrypted = true; data.is_secure = false; // Key ID of key used to encrypt the test content. // This is used by the secure layer to look up the content key data.key_id = wvcdm::a2bs_hex("E02562E04CD55351B14B3D748D36ED8E"); // Dummy encrypted data. This is a combination of clear and // encrypted data. data.encrypt_data = wvcdm::a2b_hex( "5a36c0b633b58faf22156d78fdfb608e54a8095788b2b0463ef78d030b4abf82" "3b2cbde084973539329bd5656da22d20396249bf4a18a51c38c4743360cc9fea" "a1c78d53de1bd7e14dc5d256fd20a57178a98b83804258c239acd7aa38f2d7d2" "5a36c0" "eca614965b" "58b938c2e3ca4c2ce4" "3d22049e19e236fc1800e60965d8b36415677bf2f843d50a6943c4" "683c07c114a32f5e5fbc9939c483c3a1b2ecd3d82b554d649798866191724283" "f0ab082eba2da79aaca5c4eaf186f9ee9a0c568f621f705a578f30e4e2ef7b96" "5e14cc046ce6dbf272ee5558b098f332333e95fc879dea6c29bf34acdb649650" "f08201b9e649960f2493fd7677cc3abf5ae70e5445845c947ba544456b431646" "d95a133bff5f57614dda5e4446cd8837901d074149dadf4b775b5b07bb88ca20"); data.iv = wvcdm::a2b_hex("4cca615fc013102892f91efee936639b"); data.block_offset = 0; // Expected decrypted data. data.decrypt_data = wvcdm::a2b_hex( "5a36c0b633b58faf22156d78fdfb608e54a8095788b2b0463ef78d030b4abf82" "5a36c0b633b58faf22156d78fdfb608e54a8095788b2b0463ef78d030b4abf82" "eff34b8d9b7b6352e7d72de991b599662aa475da355033620152e2356ebfadee" "5a36c0" "06172be9e1" "58b938c2e3ca4c2ce4" "058fa177e223b9fdd191380cff53c3ea810c6fd852a1df4967b799" "415179a2276ec388ef763bab89605b9c6952c28dc8d6bf86b03fabbb46b392a3" "1dad15be602eeeeabb45070b3e25d6bb0217073b1fc44c9fe848594121fd6a91" "304d605e21f69615e1b57db18312b6b948725724b74e91d8aea7371e99532469" "1b358bdee873f1936b63efe83d190a53c2d21754d302d63ff285174023473755" "58b938c2e3ca4c2ce48942da97f9e45797f2c074ac6004734e93784a48af6160"); cdm::InputBuffer buf; buf.data = &data.encrypt_data[0]; buf.data_size = data.encrypt_data.size(); buf.key_id = (const uint8_t*) &data.key_id[0]; buf.key_id_size = data.key_id.length(); buf.iv = &data.iv[0]; buf.iv_size = data.iv.size(); buf.data_offset = 0; std::vector sub; sub.push_back(cdm::SubsampleEntry(32, 64)); sub.push_back(cdm::SubsampleEntry(3, 5)); sub.push_back( cdm::SubsampleEntry(9, data.encrypt_data.size() - (32 + 64 + 3 + 5 + 9))); buf.subsamples = &sub[0]; buf.num_subsamples = sub.size(); buf.timestamp = 10; TestDecryptedBlock output; cdm::Status status = cdm_->Decrypt(buf, &output); EXPECT_EQ(cdm::kSuccess, status); EXPECT_EQ( 0, memcmp(output.DecryptedBuffer()->Data(), &data.decrypt_data[0], buf.data_size)); } void DecryptClearSubsampleTestWithMissingSubsampleInfo() { typedef struct DecryptionData { bool is_encrypted; bool is_secure; wvcdm::KeyId key_id; std::vector encrypt_data; std::vector iv; size_t block_offset; std::vector decrypt_data; } DecryptionData; DecryptionData data; data.is_encrypted = true; data.is_secure = false; // Key ID of key used to encrypt the test content. // This is used by the secure layer to look up the content key data.key_id = wvcdm::a2bs_hex("E02562E04CD55351B14B3D748D36ED8E"); // Dummy encrypted data. This is a combination of clear and // encrypted data. data.encrypt_data = wvcdm::a2b_hex( "5a36c0b633b58faf22156d78fdfb608e54a8095788b2b0463ef78d030b4abf82" "3b2cbde084973539329bd5656da22d20396249bf4a18a51c38c4743360cc9fea" "a1c78d53de1bd7e14dc5d256fd20a57178a98b83804258c239acd7aa38f2d7d2" "5a36c0" "eca614965b" "58b938c2e3ca4c2ce4" "3d22049e19e236fc1800e60965d8b36415677bf2f843d50a6943c4" "683c07c114a32f5e5fbc9939c483c3a1b2ecd3d82b554d649798866191724283" "f0ab082eba2da79aaca5c4eaf186f9ee9a0c568f621f705a578f30e4e2ef7b96" "5e14cc046ce6dbf272ee5558b098f332333e95fc879dea6c29bf34acdb649650" "f08201b9e649960f2493fd7677cc3abf5ae70e5445845c947ba544456b431646" "d95a133bff5f57614dda5e4446cd8837901d074149dadf4b775b5b07bb88ca20"); data.iv = wvcdm::a2b_hex("4cca615fc013102892f91efee936639b"); data.block_offset = 0; // Expected decrypted data. data.decrypt_data = wvcdm::a2b_hex( "5a36c0b633b58faf22156d78fdfb608e54a8095788b2b0463ef78d030b4abf82" "5a36c0b633b58faf22156d78fdfb608e54a8095788b2b0463ef78d030b4abf82" "eff34b8d9b7b6352e7d72de991b599662aa475da355033620152e2356ebfadee" "5a36c0" "06172be9e1" "58b938c2e3ca4c2ce4" "058fa177e223b9fdd191380cff53c3ea810c6fd852a1df4967b799" "415179a2276ec388ef763bab89605b9c6952c28dc8d6bf86b03fabbb46b392a3" "1dad15be602eeeeabb45070b3e25d6bb0217073b1fc44c9fe848594121fd6a91" "304d605e21f69615e1b57db18312b6b948725724b74e91d8aea7371e99532469" "1b358bdee873f1936b63efe83d190a53c2d21754d302d63ff285174023473755" "58b938c2e3ca4c2ce48942da97f9e45797f2c074ac6004734e93784a48af6160"); cdm::InputBuffer buf; buf.data = &data.encrypt_data[0]; buf.data_size = data.encrypt_data.size(); buf.key_id = (const uint8_t*)&data.key_id[0]; buf.key_id_size = data.key_id.length(); buf.iv = &data.iv[0]; buf.iv_size = data.iv.size(); buf.data_offset = 0; std::vector sub; sub.push_back(cdm::SubsampleEntry(32, 64)); sub.push_back(cdm::SubsampleEntry(3, 5)); sub.push_back(cdm::SubsampleEntry( 9, data.encrypt_data.size() - (32 + 64 + 3 + 5 + 9))); //buf.subsamples = &sub[0]; //buf.num_subsamples = sub.size(); buf.timestamp = 10; TestDecryptedBlock output; cdm::Status status = cdm_->Decrypt(buf, &output); EXPECT_EQ(cdm::kDecryptError, status); buf.subsamples = &sub[0]; status = cdm_->Decrypt(buf, &output); EXPECT_EQ(cdm::kDecryptError, status); buf.num_subsamples = sub.size(); status = cdm_->Decrypt(buf, &output); EXPECT_EQ(cdm::kSuccess, status); EXPECT_EQ(0, memcmp(output.DecryptedBuffer()->Data(), &data.decrypt_data[0], buf.data_size)); buf.subsamples = NULL; status = cdm_->Decrypt(buf, &output); EXPECT_EQ(cdm::kDecryptError, status); } // Level 1 passes encrypted payload straight through. By calling the // CDM's DecryptDecodeAndRenderSamples, and/or DecryptDecodeAndRenderFrame, // OEMCrypto_DecryptCTR will be told to use Direct Rendering. void SecureDecryptLevel1Test() { typedef struct DecryptionData { bool is_encrypted; bool is_secure; wvcdm::KeyId key_id; std::vector encrypt_data; std::vector iv; size_t block_offset; std::vector decrypt_data; } DecryptionData; DecryptionData data; data.is_encrypted = true; data.is_secure = false; // Key ID of key used to encrypt the test content. // This is used by the secure layer to look up the content key data.key_id = wvcdm::a2bs_hex("E02562E04CD55351B14B3D748D36ED8E"); // Dummy encrypted data. data.encrypt_data = wvcdm::a2b_hex( "3b2cbde084973539329bd5656da22d20396249bf4a18a51c38c4743360cc9fea" "a1c78d53de1bd7e14dc5d256fd20a57178a98b83804258c239acd7aa38f2d7d2" "eca614965b3d22049e19e236fc1800e60965d8b36415677bf2f843d50a6943c4" "683c07c114a32f5e5fbc9939c483c3a1b2ecd3d82b554d649798866191724283" "f0ab082eba2da79aaca5c4eaf186f9ee9a0c568f621f705a578f30e4e2ef7b96" "5e14cc046ce6dbf272ee5558b098f332333e95fc879dea6c29bf34acdb649650" "f08201b9e649960f2493fd7677cc3abf5ae70e5445845c947ba544456b431646" "d95a133bff5f57614dda5e4446cd8837901d074149dadf4b775b5b07bb88ca20"); data.iv = wvcdm::a2b_hex("4cca615fc013102892f91efee936639b"); data.block_offset = 0; // Expected decrypted data. data.decrypt_data = wvcdm::a2b_hex( "5a36c0b633b58faf22156d78fdfb608e54a8095788b2b0463ef78d030b4abf82" "eff34b8d9b7b6352e7d72de991b599662aa475da355033620152e2356ebfadee" "06172be9e1058fa177e223b9fdd191380cff53c3ea810c6fd852a1df4967b799" "415179a2276ec388ef763bab89605b9c6952c28dc8d6bf86b03fabbb46b392a3" "1dad15be602eeeeabb45070b3e25d6bb0217073b1fc44c9fe848594121fd6a91" "304d605e21f69615e1b57db18312b6b948725724b74e91d8aea7371e99532469" "1b358bdee873f1936b63efe83d190a53c2d21754d302d63ff285174023473755" "58b938c2e3ca4c2ce48942da97f9e45797f2c074ac6004734e93784a48af6160"); cdm::InputBuffer buf; buf.data = &data.encrypt_data[0]; buf.data_size = data.encrypt_data.size(); buf.key_id = (const uint8_t*)&data.key_id[0]; buf.key_id_size = data.key_id.length(); buf.iv = &data.iv[0]; buf.iv_size = data.iv.size(); buf.data_offset = 0; cdm::SubsampleEntry sub(0, buf.data_size); buf.subsamples = ⊂ buf.num_subsamples = 1; buf.timestamp = 10; cdm::Status status; status = cdm_->DecryptDecodeAndRenderSamples(buf); EXPECT_EQ(cdm::kSuccess, status); status = cdm_->DecryptDecodeAndRenderFrame(buf); EXPECT_EQ(cdm::kSuccess, status); } // Level 1 passes encrypted payload straight through. By calling the // CDM's DecryptDecodeAndRenderSamples, and/or DecryptDecodeAndRenderFrame, // OEMCrypto_DecryptCTR will be told to use Direct Rendering. void SecureDecryptLevel1MultipleSubsamplesTest() { typedef struct DecryptionData { bool is_encrypted; bool is_secure; wvcdm::KeyId key_id; std::vector encrypt_data; std::vector iv; size_t block_offset; std::vector decrypt_data; } DecryptionData; DecryptionData data; data.is_encrypted = true; data.is_secure = false; // Key ID of key used to encrypt the test content. // This is used by the secure layer to look up the content key data.key_id = wvcdm::a2bs_hex("E02562E04CD55351B14B3D748D36ED8E"); // Dummy encrypted data. This is a combination of clear and // encrypted data. data.encrypt_data = wvcdm::a2b_hex( "5a36c0b633b58faf22156d78fdfb608e54a8095788b2b0463ef78d030b4abf82" "3b2cbde084973539329bd5656da22d20396249bf4a18a51c38c4743360cc9fea" "a1c78d53de1bd7e14dc5d256fd20a57178a98b83804258c239acd7aa38f2d7d2" "5a36c0" "eca614965b" "58b938c2e3ca4c2ce4" "3d22049e19e236fc1800e60965d8b36415677bf2f843d50a6943c4" "683c07c114a32f5e5fbc9939c483c3a1b2ecd3d82b554d649798866191724283" "f0ab082eba2da79aaca5c4eaf186f9ee9a0c568f621f705a578f30e4e2ef7b96" "5e14cc046ce6dbf272ee5558b098f332333e95fc879dea6c29bf34acdb649650" "f08201b9e649960f2493fd7677cc3abf5ae70e5445845c947ba544456b431646" "d95a133bff5f57614dda5e4446cd8837901d074149dadf4b775b5b07bb88ca20"); data.iv = wvcdm::a2b_hex("4cca615fc013102892f91efee936639b"); data.block_offset = 0; // Expected decrypted data. data.decrypt_data = wvcdm::a2b_hex( "5a36c0b633b58faf22156d78fdfb608e54a8095788b2b0463ef78d030b4abf82" "5a36c0b633b58faf22156d78fdfb608e54a8095788b2b0463ef78d030b4abf82" "eff34b8d9b7b6352e7d72de991b599662aa475da355033620152e2356ebfadee" "5a36c0" "06172be9e1" "58b938c2e3ca4c2ce4" "058fa177e223b9fdd191380cff53c3ea810c6fd852a1df4967b799" "415179a2276ec388ef763bab89605b9c6952c28dc8d6bf86b03fabbb46b392a3" "1dad15be602eeeeabb45070b3e25d6bb0217073b1fc44c9fe848594121fd6a91" "304d605e21f69615e1b57db18312b6b948725724b74e91d8aea7371e99532469" "1b358bdee873f1936b63efe83d190a53c2d21754d302d63ff285174023473755" "58b938c2e3ca4c2ce48942da97f9e45797f2c074ac6004734e93784a48af6160"); cdm::InputBuffer buf; buf.data = &data.encrypt_data[0]; buf.data_size = data.encrypt_data.size(); buf.key_id = (const uint8_t*)&data.key_id[0]; buf.key_id_size = data.key_id.length(); buf.iv = &data.iv[0]; buf.iv_size = data.iv.size(); buf.data_offset = 0; std::vector sub; sub.push_back(cdm::SubsampleEntry(32, 64)); sub.push_back(cdm::SubsampleEntry(3, 5)); sub.push_back(cdm::SubsampleEntry( 9, data.encrypt_data.size() - (32 + 64 + 3 + 5 + 9))); buf.subsamples = &sub[0]; buf.num_subsamples = sub.size(); buf.timestamp = 10; cdm::Status status; status = cdm_->DecryptDecodeAndRenderSamples(buf); EXPECT_EQ(cdm::kSuccess, status); status = cdm_->DecryptDecodeAndRenderFrame(buf); EXPECT_EQ(cdm::kSuccess, status); } void WithMissingSubsampleInfoTest() { typedef struct DecryptionData { bool is_encrypted; bool is_secure; wvcdm::KeyId key_id; std::vector encrypt_data; std::vector iv; size_t block_offset; std::vector decrypt_data; } DecryptionData; DecryptionData data; data.is_encrypted = true; data.is_secure = false; // Key ID of key used to encrypt the test content. // This is used by the secure layer to look up the content key data.key_id = wvcdm::a2bs_hex("E02562E04CD55351B14B3D748D36ED8E"); // Dummy encrypted data. data.encrypt_data = wvcdm::a2b_hex( "5a36c0b633b58faf22156d78fdfb608e54a8095788b2b0463ef78d030b4abf82" "3b2cbde084973539329bd5656da22d20396249bf4a18a51c38c4743360cc9fea" "a1c78d53de1bd7e14dc5d256fd20a57178a98b83804258c239acd7aa38f2d7d2" "5a36c0" "eca614965b" "58b938c2e3ca4c2ce4" "3d22049e19e236fc1800e60965d8b36415677bf2f843d50a6943c4" "683c07c114a32f5e5fbc9939c483c3a1b2ecd3d82b554d649798866191724283" "f0ab082eba2da79aaca5c4eaf186f9ee9a0c568f621f705a578f30e4e2ef7b96" "5e14cc046ce6dbf272ee5558b098f332333e95fc879dea6c29bf34acdb649650" "f08201b9e649960f2493fd7677cc3abf5ae70e5445845c947ba544456b431646" "d95a133bff5f57614dda5e4446cd8837901d074149dadf4b775b5b07bb88ca20"); data.iv = wvcdm::a2b_hex("4cca615fc013102892f91efee936639b"); data.block_offset = 0; // Expected decrypted data. data.decrypt_data = wvcdm::a2b_hex( "5a36c0b633b58faf22156d78fdfb608e54a8095788b2b0463ef78d030b4abf82" "5a36c0b633b58faf22156d78fdfb608e54a8095788b2b0463ef78d030b4abf82" "eff34b8d9b7b6352e7d72de991b599662aa475da355033620152e2356ebfadee" "5a36c0" "06172be9e1" "58b938c2e3ca4c2ce4" "058fa177e223b9fdd191380cff53c3ea810c6fd852a1df4967b799" "415179a2276ec388ef763bab89605b9c6952c28dc8d6bf86b03fabbb46b392a3" "1dad15be602eeeeabb45070b3e25d6bb0217073b1fc44c9fe848594121fd6a91" "304d605e21f69615e1b57db18312b6b948725724b74e91d8aea7371e99532469" "1b358bdee873f1936b63efe83d190a53c2d21754d302d63ff285174023473755" "58b938c2e3ca4c2ce48942da97f9e45797f2c074ac6004734e93784a48af6160"); cdm::InputBuffer buf; buf.data = &data.encrypt_data[0]; buf.data_size = data.encrypt_data.size(); buf.key_id = (const uint8_t*)&data.key_id[0]; buf.key_id_size = data.key_id.length(); buf.iv = &data.iv[0]; buf.iv_size = data.iv.size(); buf.data_offset = 0; std::vector sub; sub.push_back(cdm::SubsampleEntry(32, 64)); sub.push_back(cdm::SubsampleEntry(3, 5)); sub.push_back(cdm::SubsampleEntry( 9, data.encrypt_data.size() - (32 + 64 + 3 + 5 + 9))); buf.timestamp = 10; cdm::Status status; status = cdm_->DecryptDecodeAndRenderSamples(buf); EXPECT_EQ(cdm::kDecryptError, status); status = cdm_->DecryptDecodeAndRenderFrame(buf); EXPECT_EQ(cdm::kDecryptError, status); buf.subsamples = &sub[0]; status = cdm_->DecryptDecodeAndRenderSamples(buf); EXPECT_EQ(cdm::kDecryptError, status); status = cdm_->DecryptDecodeAndRenderFrame(buf); EXPECT_EQ(cdm::kDecryptError, status); buf.num_subsamples = sub.size(); status = cdm_->DecryptDecodeAndRenderSamples(buf); EXPECT_EQ(cdm::kSuccess, status); status = cdm_->DecryptDecodeAndRenderFrame(buf); EXPECT_EQ(cdm::kSuccess, status); buf.subsamples = NULL; status = cdm_->DecryptDecodeAndRenderSamples(buf); EXPECT_EQ(cdm::kDecryptError, status); status = cdm_->DecryptDecodeAndRenderFrame(buf); EXPECT_EQ(cdm::kDecryptError, status); } void TimerTest(void* session_id) { host_->SetTimer(1000, session_id); } std::string key_msg_; std::string session_id_; std::string server_url_; cdm::ContentDecryptionModule* cdm_; TestHostFactory host_factory_; TestHost* host_; }; // Note that these tests, BaseMessageTest, NormalDecryption and TimeTest, // are dependent on getting back a license from the license server where the // url for the license server is defined in the conf_test_env.cpp. If these // tests fail immediately, verify that the license server URL is correct // and works in your test environment. TEST_F(WvCdmApiTest, DeviceCertificateTest) { std::vector value(0); host_->PersistPlatformByteArray("DeviceCertificate", value); GenerateKeyRequest(g_key_system, g_key_id); // It will have to provision - // in here. TestHost::KeyMessage key_msg = host_->GetLastKeyMessage(); session_id_ = key_msg.session_id; key_msg_ = key_msg.message; std::string drm_msg = GetKeyRequestResponse(g_license_server, g_client_auth, 200); AddKey(key_msg.session_id, drm_msg); CancelKeyRequest(session_id_); } TEST_F(WvCdmApiTest, BaseMessageTest) { GenerateKeyRequest(g_key_system, g_key_id); TestHost::KeyMessage key_msg = host_->GetLastKeyMessage(); session_id_ = key_msg.session_id; key_msg_ = key_msg.message; std::string drm_msg = GetKeyRequestResponse(g_license_server, g_client_auth, 200); AddKey(key_msg.session_id, drm_msg); CancelKeyRequest(session_id_); } TEST_F(WvCdmApiTest, BaseTimerTest) { GenerateKeyRequest(g_key_system, g_key_id); TestHost::KeyMessage key_msg = host_->GetLastKeyMessage(); session_id_ = key_msg.session_id; key_msg_ = key_msg.message; std::string drm_msg = GetKeyRequestResponse(g_license_server, g_client_auth, 200); AddKey(key_msg.session_id, drm_msg); LOGI("Sleeping and allowing the time expirations to increment"); uint32_t sleep_period = static_cast(12000 / 1000); sleep(sleep_period); LOGI("Tick count is %ld\n", host_->GetTickCount()); // We should have close to, maybe slightly less than sleep_period ticks. // If it ticked at all then we pass as the timer must be expriring. EXPECT_GE(host_->GetTickCount(), 1U); CancelKeyRequest(session_id_); } TEST_F(WvCdmApiTest, NormalDecryption) { GenerateKeyRequest(g_key_system, g_key_id); TestHost::KeyMessage key_msg = host_->GetLastKeyMessage(); key_msg_ = key_msg.message; std::string drm_msg = GetKeyRequestResponse(g_license_server, g_client_auth, 200); AddKey(key_msg.session_id, drm_msg); DecryptClearPayloadTest(); } TEST_F(WvCdmApiTest, NormalSubSampleDecryptionWithSubsampleInfo) { GenerateKeyRequest(g_key_system, g_key_id); TestHost::KeyMessage key_msg = host_->GetLastKeyMessage(); key_msg_ = key_msg.message; std::string drm_msg = GetKeyRequestResponse(g_license_server, g_client_auth, 200); AddKey(key_msg.session_id, drm_msg); DecryptClearSubsampleTest(); } TEST_F(WvCdmApiTest, NormalSubSampleDecryptionWithMissingSubsampleInfo) { GenerateKeyRequest(g_key_system, g_key_id); TestHost::KeyMessage key_msg = host_->GetLastKeyMessage(); key_msg_ = key_msg.message; std::string drm_msg = GetKeyRequestResponse(g_license_server, g_client_auth, 200); AddKey(key_msg.session_id, drm_msg); DecryptClearSubsampleTestWithMissingSubsampleInfo(); } TEST_F(WvCdmApiTest, TimeTest) { GenerateKeyRequest(g_key_system, g_key_id); TestHost::KeyMessage key_msg = host_->GetLastKeyMessage(); session_id_ = key_msg.session_id; key_msg_ = key_msg.message; std::string drm_msg = GetKeyRequestResponse(g_license_server, g_client_auth, 200); AddKey(key_msg.session_id, drm_msg); host_->SetCurrentTime(host_->GetCurrentTestTime() + kTestPolicyRenewalDelaySeconds); sleep(kDelayWaitToForRenewalMessageSeconds); // When the timer expired, we should have sent a renewal, so we can // add this renewed key now, assuming things are working as expected. TestHost::KeyMessage key_msg2 = host_->GetLastKeyMessage(); session_id_ = key_msg2.session_id; key_msg_ = key_msg2.message; drm_msg = GetKeyRequestResponse(key_msg2.default_url, g_client_auth, 200); AddKey(key_msg2.session_id, drm_msg); } TEST_F(WvCdmApiTest, SecureDecryptionLevel1) { GenerateKeyRequest(g_key_system, g_key_id); TestHost::KeyMessage key_msg = host_->GetLastKeyMessage(); key_msg_ = key_msg.message; std::string drm_msg = GetKeyRequestResponse(g_license_server, g_client_auth, 200); AddKey(key_msg.session_id, drm_msg); SecureDecryptLevel1Test(); } TEST_F(WvCdmApiTest, SecureDecryptionLevel1WithSubsampleInfo) { GenerateKeyRequest(g_key_system, g_key_id); TestHost::KeyMessage key_msg = host_->GetLastKeyMessage(); key_msg_ = key_msg.message; std::string drm_msg = GetKeyRequestResponse(g_license_server, g_client_auth, 200); AddKey(key_msg.session_id, drm_msg); SecureDecryptLevel1MultipleSubsamplesTest(); } TEST_F(WvCdmApiTest, SecureDecryptionLevel1WithMissingSubsampleInfo) { GenerateKeyRequest(g_key_system, g_key_id); TestHost::KeyMessage key_msg = host_->GetLastKeyMessage(); key_msg_ = key_msg.message; std::string drm_msg = GetKeyRequestResponse(g_license_server, g_client_auth, 200); AddKey(key_msg.session_id, drm_msg); WithMissingSubsampleInfoTest(); } void* GetCdmHost(int host_interface_version, void* user_data) { if (!host_interface_version || !user_data) return NULL; if (host_interface_version != cdm::kHostInterfaceVersion) return NULL; TestHostFactory* host_factory = reinterpret_cast(user_data); return host_factory->GetTestHost(); } } // namespace wvcdm int main(int argc, char** argv) { ::testing::InitGoogleTest(&argc, argv); wvcdm::InitLogging(argc, argv); wvcdm::ConfigTestEnv config(wvcdm::kGooglePlayServer); g_client_auth.assign(config.client_auth()); g_key_system.assign(config.key_system()); g_wrong_key_id.assign(config.wrong_key_id()); // The following variables are configurable through command line options. g_license_server.assign(config.license_server()); g_key_id.assign(config.key_id()); std::string license_server(g_license_server); int show_usage = 0; static const struct option long_options[] = { {"use_full_path", no_argument, &g_use_full_path, 0}, {"keyid", required_argument, NULL, 'k'}, {"server", required_argument, NULL, 's'}, {"vmodule", required_argument, NULL, 0}, {"v", required_argument, NULL, 0}, {NULL, 0, NULL, '\0'}}; int option_index = 0; int opt = 0; while ((opt = getopt_long(argc, argv, "k:p:s:u:v", long_options, &option_index)) != -1) { switch (opt) { case 'k': { g_key_id.clear(); g_key_id.assign(optarg); break; } case 's': { g_license_server.clear(); g_license_server.assign(optarg); break; } case 'u': { g_use_full_path = 1; break; } case '?': { show_usage = 1; break; case 'v': break; } } } if (show_usage) { std::cout << std::endl; std::cout << "usage: " << argv[0] << " [options]" << std::endl << std::endl; std::cout << " enclose multiple arguments in '' when using adb shell" << std::endl; std::cout << " e.g. adb shell '" << argv[0] << " --server=\"url\"'" << std::endl << std::endl; std::cout << std::setw(30) << std::left << " --server="; std::cout << "configure the license server url, please include http[s] in the url" << std::endl; std::cout << std::setw(30) << std::left << " "; std::cout << "default: " << license_server << std::endl; std::cout << std::setw(30) << std::left << " --keyid="; std::cout << "configure the key id or pssh, in hex format" << std::endl; std::cout << std::setw(30) << std::left << " default keyid:"; std::cout << g_key_id << std::endl; std::cout << std::setw(30) << std::left << " --use_full_path"; std::cout << "specify server url is not a proxy server" << std::endl; std::cout << std::endl; return 0; } std::cout << std::endl; std::cout << "Server: " << g_license_server << std::endl; std::cout << "KeyID: " << g_key_id << std::endl << std::endl; g_key_id = wvcdm::a2bs_hex(g_key_id); config.set_license_server(g_license_server); config.set_key_id(g_key_id); return RUN_ALL_TESTS(); }