Files
ce_cdm/cdm/test/cdm_api_1_test.cpp
Joey Parrish bd448c6252 Cherry-pick bug fixes from CDM main branch.
* Split device cert declaration from definition.
* Fix and rename CdmApi?Test.TimeTest.
* Fix max HDCP setting.

Change-Id: Idf0aea5c953a08c38a8beb20ec8ccc210e33f67a
2015-02-17 10:59:19 -08:00

710 lines
24 KiB
C++

// Copyright 2013 Google Inc. All Rights Reserved.
//
// This source file provides a basic set of unit tests for the Content
// Decryption Module (CDM). It exercises much of the API that will be
// required by the host application to get the license and keys for
// rendering protected content.
#include "cdm_test_config.h"
#include "test_host_1.h"
#include "test_util.h"
#include <getopt.h>
#include <gtest/gtest.h>
#include "clock.h"
#include "config_test_env.h"
#include "content_decryption_module.h"
#include "device_cert.h"
#include "license_request.h"
#include "log.h"
#include "properties.h"
#include "scoped_ptr.h"
#include "string_conversions.h"
#include "url_request.h"
static const int kTestPolicyRenewalDelaySeconds = 180;
static const int kDelayWaitToForRenewalMessageSeconds = 2;
static const int kHttpOk = 200;
static const int kHttpBadGateway = 502;
static const int kNumRetries = 5;
static const int kRetryBaseDelaySeconds = 3;
namespace {
// Default key system identifier.
const char kKeySystemWidevine[] = "com.widevine.alpha";
// Default mime type for key request generation.
const char kMimeType[] = "video/mp4";
// Key ID of key used to encrypt the test content.
// This is used to look up the content key.
const std::vector<uint8_t> kTestKeyId =
wvcdm::a2b_hex("371ea35e1a985d75d198a7f41020dc23");
// Dummy encrypted data.
const std::vector<uint8_t> kInputVector1 = wvcdm::a2b_hex(
"64ab17b3e3dfab47245c7cce4543d4fc7a26dcf248f19f9b59f3c92601440b36"
"17c8ed0c96c656549e461f38708cd47a434066f8df28ccc28b79252eee3f9c2d"
"7f6c68ebe40141fe818fe082ca523c03d69ddaf183a93c022327fedc5582c5ab"
"ca9d342b71263a67f9cb2336f12108aaaef464f17177e44e9b0c4e56e61da53c"
"2150b4405cc82d994dfd9bf4087c761956d6688a9705db4cf350381085f383c4"
"9666d4aed135c519c1f0b5cba06e287feea96ea367bf54e7368dcf998276c6e4"
"6497e0c50e20fef74e42cb518fe7f22ef27202428688f86404e8278587017012"
"c1d65537c6cbd7dde04aae338d68115a9f430afc100ab83cdadf45dca39db685");
const std::vector<uint8_t> kIv1 =
wvcdm::a2b_hex("f6f4b1e600a5b67813ed2bded913ba9f");
// Expected output for kInputVector1.
const std::vector<uint8_t> kOutputVector1 = wvcdm::a2b_hex(
"217ce9bde99bd91e9733a1a00b9b557ac3a433dc92633546156817fae26b6e1c"
"942ac20a89ff79f4c2f25fba99d6a44618a8c0420b27d54e3da17b77c9d43cca"
"595d259a1e4a8b6d7744cd98c5d3f921adc252eb7d8af6b916044b676a574747"
"8df21fdc42f166880d97a2225cd5c9ea5e7b752f4cf81bbdbe98e542ee10e1c6"
"ad868a6ac55c10d564fc23b8acff407daaf4ed2743520e02cda9680d9ea88e91"
"029359c4cf5906b6ab5bf60fbb3f1a1c7c59acfc7e4fb4ad8e623c04d503a3dd"
"4884604c8da8a53ce33db9ff8f1c5bb6bb97f37b39906bf41596555c1bcce9ed"
"08a899cd760ff0899a1170c2f224b9c52997a0785b7fe170805fd3e8b1127659");
// Dummy encrypted data. This is a combination of clear and encrypted data.
const std::vector<uint8_t> kInputVector2 = wvcdm::a2b_hex(
// subsample 0
"abcdef"
"53cc758763904ea5870458e6b23d36db1e6d7f7aaa2f3eeebb5393a7264991e7"
"ce4f57b198326e1a208a821799b2a29c90567ab57321b06e51fc20dc9bc5fc55"
"10720a8bb1f5e002c3e50ff70d2d806a9432cad237050d09581f5b0d59b00090"
"b3ad69b4087f5a155b17e13c44d33fa007475d207fc4ac2ef3b571ecb9"
// subsample 1
"0123456789"
"f3c852"
"ce00dc4806f0c6856ae1732e20308096478e1d822d75c2bb768119565d3bd6e6"
"901e36164f4802355ee758fc46ef6cf5f852dd5256c7b1e5f96d29"
// subsample 2
"deadbeefbaadf00d"
"3b20525d5e"
"78b8e5aa344d5c4e425e67ddf889ea7c4bb1d49af67eba67718b765e0a940402"
"8d306f4ce693ad6dc0a931d507fa14fff4d293d4170280b3e0fca2d628f722e8"
);
const std::vector<uint8_t> kIv2 =
wvcdm::a2b_hex("6ba18dd40f49da7f64c368e4db43fc88");
// Expected output for kInputVector2.
const std::vector<uint8_t> kOutputVector2 = wvcdm::a2b_hex(
// subsample 0
"abcdef"
"52e65334501acadf78e2b26460def3ac973771ed7c64001a2e82917342a7eab3"
"047f5e85449692fae8f677be425a47bdea850df5a3ffff17043afb1f2b437ab2"
"b1d5e0784c4ed8f97fc24b8f565e85ed63fb7d1365980d9aea7b8b58f488f83c"
"1ce80b6096c60f3b113c988ff185b26e798da8fc6f327e4ff00e4b3fbf"
// subsample 1
"0123456789"
"b1ed0a"
"a054bce40ccb0ebc70b181d1a12055f46ac55e29c7c2473a29d2a366d240ec48"
"7cede274f012813a877f99159e7062b6a37cfc9327a7bc2195814e"
// subsample 2
"deadbeefbaadf00d"
"653b818d1d"
"4ab9a9128361d8ca6a9d2766df5c096ee29f4f5204febdf217a94a5b560cd692"
"cc36d3e071df789fdeac2fb7ec6dcd7af94bb1f85c22025b25e702e38212b927"
);
// Dummy encrypted data. This will be decrypted with a data_offset
// instead of subsamples.
const std::vector<uint8_t> kInputVector3 = wvcdm::a2b_hex(
"64ab17b3e3dfab47245c7cce4543d4fc7a26dcf248f19f9b59f3c92601440b36"
"17c8ed0c96c656549e461f38708cd47a434066f8df28ccc28b79252eee3f9c2d"
"7f6c68ebe40141fe818fe082ca523c03d69ddaf183a93c022327fedc5582c5ab"
"ca9d342b71263a67f9cb2336f12108aaaef464f17177e44e9b0c4e56e61da53c"
"2150b4405cc82d994dfd9bf4087c761956d6688a9705db4cf350381085f383c4"
"9666d4aed135c519c1f0b5cba06e287feea96ea367bf54e7368dcf998276c6e4"
"6497e0c50e20fef74e42cb518fe7f22ef27202428688f86404e8278587017012"
"c1d65537c6cbd7dde04aae338d68115a9f430afc100ab83cdadf45dca39db685");
const std::vector<uint8_t> kIv3 =
wvcdm::a2b_hex("f6f4b1e600a5b67813ed2bded913ba9f");
// The data_offset for kInputVector3.
const uint32_t kInputOffset3 = 9;
// Expected output for kInputVector3 offset by kInputOffset3.
const std::vector<uint8_t> kOutputVector3 = wvcdm::a2b_hex(
"19ab304b49908e2395b32f26bf471adf4a4bc92f9e999cca8476d24a257931b4"
"c5fd177693ed55e31cd2b85dc196b2b722cd8854eb9334f3dab0b5bd26aa5e66"
"a9d1cfbba877c9456b11dc99a6bdc7015ca1544f7ce66171a8179eca19efe515"
"8c4c1d0612dff64100387065da108fdbfcc14738202ac3d27520eb48c020ddb7"
"714dca22e5e2241aff6932dba1587a97ac1a952827d411d8582dfecc2e9e1494"
"644046ca7044bc41c3c5e0a3a405d5551f3f5bdd6f36042e2f0f3693778b9277"
"6ed8d106647a7539df7d30288803cd9ca1c274bebe688151c72b451f571a441f"
"83d0ff77d8d57dcb395122e175f4944569917627d6c3dc");
void* GetCdmHost(int host_interface_version, void* user_data) {
if (host_interface_version != cdm::Host_1::kVersion) return NULL;
return user_data;
}
} // namespace
namespace wvcdm {
class CdmApi1Test : public testing::Test {
public:
CdmApi1Test() : cdm_(NULL) {}
~CdmApi1Test() {}
protected:
virtual void SetUp() {
// Create the Host.
host_.reset(new TestHost_1());
// Set various parameters that the CDM will query.
host_->SetPlatformString("SecurityLevel", "L1");
host_->SetPlatformString("PrivacyOn", "False");
std::string cert(reinterpret_cast<const char*>(kDeviceCert),
kDeviceCertSize);
host_->SetPlatformString("DeviceCertificate", cert);
// Initialize the CDM module before creating a CDM instance.
InitializeCdmModule();
// Create the CDM.
cdm_ =
reinterpret_cast<cdm::ContentDecryptionModule_1*>(::CreateCdmInstance(
cdm::ContentDecryptionModule_1::kVersion, kKeySystemWidevine,
strlen(kKeySystemWidevine), GetCdmHost, host_.get()));
// Tell the Host about the CDM.
host_->SetCdmPtr(cdm_);
}
cdm::Status GenerateKeyRequest(const std::string& init_data) {
cdm::Status status = cdm_->GenerateKeyRequest(
kMimeType, strlen(kMimeType),
(const uint8_t*)init_data.data(), init_data.length());
return status;
}
cdm::Status GenerateKeyRequestWithMimeType(const std::string& mime_type) {
cdm::Status status = cdm_->GenerateKeyRequest(
mime_type.c_str(), mime_type.length(),
(const uint8_t*)g_key_id.data(), g_key_id.length());
return status;
}
// posts a request and extracts the drm message from the response
std::string GetKeyRequestResponse(const TestHost_1::KeyMessage& key_msg) {
std::string url;
if (key_msg.default_url.empty()) {
url = g_license_server + g_client_auth;
} else {
// Note that the client auth string is not appended when the CDM tells
// us what URL to use.
url = key_msg.default_url;
}
int status_code;
std::string response;
UrlRequest url_request(url);
for (int retries = 0; retries < kNumRetries; ++retries) {
EXPECT_TRUE(url_request.is_connected());
if (!url_request.is_connected()) {
return "";
}
url_request.PostRequest(key_msg.message);
int resp_bytes = url_request.GetResponse(&response);
status_code = url_request.GetStatusCode(response);
// Sometimes, the server returns "HTTP 502 bad gateway".
// If we treat this as a non-fatal error, we reduce test flakiness.
if (status_code != kHttpBadGateway) {
// Move on with normal processing.
break;
}
// Reconnect to the server and try again. Since the server's 502
// response could indicate a temporary failure due to load, we use
// an exponential backoff. Each time we reconnect, we delay by
// exactly twice as long as the last time. This is a simplified
// version of the delay strategy recommended by Google in the
// internal document "Rate Limiting in Google Applications" under
// the heading "Settings for client exponential backoff". We do
// not bother to fuzz the delay, since unit tests are not running
// simultaneously in large numbers like real clients would be.
LOGE("Bad gateway, retrying.");
sleep(kRetryBaseDelaySeconds << retries);
url_request.Reconnect();
}
// Some license servers return 400 for invalid message, some
// return 500; treat anything other than 200 as an invalid message.
EXPECT_EQ(kHttpOk, status_code);
if (status_code != kHttpOk) {
return "";
} else {
std::string drm_msg;
LicenseRequest lic_request;
lic_request.GetDrmMessage(response, drm_msg);
LOGV("drm msg: %u bytes\n%s", drm_msg.size(),
HexEncode(reinterpret_cast<const uint8_t*>(drm_msg.data()),
drm_msg.size()).c_str());
return drm_msg;
}
}
void ProcessKeyResponse() {
TestHost_1::KeyMessage key_msg = host_->GetLastKeyMessage();
ASSERT_FALSE(key_msg.message.empty());
EXPECT_TRUE(key_msg.default_url.empty());
std::string drm_msg = GetKeyRequestResponse(key_msg);
EXPECT_EQ(cdm::kSuccess, AddKey(key_msg.session_id, drm_msg));
}
void ProcessKeyRenewalResponse() {
TestHost_1::KeyMessage key_msg = host_->GetLastKeyMessage();
ASSERT_FALSE(key_msg.message.empty());
EXPECT_FALSE(key_msg.default_url.empty());
std::string drm_msg = GetKeyRequestResponse(key_msg);
EXPECT_EQ(cdm::kSuccess, AddKey(key_msg.session_id, drm_msg));
}
void CloseSession(const std::string& session_id) {
cdm::Status status =
cdm_->CloseSession(session_id.data(), session_id.length());
EXPECT_EQ(cdm::kSuccess, status);
}
cdm::Status AddKey(const std::string& session_id,
const std::string& drm_msg) {
cdm::Status status =
cdm_->AddKey(session_id.data(), session_id.size(),
(const uint8_t*)drm_msg.data(), drm_msg.size(), NULL, 0);
return status;
}
cdm::InputBuffer BuildInputBuffer(const std::vector<uint8_t>& encrypted,
const std::vector<uint8_t>& iv) {
cdm::InputBuffer buf;
buf.data = &encrypted[0];
buf.data_size = encrypted.size();
buf.key_id = &kTestKeyId[0];
buf.key_id_size = kTestKeyId.size();
buf.iv = &iv[0];
buf.iv_size = iv.size();
buf.data_offset = 0;
buf.timestamp = 10;
return buf;
}
cdm::InputBuffer BuildInputBuffer(
const std::vector<uint8_t>& encrypted,
const std::vector<uint8_t>& iv,
const std::vector<cdm::SubsampleEntry>& sub) {
cdm::InputBuffer buf = BuildInputBuffer(encrypted, iv);
buf.subsamples = &sub[0];
buf.num_subsamples = sub.size();
return buf;
}
cdm::InputBuffer BuildInputBuffer(
const std::vector<uint8_t>& encrypted,
const std::vector<uint8_t>& iv,
const uint32_t offset) {
cdm::InputBuffer buf = BuildInputBuffer(encrypted, iv);
buf.data_offset = offset;
return buf;
}
std::vector<cdm::SubsampleEntry> BuildMultipleSubsamples() {
std::vector<cdm::SubsampleEntry> sub;
sub.push_back(cdm::SubsampleEntry(3, 125));
sub.push_back(cdm::SubsampleEntry(5, 62));
sub.push_back(cdm::SubsampleEntry(8, 69));
return sub;
}
std::vector<cdm::SubsampleEntry> BuildSingleSubsample(size_t size) {
std::vector<cdm::SubsampleEntry> sub;
sub.push_back(cdm::SubsampleEntry(0, size));
return sub;
}
cdm::ContentDecryptionModule_1* cdm_; // owned by host_
wvcdm::scoped_ptr<TestHost_1> host_;
};
namespace {
class DummyCDM : public cdm::ContentDecryptionModule_1 {
public:
DummyCDM() : timer_fired_(false), last_context_(NULL) {}
virtual cdm::Status GenerateKeyRequest(const char*, int, const uint8_t*,
int) OVERRIDE {
return cdm::kSessionError;
}
virtual cdm::Status AddKey(const char*, int, const uint8_t*, int,
const uint8_t*, int) OVERRIDE {
return cdm::kSessionError;
}
virtual bool IsKeyValid(const uint8_t*, int) OVERRIDE { return false; }
virtual cdm::Status CloseSession(const char*, int) OVERRIDE {
return cdm::kSessionError;
}
virtual void TimerExpired(void* context) OVERRIDE {
timer_fired_ = true;
last_context_ = context;
}
virtual cdm::Status Decrypt(const cdm::InputBuffer&,
cdm::DecryptedBlock*) OVERRIDE {
return cdm::kSessionError;
}
virtual cdm::Status DecryptDecodeAndRenderFrame(
const cdm::InputBuffer&) OVERRIDE {
return cdm::kSessionError;
}
virtual cdm::Status DecryptDecodeAndRenderSamples(
const cdm::InputBuffer&) OVERRIDE {
return cdm::kSessionError;
}
virtual void Destroy() OVERRIDE { delete this; }
virtual cdm::Status GetProvisioningRequest(std::string*,
std::string*) OVERRIDE {
return cdm::kSessionError;
}
virtual cdm::Status HandleProvisioningResponse(std::string&) OVERRIDE {
return cdm::kSessionError;
}
bool TimerFired() const { return timer_fired_; }
void* LastTimerContext() const { return last_context_; }
void ResetTimerStatus() {
timer_fired_ = false;
last_context_ = NULL;
}
private:
bool timer_fired_;
void* last_context_;
};
} // namespace
TEST_F(CdmApi1Test, TestHostTimer) {
// Validate that the TestHost timers are processed in the correct order.
// To do this, we replace the cdm with a dummy that only tracks timers.
DummyCDM* cdm = new DummyCDM();
// The old CDM is destroyed by SetCdmPtr.
cdm_ = cdm;
host_->SetCdmPtr(cdm);
const double kTimerDelaySeconds = 1.0;
const int64_t kTimerDelayMs = kTimerDelaySeconds * 1000;
void* kCtx1 = reinterpret_cast<void*>(0x1);
void* kCtx2 = reinterpret_cast<void*>(0x2);
host_->SetTimer(kTimerDelayMs * 1, kCtx1);
host_->SetTimer(kTimerDelayMs * 2, kCtx2);
host_->FastForwardTime(kTimerDelaySeconds);
EXPECT_TRUE(cdm->TimerFired());
EXPECT_EQ(kCtx1, cdm->LastTimerContext());
cdm->ResetTimerStatus();
host_->FastForwardTime(kTimerDelaySeconds);
EXPECT_TRUE(cdm->TimerFired());
EXPECT_EQ(kCtx2, cdm->LastTimerContext());
cdm->ResetTimerStatus();
host_->FastForwardTime(kTimerDelaySeconds);
EXPECT_FALSE(cdm->TimerFired());
}
TEST_F(CdmApi1Test, DeviceCertificateTest) {
if (Properties::use_certificates_as_identification()) {
// Clear any existing device cert.
host_->SetPlatformString("DeviceCertificate", "");
ASSERT_EQ(cdm::kNeedsDeviceCertificate, GenerateKeyRequest(g_key_id));
// The Host must handle the certificate provisioning request.
std::string server_url;
std::string request;
cdm::Status status = cdm_->GetProvisioningRequest(&request, &server_url);
ASSERT_EQ(cdm::kSuccess, status);
UrlRequest url_request(server_url);
url_request.PostCertRequestInQueryString(request);
std::string message;
bool ok = url_request.GetResponse(&message);
ASSERT_TRUE(ok);
status = cdm_->HandleProvisioningResponse(message);
ASSERT_EQ(cdm::kSuccess, status);
// Now we are provisioned, so GKR should succeed.
EXPECT_EQ(cdm::kSuccess, GenerateKeyRequest(g_key_id));
} else {
LOGI(
"Skipping CdmApi1Test::DeviceCertificateTest because this platform "
"does not support device certificates.");
}
}
// Note that these tests, BaseMessageTest, NormalDecryption and RenewalTest,
// are dependent on getting back a license from the license server where the
// url for the license server is defined in the conf_test_env.cpp. If these
// tests fail immediately, verify that the license server URL is correct
// and works in your test environment.
TEST_F(CdmApi1Test, BaseMessageTest) {
EXPECT_EQ(cdm::kSuccess, GenerateKeyRequest(g_key_id));
ProcessKeyResponse();
}
TEST_F(CdmApi1Test, NormalDecryption) {
EXPECT_EQ(cdm::kSuccess, GenerateKeyRequest(g_key_id));
ProcessKeyResponse();
// Level 1 / Level 2 payload comes back in the cpu memory as cleartext.
std::vector<uint8_t> encrypted = kInputVector1;
std::vector<uint8_t> iv = kIv1;
std::vector<uint8_t> expected = kOutputVector1;
std::vector<cdm::SubsampleEntry> sub = BuildSingleSubsample(encrypted.size());
cdm::InputBuffer buf = BuildInputBuffer(encrypted, iv, sub);
TestDecryptedBlock output;
cdm::Status status = cdm_->Decrypt(buf, &output);
EXPECT_EQ(cdm::kSuccess, status);
EXPECT_EQ(
0, memcmp(output.DecryptedBuffer()->Data(), &expected[0], buf.data_size));
}
TEST_F(CdmApi1Test, NormalSubSampleDecryptionWithSubsampleInfo) {
EXPECT_EQ(cdm::kSuccess, GenerateKeyRequest(g_key_id));
ProcessKeyResponse();
// Level 1 / Level 2 payload comes back in the cpu memory as cleartext.
std::vector<uint8_t> encrypted = kInputVector2;
std::vector<uint8_t> iv = kIv2;
std::vector<uint8_t> expected = kOutputVector2;
std::vector<cdm::SubsampleEntry> sub = BuildMultipleSubsamples();
cdm::InputBuffer buf = BuildInputBuffer(encrypted, iv, sub);
TestDecryptedBlock output;
cdm::Status status = cdm_->Decrypt(buf, &output);
EXPECT_EQ(cdm::kSuccess, status);
EXPECT_EQ(
0, memcmp(output.DecryptedBuffer()->Data(), &expected[0], buf.data_size));
}
TEST_F(CdmApi1Test, NormalSubSampleDecryptionWithMissingSubsampleInfo) {
EXPECT_EQ(cdm::kSuccess, GenerateKeyRequest(g_key_id));
ProcessKeyResponse();
std::vector<uint8_t> encrypted = kInputVector2;
std::vector<uint8_t> iv = kIv2;
std::vector<uint8_t> expected = kOutputVector2;
std::vector<cdm::SubsampleEntry> sub = BuildMultipleSubsamples();
// Don't add these subsamples yet!
cdm::InputBuffer buf = BuildInputBuffer(encrypted, iv);
buf.num_subsamples = sub.size();
TestDecryptedBlock output;
cdm::Status status = cdm_->Decrypt(buf, &output);
EXPECT_EQ(cdm::kDecryptError, status);
// Add the subsamples pointer and expect success.
buf.subsamples = &sub[0];
status = cdm_->Decrypt(buf, &output);
EXPECT_EQ(cdm::kSuccess, status);
EXPECT_EQ(
0, memcmp(output.DecryptedBuffer()->Data(), &expected[0], buf.data_size));
}
TEST_F(CdmApi1Test, DecryptWithDataOffset) {
EXPECT_EQ(cdm::kSuccess, GenerateKeyRequest(g_key_id));
ProcessKeyResponse();
std::vector<uint8_t> encrypted = kInputVector3;
std::vector<uint8_t> iv = kIv3;
std::vector<uint8_t> expected = kOutputVector3;
cdm::InputBuffer buf = BuildInputBuffer(encrypted, iv, kInputOffset3);
TestDecryptedBlock output;
cdm::Status status = cdm_->Decrypt(buf, &output);
cdm::Buffer *output_buf = output.DecryptedBuffer();
EXPECT_EQ(cdm::kSuccess, status);
EXPECT_EQ(buf.data_size - buf.data_offset, output_buf->Size());
EXPECT_EQ(0, memcmp(output.DecryptedBuffer()->Data(), &expected[0],
output_buf->Size()));
}
TEST_F(CdmApi1Test, DecryptReturnsSizedBuffer) {
EXPECT_EQ(cdm::kSuccess, GenerateKeyRequest(g_key_id));
ProcessKeyResponse();
std::vector<uint8_t> encrypted = kInputVector1;
std::vector<uint8_t> iv = kIv1;
std::vector<uint8_t> expected = kOutputVector1;
std::vector<cdm::SubsampleEntry> sub = BuildSingleSubsample(encrypted.size());
cdm::InputBuffer buf = BuildInputBuffer(encrypted, iv, sub);
TestDecryptedBlock output;
cdm::Status status = cdm_->Decrypt(buf, &output);
EXPECT_EQ(cdm::kSuccess, status);
cdm::Buffer* buffer = output.DecryptedBuffer();
EXPECT_NE((void*)NULL, buffer);
if (buffer) {
EXPECT_EQ(expected.size(), output.DecryptedBuffer()->Size());
}
}
TEST_F(CdmApi1Test, RenewalTest) {
EXPECT_EQ(cdm::kSuccess, GenerateKeyRequest(g_key_id));
ProcessKeyResponse();
// We expect that by the time we've added a key, the CDM has set a timer.
// Otherwise, it couldn't correctly handle renewal.
EXPECT_NE(0, host_->NumTimers());
host_->FastForwardTime(kTestPolicyRenewalDelaySeconds +
kDelayWaitToForRenewalMessageSeconds);
// When the timer expired, we should have sent a renewal, so we can
// add this renewed key now, assuming things are working as expected.
ProcessKeyRenewalResponse();
}
TEST_F(CdmApi1Test, SecureDecryptionLevel1) {
EXPECT_EQ(cdm::kSuccess, GenerateKeyRequest(g_key_id));
ProcessKeyResponse();
// Level 1 passes encrypted payload straight through. By calling the
// CDM's DecryptDecodeAndRenderSamples, and/or DecryptDecodeAndRenderFrame,
// OEMCrypto_DecryptCTR will be told to use Direct Rendering.
std::vector<uint8_t> encrypted = kInputVector1;
std::vector<uint8_t> iv = kIv1;
std::vector<cdm::SubsampleEntry> sub = BuildSingleSubsample(encrypted.size());
cdm::InputBuffer buf = BuildInputBuffer(encrypted, iv, sub);
cdm::Status status;
status = cdm_->DecryptDecodeAndRenderSamples(buf);
EXPECT_EQ(cdm::kSuccess, status);
status = cdm_->DecryptDecodeAndRenderFrame(buf);
EXPECT_EQ(cdm::kSuccess, status);
}
TEST_F(CdmApi1Test, SecureDecryptionLevel1WithSubsampleInfo) {
EXPECT_EQ(cdm::kSuccess, GenerateKeyRequest(g_key_id));
ProcessKeyResponse();
// Level 1 passes encrypted payload straight through. By calling the
// CDM's DecryptDecodeAndRenderSamples, and/or DecryptDecodeAndRenderFrame,
// OEMCrypto_DecryptCTR will be told to use Direct Rendering.
std::vector<uint8_t> encrypted = kInputVector2;
std::vector<uint8_t> iv = kIv2;
std::vector<cdm::SubsampleEntry> sub = BuildMultipleSubsamples();
cdm::InputBuffer buf = BuildInputBuffer(encrypted, iv, sub);
cdm::Status status;
status = cdm_->DecryptDecodeAndRenderSamples(buf);
EXPECT_EQ(cdm::kSuccess, status);
status = cdm_->DecryptDecodeAndRenderFrame(buf);
EXPECT_EQ(cdm::kSuccess, status);
}
TEST_F(CdmApi1Test, SecureDecryptionLevel1WithMissingSubsampleInfo) {
EXPECT_EQ(cdm::kSuccess, GenerateKeyRequest(g_key_id));
ProcessKeyResponse();
std::vector<uint8_t> encrypted = kInputVector2;
std::vector<uint8_t> iv = kIv2;
std::vector<cdm::SubsampleEntry> sub = BuildMultipleSubsamples();
// Don't add these subsamples yet!
cdm::InputBuffer buf = BuildInputBuffer(encrypted, iv);
buf.num_subsamples = sub.size();
cdm::Status status;
status = cdm_->DecryptDecodeAndRenderSamples(buf);
EXPECT_EQ(cdm::kDecryptError, status);
status = cdm_->DecryptDecodeAndRenderFrame(buf);
EXPECT_EQ(cdm::kDecryptError, status);
// Add the subsamples pointer and expect success.
buf.subsamples = &sub[0];
status = cdm_->DecryptDecodeAndRenderSamples(buf);
EXPECT_EQ(cdm::kSuccess, status);
status = cdm_->DecryptDecodeAndRenderFrame(buf);
EXPECT_EQ(cdm::kSuccess, status);
}
TEST_F(CdmApi1Test, GenerateKeyRequestFailureSendsKeyError) {
// Pass a bogus key id and expect failure.
EXPECT_EQ(cdm::kSessionError, GenerateKeyRequest(""));
// Expect the CDM to pass a key error back to the host.
EXPECT_EQ(1, host_->KeyErrorsSize());
}
TEST_F(CdmApi1Test, AddKeyFailureSendsKeyError) {
EXPECT_EQ(cdm::kSuccess, GenerateKeyRequest(g_key_id));
// Get the message and response.
TestHost_1::KeyMessage key_msg = host_->GetLastKeyMessage();
EXPECT_TRUE(key_msg.default_url.empty());
std::string drm_msg = GetKeyRequestResponse(key_msg);
// Call AddKey with a bad session id and expect failure.
EXPECT_EQ(cdm::kSessionError, AddKey("BLAH", drm_msg));
// Expect the CDM to pass a key error back to the host.
EXPECT_EQ(1, host_->KeyErrorsSize());
// Call AddKey with a bad license and expect failure.
EXPECT_EQ(cdm::kSessionError, AddKey(key_msg.session_id, "BLAH"));
// Expect the CDM to pass one more key error back to the host.
EXPECT_EQ(2, host_->KeyErrorsSize());
}
TEST_F(CdmApi1Test, MimeTypeMatters) {
cdm::Status status;
status = GenerateKeyRequestWithMimeType("video/mp4");
ASSERT_EQ(cdm::kSuccess, status);
status = GenerateKeyRequestWithMimeType("video/webm");
ASSERT_EQ(cdm::kSuccess, status);
status = GenerateKeyRequestWithMimeType("video/blah");
ASSERT_EQ(cdm::kSessionError, status);
}
} // namespace wvcdm