// Copyright 2013 Google Inc. All Rights Reserved. // // This source file provides a basic set of unit tests for the Content // Decryption Module (CDM). It exercises much of the API that will be // required by the host application to get the license and keys for // rendering protected content. #include "cdm_test_config.h" #include "test_host_1.h" #include "test_util.h" #include #include #include "clock.h" #include "config_test_env.h" #include "content_decryption_module.h" #include "device_cert.h" #include "license_request.h" #include "log.h" #include "properties.h" #include "scoped_ptr.h" #include "string_conversions.h" #include "url_request.h" static const int kTestPolicyRenewalDelaySeconds = 180; static const int kDelayWaitToForRenewalMessageSeconds = 2; static const int kHttpOk = 200; static const int kHttpBadGateway = 502; static const int kNumRetries = 5; static const int kRetryBaseDelaySeconds = 3; namespace { // Default key system identifier. const char kKeySystemWidevine[] = "com.widevine.alpha"; // Default mime type for key request generation. const char kMimeType[] = "video/mp4"; // Key ID of key used to encrypt the test content. // This is used to look up the content key. const std::vector kTestKeyId = wvcdm::a2b_hex("371ea35e1a985d75d198a7f41020dc23"); // Dummy encrypted data. const std::vector kInputVector1 = wvcdm::a2b_hex( "64ab17b3e3dfab47245c7cce4543d4fc7a26dcf248f19f9b59f3c92601440b36" "17c8ed0c96c656549e461f38708cd47a434066f8df28ccc28b79252eee3f9c2d" "7f6c68ebe40141fe818fe082ca523c03d69ddaf183a93c022327fedc5582c5ab" "ca9d342b71263a67f9cb2336f12108aaaef464f17177e44e9b0c4e56e61da53c" "2150b4405cc82d994dfd9bf4087c761956d6688a9705db4cf350381085f383c4" "9666d4aed135c519c1f0b5cba06e287feea96ea367bf54e7368dcf998276c6e4" "6497e0c50e20fef74e42cb518fe7f22ef27202428688f86404e8278587017012" "c1d65537c6cbd7dde04aae338d68115a9f430afc100ab83cdadf45dca39db685"); const std::vector kIv1 = wvcdm::a2b_hex("f6f4b1e600a5b67813ed2bded913ba9f"); // Expected output for kInputVector1. const std::vector kOutputVector1 = wvcdm::a2b_hex( "217ce9bde99bd91e9733a1a00b9b557ac3a433dc92633546156817fae26b6e1c" "942ac20a89ff79f4c2f25fba99d6a44618a8c0420b27d54e3da17b77c9d43cca" "595d259a1e4a8b6d7744cd98c5d3f921adc252eb7d8af6b916044b676a574747" "8df21fdc42f166880d97a2225cd5c9ea5e7b752f4cf81bbdbe98e542ee10e1c6" "ad868a6ac55c10d564fc23b8acff407daaf4ed2743520e02cda9680d9ea88e91" "029359c4cf5906b6ab5bf60fbb3f1a1c7c59acfc7e4fb4ad8e623c04d503a3dd" "4884604c8da8a53ce33db9ff8f1c5bb6bb97f37b39906bf41596555c1bcce9ed" "08a899cd760ff0899a1170c2f224b9c52997a0785b7fe170805fd3e8b1127659"); // Dummy encrypted data. This is a combination of clear and encrypted data. const std::vector kInputVector2 = wvcdm::a2b_hex( // subsample 0 "abcdef" "53cc758763904ea5870458e6b23d36db1e6d7f7aaa2f3eeebb5393a7264991e7" "ce4f57b198326e1a208a821799b2a29c90567ab57321b06e51fc20dc9bc5fc55" "10720a8bb1f5e002c3e50ff70d2d806a9432cad237050d09581f5b0d59b00090" "b3ad69b4087f5a155b17e13c44d33fa007475d207fc4ac2ef3b571ecb9" // subsample 1 "0123456789" "f3c852" "ce00dc4806f0c6856ae1732e20308096478e1d822d75c2bb768119565d3bd6e6" "901e36164f4802355ee758fc46ef6cf5f852dd5256c7b1e5f96d29" // subsample 2 "deadbeefbaadf00d" "3b20525d5e" "78b8e5aa344d5c4e425e67ddf889ea7c4bb1d49af67eba67718b765e0a940402" "8d306f4ce693ad6dc0a931d507fa14fff4d293d4170280b3e0fca2d628f722e8" ); const std::vector kIv2 = wvcdm::a2b_hex("6ba18dd40f49da7f64c368e4db43fc88"); // Expected output for kInputVector2. const std::vector kOutputVector2 = wvcdm::a2b_hex( // subsample 0 "abcdef" "52e65334501acadf78e2b26460def3ac973771ed7c64001a2e82917342a7eab3" "047f5e85449692fae8f677be425a47bdea850df5a3ffff17043afb1f2b437ab2" "b1d5e0784c4ed8f97fc24b8f565e85ed63fb7d1365980d9aea7b8b58f488f83c" "1ce80b6096c60f3b113c988ff185b26e798da8fc6f327e4ff00e4b3fbf" // subsample 1 "0123456789" "b1ed0a" "a054bce40ccb0ebc70b181d1a12055f46ac55e29c7c2473a29d2a366d240ec48" "7cede274f012813a877f99159e7062b6a37cfc9327a7bc2195814e" // subsample 2 "deadbeefbaadf00d" "653b818d1d" "4ab9a9128361d8ca6a9d2766df5c096ee29f4f5204febdf217a94a5b560cd692" "cc36d3e071df789fdeac2fb7ec6dcd7af94bb1f85c22025b25e702e38212b927" ); // Dummy encrypted data. This will be decrypted with a data_offset // instead of subsamples. const std::vector kInputVector3 = wvcdm::a2b_hex( "64ab17b3e3dfab47245c7cce4543d4fc7a26dcf248f19f9b59f3c92601440b36" "17c8ed0c96c656549e461f38708cd47a434066f8df28ccc28b79252eee3f9c2d" "7f6c68ebe40141fe818fe082ca523c03d69ddaf183a93c022327fedc5582c5ab" "ca9d342b71263a67f9cb2336f12108aaaef464f17177e44e9b0c4e56e61da53c" "2150b4405cc82d994dfd9bf4087c761956d6688a9705db4cf350381085f383c4" "9666d4aed135c519c1f0b5cba06e287feea96ea367bf54e7368dcf998276c6e4" "6497e0c50e20fef74e42cb518fe7f22ef27202428688f86404e8278587017012" "c1d65537c6cbd7dde04aae338d68115a9f430afc100ab83cdadf45dca39db685"); const std::vector kIv3 = wvcdm::a2b_hex("f6f4b1e600a5b67813ed2bded913ba9f"); // The data_offset for kInputVector3. const uint32_t kInputOffset3 = 9; // Expected output for kInputVector3 offset by kInputOffset3. const std::vector kOutputVector3 = wvcdm::a2b_hex( "19ab304b49908e2395b32f26bf471adf4a4bc92f9e999cca8476d24a257931b4" "c5fd177693ed55e31cd2b85dc196b2b722cd8854eb9334f3dab0b5bd26aa5e66" "a9d1cfbba877c9456b11dc99a6bdc7015ca1544f7ce66171a8179eca19efe515" "8c4c1d0612dff64100387065da108fdbfcc14738202ac3d27520eb48c020ddb7" "714dca22e5e2241aff6932dba1587a97ac1a952827d411d8582dfecc2e9e1494" "644046ca7044bc41c3c5e0a3a405d5551f3f5bdd6f36042e2f0f3693778b9277" "6ed8d106647a7539df7d30288803cd9ca1c274bebe688151c72b451f571a441f" "83d0ff77d8d57dcb395122e175f4944569917627d6c3dc"); void* GetCdmHost(int host_interface_version, void* user_data) { if (host_interface_version != cdm::Host_1::kVersion) return NULL; return user_data; } } // namespace namespace wvcdm { class CdmApi1Test : public testing::Test { public: CdmApi1Test() : cdm_(NULL) {} ~CdmApi1Test() {} protected: virtual void SetUp() { // Create the Host. host_.reset(new TestHost_1()); // Set various parameters that the CDM will query. host_->SetPlatformString("SecurityLevel", "L1"); host_->SetPlatformString("PrivacyOn", "False"); std::string cert(reinterpret_cast(kDeviceCert), kDeviceCertSize); host_->SetPlatformString("DeviceCertificate", cert); // Initialize the CDM module before creating a CDM instance. InitializeCdmModule(); // Create the CDM. cdm_ = reinterpret_cast(::CreateCdmInstance( cdm::ContentDecryptionModule_1::kVersion, kKeySystemWidevine, strlen(kKeySystemWidevine), GetCdmHost, host_.get())); // Tell the Host about the CDM. host_->SetCdmPtr(cdm_); } cdm::Status GenerateKeyRequest(const std::string& init_data) { cdm::Status status = cdm_->GenerateKeyRequest( kMimeType, strlen(kMimeType), (const uint8_t*)init_data.data(), init_data.length()); return status; } cdm::Status GenerateKeyRequestWithMimeType(const std::string& mime_type) { cdm::Status status = cdm_->GenerateKeyRequest( mime_type.c_str(), mime_type.length(), (const uint8_t*)g_key_id.data(), g_key_id.length()); return status; } // posts a request and extracts the drm message from the response std::string GetKeyRequestResponse(const TestHost_1::KeyMessage& key_msg) { std::string url; if (key_msg.default_url.empty()) { url = g_license_server + g_client_auth; } else { // Note that the client auth string is not appended when the CDM tells // us what URL to use. url = key_msg.default_url; } int status_code; std::string response; UrlRequest url_request(url); for (int retries = 0; retries < kNumRetries; ++retries) { EXPECT_TRUE(url_request.is_connected()); if (!url_request.is_connected()) { return ""; } url_request.PostRequest(key_msg.message); int resp_bytes = url_request.GetResponse(&response); status_code = url_request.GetStatusCode(response); // Sometimes, the server returns "HTTP 502 bad gateway". // If we treat this as a non-fatal error, we reduce test flakiness. if (status_code != kHttpBadGateway) { // Move on with normal processing. break; } // Reconnect to the server and try again. Since the server's 502 // response could indicate a temporary failure due to load, we use // an exponential backoff. Each time we reconnect, we delay by // exactly twice as long as the last time. This is a simplified // version of the delay strategy recommended by Google in the // internal document "Rate Limiting in Google Applications" under // the heading "Settings for client exponential backoff". We do // not bother to fuzz the delay, since unit tests are not running // simultaneously in large numbers like real clients would be. LOGE("Bad gateway, retrying."); sleep(kRetryBaseDelaySeconds << retries); url_request.Reconnect(); } // Some license servers return 400 for invalid message, some // return 500; treat anything other than 200 as an invalid message. EXPECT_EQ(kHttpOk, status_code); if (status_code != kHttpOk) { return ""; } else { std::string drm_msg; LicenseRequest lic_request; lic_request.GetDrmMessage(response, drm_msg); LOGV("drm msg: %u bytes\n%s", drm_msg.size(), HexEncode(reinterpret_cast(drm_msg.data()), drm_msg.size()).c_str()); return drm_msg; } } void ProcessKeyResponse() { TestHost_1::KeyMessage key_msg = host_->GetLastKeyMessage(); ASSERT_FALSE(key_msg.message.empty()); EXPECT_TRUE(key_msg.default_url.empty()); std::string drm_msg = GetKeyRequestResponse(key_msg); EXPECT_EQ(cdm::kSuccess, AddKey(key_msg.session_id, drm_msg)); } void ProcessKeyRenewalResponse() { TestHost_1::KeyMessage key_msg = host_->GetLastKeyMessage(); ASSERT_FALSE(key_msg.message.empty()); EXPECT_FALSE(key_msg.default_url.empty()); std::string drm_msg = GetKeyRequestResponse(key_msg); EXPECT_EQ(cdm::kSuccess, AddKey(key_msg.session_id, drm_msg)); } void CloseSession(const std::string& session_id) { cdm::Status status = cdm_->CloseSession(session_id.data(), session_id.length()); EXPECT_EQ(cdm::kSuccess, status); } cdm::Status AddKey(const std::string& session_id, const std::string& drm_msg) { cdm::Status status = cdm_->AddKey(session_id.data(), session_id.size(), (const uint8_t*)drm_msg.data(), drm_msg.size(), NULL, 0); return status; } cdm::InputBuffer BuildInputBuffer(const std::vector& encrypted, const std::vector& iv) { cdm::InputBuffer buf; buf.data = &encrypted[0]; buf.data_size = encrypted.size(); buf.key_id = &kTestKeyId[0]; buf.key_id_size = kTestKeyId.size(); buf.iv = &iv[0]; buf.iv_size = iv.size(); buf.data_offset = 0; buf.timestamp = 10; return buf; } cdm::InputBuffer BuildInputBuffer( const std::vector& encrypted, const std::vector& iv, const std::vector& sub) { cdm::InputBuffer buf = BuildInputBuffer(encrypted, iv); buf.subsamples = &sub[0]; buf.num_subsamples = sub.size(); return buf; } cdm::InputBuffer BuildInputBuffer( const std::vector& encrypted, const std::vector& iv, const uint32_t offset) { cdm::InputBuffer buf = BuildInputBuffer(encrypted, iv); buf.data_offset = offset; return buf; } std::vector BuildMultipleSubsamples() { std::vector sub; sub.push_back(cdm::SubsampleEntry(3, 125)); sub.push_back(cdm::SubsampleEntry(5, 62)); sub.push_back(cdm::SubsampleEntry(8, 69)); return sub; } std::vector BuildSingleSubsample(size_t size) { std::vector sub; sub.push_back(cdm::SubsampleEntry(0, size)); return sub; } cdm::ContentDecryptionModule_1* cdm_; // owned by host_ wvcdm::scoped_ptr host_; }; namespace { class DummyCDM : public cdm::ContentDecryptionModule_1 { public: DummyCDM() : timer_fired_(false), last_context_(NULL) {} virtual cdm::Status GenerateKeyRequest(const char*, int, const uint8_t*, int) OVERRIDE { return cdm::kSessionError; } virtual cdm::Status AddKey(const char*, int, const uint8_t*, int, const uint8_t*, int) OVERRIDE { return cdm::kSessionError; } virtual bool IsKeyValid(const uint8_t*, int) OVERRIDE { return false; } virtual cdm::Status CloseSession(const char*, int) OVERRIDE { return cdm::kSessionError; } virtual void TimerExpired(void* context) OVERRIDE { timer_fired_ = true; last_context_ = context; } virtual cdm::Status Decrypt(const cdm::InputBuffer&, cdm::DecryptedBlock*) OVERRIDE { return cdm::kSessionError; } virtual cdm::Status DecryptDecodeAndRenderFrame( const cdm::InputBuffer&) OVERRIDE { return cdm::kSessionError; } virtual cdm::Status DecryptDecodeAndRenderSamples( const cdm::InputBuffer&) OVERRIDE { return cdm::kSessionError; } virtual void Destroy() OVERRIDE { delete this; } virtual cdm::Status GetProvisioningRequest(std::string*, std::string*) OVERRIDE { return cdm::kSessionError; } virtual cdm::Status HandleProvisioningResponse(std::string&) OVERRIDE { return cdm::kSessionError; } bool TimerFired() const { return timer_fired_; } void* LastTimerContext() const { return last_context_; } void ResetTimerStatus() { timer_fired_ = false; last_context_ = NULL; } private: bool timer_fired_; void* last_context_; }; } // namespace TEST_F(CdmApi1Test, TestHostTimer) { // Validate that the TestHost timers are processed in the correct order. // To do this, we replace the cdm with a dummy that only tracks timers. DummyCDM* cdm = new DummyCDM(); // The old CDM is destroyed by SetCdmPtr. cdm_ = cdm; host_->SetCdmPtr(cdm); const double kTimerDelaySeconds = 1.0; const int64_t kTimerDelayMs = kTimerDelaySeconds * 1000; void* kCtx1 = reinterpret_cast(0x1); void* kCtx2 = reinterpret_cast(0x2); host_->SetTimer(kTimerDelayMs * 1, kCtx1); host_->SetTimer(kTimerDelayMs * 2, kCtx2); host_->FastForwardTime(kTimerDelaySeconds); EXPECT_TRUE(cdm->TimerFired()); EXPECT_EQ(kCtx1, cdm->LastTimerContext()); cdm->ResetTimerStatus(); host_->FastForwardTime(kTimerDelaySeconds); EXPECT_TRUE(cdm->TimerFired()); EXPECT_EQ(kCtx2, cdm->LastTimerContext()); cdm->ResetTimerStatus(); host_->FastForwardTime(kTimerDelaySeconds); EXPECT_FALSE(cdm->TimerFired()); } TEST_F(CdmApi1Test, DeviceCertificateTest) { if (Properties::use_certificates_as_identification()) { // Clear any existing device cert. host_->SetPlatformString("DeviceCertificate", ""); ASSERT_EQ(cdm::kNeedsDeviceCertificate, GenerateKeyRequest(g_key_id)); // The Host must handle the certificate provisioning request. std::string server_url; std::string request; cdm::Status status = cdm_->GetProvisioningRequest(&request, &server_url); ASSERT_EQ(cdm::kSuccess, status); UrlRequest url_request(server_url); url_request.PostCertRequestInQueryString(request); std::string message; bool ok = url_request.GetResponse(&message); ASSERT_TRUE(ok); status = cdm_->HandleProvisioningResponse(message); ASSERT_EQ(cdm::kSuccess, status); // Now we are provisioned, so GKR should succeed. EXPECT_EQ(cdm::kSuccess, GenerateKeyRequest(g_key_id)); } else { LOGI( "Skipping CdmApi1Test::DeviceCertificateTest because this platform " "does not support device certificates."); } } // Note that these tests, BaseMessageTest, NormalDecryption and RenewalTest, // are dependent on getting back a license from the license server where the // url for the license server is defined in the conf_test_env.cpp. If these // tests fail immediately, verify that the license server URL is correct // and works in your test environment. TEST_F(CdmApi1Test, BaseMessageTest) { EXPECT_EQ(cdm::kSuccess, GenerateKeyRequest(g_key_id)); ProcessKeyResponse(); } TEST_F(CdmApi1Test, NormalDecryption) { EXPECT_EQ(cdm::kSuccess, GenerateKeyRequest(g_key_id)); ProcessKeyResponse(); // Level 1 / Level 2 payload comes back in the cpu memory as cleartext. std::vector encrypted = kInputVector1; std::vector iv = kIv1; std::vector expected = kOutputVector1; std::vector sub = BuildSingleSubsample(encrypted.size()); cdm::InputBuffer buf = BuildInputBuffer(encrypted, iv, sub); TestDecryptedBlock output; cdm::Status status = cdm_->Decrypt(buf, &output); EXPECT_EQ(cdm::kSuccess, status); EXPECT_EQ( 0, memcmp(output.DecryptedBuffer()->Data(), &expected[0], buf.data_size)); } TEST_F(CdmApi1Test, NormalSubSampleDecryptionWithSubsampleInfo) { EXPECT_EQ(cdm::kSuccess, GenerateKeyRequest(g_key_id)); ProcessKeyResponse(); // Level 1 / Level 2 payload comes back in the cpu memory as cleartext. std::vector encrypted = kInputVector2; std::vector iv = kIv2; std::vector expected = kOutputVector2; std::vector sub = BuildMultipleSubsamples(); cdm::InputBuffer buf = BuildInputBuffer(encrypted, iv, sub); TestDecryptedBlock output; cdm::Status status = cdm_->Decrypt(buf, &output); EXPECT_EQ(cdm::kSuccess, status); EXPECT_EQ( 0, memcmp(output.DecryptedBuffer()->Data(), &expected[0], buf.data_size)); } TEST_F(CdmApi1Test, NormalSubSampleDecryptionWithMissingSubsampleInfo) { EXPECT_EQ(cdm::kSuccess, GenerateKeyRequest(g_key_id)); ProcessKeyResponse(); std::vector encrypted = kInputVector2; std::vector iv = kIv2; std::vector expected = kOutputVector2; std::vector sub = BuildMultipleSubsamples(); // Don't add these subsamples yet! cdm::InputBuffer buf = BuildInputBuffer(encrypted, iv); buf.num_subsamples = sub.size(); TestDecryptedBlock output; cdm::Status status = cdm_->Decrypt(buf, &output); EXPECT_EQ(cdm::kDecryptError, status); // Add the subsamples pointer and expect success. buf.subsamples = &sub[0]; status = cdm_->Decrypt(buf, &output); EXPECT_EQ(cdm::kSuccess, status); EXPECT_EQ( 0, memcmp(output.DecryptedBuffer()->Data(), &expected[0], buf.data_size)); } TEST_F(CdmApi1Test, DecryptWithDataOffset) { EXPECT_EQ(cdm::kSuccess, GenerateKeyRequest(g_key_id)); ProcessKeyResponse(); std::vector encrypted = kInputVector3; std::vector iv = kIv3; std::vector expected = kOutputVector3; cdm::InputBuffer buf = BuildInputBuffer(encrypted, iv, kInputOffset3); TestDecryptedBlock output; cdm::Status status = cdm_->Decrypt(buf, &output); cdm::Buffer *output_buf = output.DecryptedBuffer(); EXPECT_EQ(cdm::kSuccess, status); EXPECT_EQ(buf.data_size - buf.data_offset, output_buf->Size()); EXPECT_EQ(0, memcmp(output.DecryptedBuffer()->Data(), &expected[0], output_buf->Size())); } TEST_F(CdmApi1Test, DecryptReturnsSizedBuffer) { EXPECT_EQ(cdm::kSuccess, GenerateKeyRequest(g_key_id)); ProcessKeyResponse(); std::vector encrypted = kInputVector1; std::vector iv = kIv1; std::vector expected = kOutputVector1; std::vector sub = BuildSingleSubsample(encrypted.size()); cdm::InputBuffer buf = BuildInputBuffer(encrypted, iv, sub); TestDecryptedBlock output; cdm::Status status = cdm_->Decrypt(buf, &output); EXPECT_EQ(cdm::kSuccess, status); cdm::Buffer* buffer = output.DecryptedBuffer(); EXPECT_NE((void*)NULL, buffer); if (buffer) { EXPECT_EQ(expected.size(), output.DecryptedBuffer()->Size()); } } TEST_F(CdmApi1Test, RenewalTest) { EXPECT_EQ(cdm::kSuccess, GenerateKeyRequest(g_key_id)); ProcessKeyResponse(); // We expect that by the time we've added a key, the CDM has set a timer. // Otherwise, it couldn't correctly handle renewal. EXPECT_NE(0, host_->NumTimers()); host_->FastForwardTime(kTestPolicyRenewalDelaySeconds + kDelayWaitToForRenewalMessageSeconds); // When the timer expired, we should have sent a renewal, so we can // add this renewed key now, assuming things are working as expected. ProcessKeyRenewalResponse(); } TEST_F(CdmApi1Test, SecureDecryptionLevel1) { EXPECT_EQ(cdm::kSuccess, GenerateKeyRequest(g_key_id)); ProcessKeyResponse(); // Level 1 passes encrypted payload straight through. By calling the // CDM's DecryptDecodeAndRenderSamples, and/or DecryptDecodeAndRenderFrame, // OEMCrypto_DecryptCTR will be told to use Direct Rendering. std::vector encrypted = kInputVector1; std::vector iv = kIv1; std::vector sub = BuildSingleSubsample(encrypted.size()); cdm::InputBuffer buf = BuildInputBuffer(encrypted, iv, sub); cdm::Status status; status = cdm_->DecryptDecodeAndRenderSamples(buf); EXPECT_EQ(cdm::kSuccess, status); status = cdm_->DecryptDecodeAndRenderFrame(buf); EXPECT_EQ(cdm::kSuccess, status); } TEST_F(CdmApi1Test, SecureDecryptionLevel1WithSubsampleInfo) { EXPECT_EQ(cdm::kSuccess, GenerateKeyRequest(g_key_id)); ProcessKeyResponse(); // Level 1 passes encrypted payload straight through. By calling the // CDM's DecryptDecodeAndRenderSamples, and/or DecryptDecodeAndRenderFrame, // OEMCrypto_DecryptCTR will be told to use Direct Rendering. std::vector encrypted = kInputVector2; std::vector iv = kIv2; std::vector sub = BuildMultipleSubsamples(); cdm::InputBuffer buf = BuildInputBuffer(encrypted, iv, sub); cdm::Status status; status = cdm_->DecryptDecodeAndRenderSamples(buf); EXPECT_EQ(cdm::kSuccess, status); status = cdm_->DecryptDecodeAndRenderFrame(buf); EXPECT_EQ(cdm::kSuccess, status); } TEST_F(CdmApi1Test, SecureDecryptionLevel1WithMissingSubsampleInfo) { EXPECT_EQ(cdm::kSuccess, GenerateKeyRequest(g_key_id)); ProcessKeyResponse(); std::vector encrypted = kInputVector2; std::vector iv = kIv2; std::vector sub = BuildMultipleSubsamples(); // Don't add these subsamples yet! cdm::InputBuffer buf = BuildInputBuffer(encrypted, iv); buf.num_subsamples = sub.size(); cdm::Status status; status = cdm_->DecryptDecodeAndRenderSamples(buf); EXPECT_EQ(cdm::kDecryptError, status); status = cdm_->DecryptDecodeAndRenderFrame(buf); EXPECT_EQ(cdm::kDecryptError, status); // Add the subsamples pointer and expect success. buf.subsamples = &sub[0]; status = cdm_->DecryptDecodeAndRenderSamples(buf); EXPECT_EQ(cdm::kSuccess, status); status = cdm_->DecryptDecodeAndRenderFrame(buf); EXPECT_EQ(cdm::kSuccess, status); } TEST_F(CdmApi1Test, GenerateKeyRequestFailureSendsKeyError) { // Pass a bogus key id and expect failure. EXPECT_EQ(cdm::kSessionError, GenerateKeyRequest("")); // Expect the CDM to pass a key error back to the host. EXPECT_EQ(1, host_->KeyErrorsSize()); } TEST_F(CdmApi1Test, AddKeyFailureSendsKeyError) { EXPECT_EQ(cdm::kSuccess, GenerateKeyRequest(g_key_id)); // Get the message and response. TestHost_1::KeyMessage key_msg = host_->GetLastKeyMessage(); EXPECT_TRUE(key_msg.default_url.empty()); std::string drm_msg = GetKeyRequestResponse(key_msg); // Call AddKey with a bad session id and expect failure. EXPECT_EQ(cdm::kSessionError, AddKey("BLAH", drm_msg)); // Expect the CDM to pass a key error back to the host. EXPECT_EQ(1, host_->KeyErrorsSize()); // Call AddKey with a bad license and expect failure. EXPECT_EQ(cdm::kSessionError, AddKey(key_msg.session_id, "BLAH")); // Expect the CDM to pass one more key error back to the host. EXPECT_EQ(2, host_->KeyErrorsSize()); } TEST_F(CdmApi1Test, MimeTypeMatters) { cdm::Status status; status = GenerateKeyRequestWithMimeType("video/mp4"); ASSERT_EQ(cdm::kSuccess, status); status = GenerateKeyRequestWithMimeType("video/webm"); ASSERT_EQ(cdm::kSuccess, status); status = GenerateKeyRequestWithMimeType("video/blah"); ASSERT_EQ(cdm::kSessionError, status); } } // namespace wvcdm