Regular update

Plugin:
1. Process ECM v3 and send fingerprinting/service_blocking events
2. Rmove unused function Ctr128Add
3. Add support for ECM v3

OEMCrypto:
1. Update API description of OEMCrypto_LoadCasECMKeys
2. Fix android build files for ODK
3. Load content keys to shared memory
4. Move KCB check to LoadCasKeys call
5. Support even/odd content keys to share entitlement key
This commit is contained in:
Lu Chen
2021-01-05 10:16:26 -08:00
parent 66d8498d2c
commit 00785b2ccd
38 changed files with 2234 additions and 747 deletions

View File

@@ -268,10 +268,10 @@ typedef struct {
* padding.
* entitlement_key_id - entitlement key id to be matched to key table.
* content_key_id - content key id to be loaded into key table.
* content_key_data_iv - the IV for performing AES-256-CBC decryption of the key data.
* content_key_data - encrypted content key data.
* content_iv - the 16 byte iv used to decrypt content.
* cipher_mode - the cipher mode to be used to decrypt the content.
* content_key_data_iv - the IV for performing AES-256-CBC decryption of the key
* data. content_key_data - encrypted content key data. content_iv - the 16 byte
* iv used to decrypt content. cipher_mode - the cipher mode to be used to
* decrypt the content.
*/
typedef struct {
OEMCrypto_Substring entitlement_key_id;
@@ -1737,42 +1737,44 @@ OEMCryptoResult OEMCrypto_LoadEntitledContentKeys(
* OEMCrypto_LoadCasECMKeys
*
* Description:
* Load content keys into a session which already has entitlement
* keys loaded. This function will only be called for a session after a call
* to OEMCrypto_LoadKeys with the parameter type license_type equal to
* OEMCrypto_EntitlementLicense. This function may be called multiple times
* for the same session.
* The OEMCrypto_LoadCasECMKeys method is added to load content keys into an
* entitled key session, which already has entitlement keys loaded.
*
* If the session does not have license_type equal to
* OEMCrypto_EntitlementLicense, return OEMCrypto_ERROR_INVALID_CONTEXT and
* perform no work.
* This function will only be called for a session after a call to
* OEMCrypto_LoadKeys with the license_type equal to
* OEMCrypto_EntitlementLicense, and a call to
* OEMCrypto_CreateEntitledKeySession initializing the entitled key session.
* This function may be called multiple times for the same session.
*
* For each key object in key_array, OEMCrypto shall look up the entry in the
* key table with the corresponding entitlement_key_id.
* For each key object, odd and even, OEMCrypto shall look up the entry in the
* key table with the corresponding entitlement_key_id. Before the
* entitlement_key is used:
* 1) If no entry is found, return OEMCrypto_KEY_NOT_ENTITLED.
* 2) If the entry already has a content_key_id and content_key_data, that id
* and data are erased.
* 3) The content_key_id from the key_array is copied to the entry's
* content_key_id.
* 2) Check the entitlement keys key control block use. If failed, return
* corresponding error code such as OEMCrypto_ERROR_ANALOG_OUTPUT,
* OEMCrypto_ERROR_INSUFFICIENT_HDCP.
* 3) If the entitlement keys control block has a nonzero Duration field,
* then the API shall verify that the duration is greater than the
* sessions elapsed time clock before the key is used. OEMCrypto will
* return OEMCrypto_ERROR_KEY_EXPIRED.
* 4) The content_key_data decrypted using the entitlement_key_data as a key
* for AES-256-CBC with an IV of content_key_data_iv, and using PKCS#7
* padding. Notice that the entitlement key will be an AES 256 bit key.
* The clear content key data will be stored in the entry's
* content_key_data.
* 5) The decrypted content key data may be set in a hardware descrambler
* if present.
*
* Entries in the key table that do not correspond to anything in the
* key_array are not modified or removed.
*
* For devices that use a hardware key ladder, it may be more appropriate to
* store the encrypted content key data in the key table, and defer decrypting
* it until the function SelectKey is called.
* for AES-256-CBC with an IV of content_key_data_iv. Wrapped content is
* padded using PKCS#7 padding. Notice that the entitlement key will be an
* AES 256 bit key. The clear content key data will be stored in the
* entrys content_key_data.
* 5) The decrypted content key data may be set in a hardware KeySlot,
* together with content iv and cipher mode information, which can be used
* by the Descrambler in TunerHal. The entitled key session ID may be used
* as the key token to uniquely identify the content key in KeySlot.
*
* Parameters:
* session (in) - handle for the session to be used.
* even_key (in) - key update for the even ecm key.
* odd_key (in) - key update for the odd ecm key.
* [in] session: handle for the entitled key session to be used.
* [in] message: pointer to memory containing message to be verified.
* [in] message_length: length of the message, in bytes.
* [in] even_key: key update for the even ecm key. May be null if the key
* does not change.
* [in] odd_key: key update for the odd ecm key. May be null if the key does
* not change.
*
* Returns
* OEMCrypto_SUCCESS success
@@ -1781,6 +1783,11 @@ OEMCryptoResult OEMCrypto_LoadEntitledContentKeys(
* OEMCrypto_ERROR_INSUFFICIENT_RESOURCES
* OEMCrypto_ERROR_UNKNOWN_FAILURE
* OEMCrypto_KEY_NOT_ENTITLED
* OEMCrypto_ERROR_INVALID_ENTITLED_KEY_SESSION
* OEMCrypto_ERROR_KEY_EXPIRED
* OEMCrypto_ERROR_ANALOG_OUTPUT
* OEMCrypto_ERROR_INSUFFICIENT_HDCP
*
* Threading
*
* This function may be called simultaneously with functions on other

View File

@@ -3,7 +3,7 @@
// License Agreement.
cc_defaults {
name: "odk_fuzz_library_defaults",
name: "cas_odk_fuzz_library_defaults",
srcs: [
"odk_fuzz_helper.cpp",
],
@@ -15,7 +15,7 @@ cc_defaults {
}
cc_fuzz {
name: "odk_license_request_fuzz",
name: "cas_odk_license_request_fuzz",
srcs: [
"odk_license_request_fuzz.cpp",
],
@@ -24,15 +24,15 @@ cc_fuzz {
},
corpus: ["corpus/little_endian_64bit/license_request_corpus/*"],
static_libs: [
"libwv_kdo",
"libwv_odk",
"libwvcas_kdo",
"libwvcas_odk",
],
defaults: ["odk_fuzz_library_defaults"],
defaults: ["cas_odk_fuzz_library_defaults"],
proprietary: true,
}
cc_fuzz {
name: "odk_renewal_request_fuzz",
name: "cas_odk_renewal_request_fuzz",
srcs: [
"odk_renewal_request_fuzz.cpp",
],
@@ -41,15 +41,15 @@ cc_fuzz {
},
corpus: ["corpus/little_endian_64bit/renewal_request_corpus/*"],
static_libs: [
"libwv_kdo",
"libwv_odk",
"libwvcas_kdo",
"libwvcas_odk",
],
defaults: ["odk_fuzz_library_defaults"],
defaults: ["cas_odk_fuzz_library_defaults"],
proprietary: true,
}
cc_fuzz {
name: "odk_provisioning_request_fuzz",
name: "cas_odk_provisioning_request_fuzz",
srcs: [
"odk_provisioning_request_fuzz.cpp",
],
@@ -58,15 +58,15 @@ cc_fuzz {
},
corpus: ["corpus/little_endian_64bit/provisioning_request_corpus/*"],
static_libs: [
"libwv_kdo",
"libwv_odk",
"libwvcas_kdo",
"libwvcas_odk",
],
defaults: ["odk_fuzz_library_defaults"],
defaults: ["cas_odk_fuzz_library_defaults"],
proprietary: true,
}
cc_fuzz {
name: "odk_license_response_fuzz",
name: "cas_odk_license_response_fuzz",
srcs: [
"odk_license_response_fuzz.cpp",
],
@@ -75,15 +75,15 @@ cc_fuzz {
},
corpus: ["corpus/little_endian_64bit/license_response_corpus/*"],
static_libs: [
"libwv_kdo",
"libwv_odk",
"libwvcas_kdo",
"libwvcas_odk",
],
defaults: ["odk_fuzz_library_defaults"],
defaults: ["cas_odk_fuzz_library_defaults"],
proprietary: true,
}
cc_fuzz {
name: "odk_renewal_response_fuzz",
name: "cas_odk_renewal_response_fuzz",
srcs: [
"odk_renewal_response_fuzz.cpp",
],
@@ -92,15 +92,15 @@ cc_fuzz {
},
corpus: ["corpus/little_endian_64bit/renewal_response_corpus/*"],
static_libs: [
"libwv_kdo",
"libwv_odk",
"libwvcas_kdo",
"libwvcas_odk",
],
defaults: ["odk_fuzz_library_defaults"],
defaults: ["cas_odk_fuzz_library_defaults"],
proprietary: true,
}
cc_fuzz {
name: "odk_provisioning_response_fuzz",
name: "cas_odk_provisioning_response_fuzz",
srcs: [
"odk_provisioning_response_fuzz.cpp",
],
@@ -109,15 +109,15 @@ cc_fuzz {
},
corpus: ["corpus/little_endian_64bit/provisioning_response_corpus/*"],
static_libs: [
"libwv_kdo",
"libwv_odk",
"libwvcas_kdo",
"libwvcas_odk",
],
defaults: ["odk_fuzz_library_defaults"],
defaults: ["cas_odk_fuzz_library_defaults"],
proprietary: true,
}
cc_fuzz {
name: "odk_license_response_fuzz_with_mutator",
name: "cas_odk_license_response_fuzz_with_mutator",
srcs: [
"odk_license_response_fuzz_with_mutator.cpp",
],
@@ -126,15 +126,15 @@ cc_fuzz {
},
corpus: ["corpus/little_endian_64bit/license_response_corpus/*"],
static_libs: [
"libwv_kdo",
"libwv_odk",
"libwvcas_kdo",
"libwvcas_odk",
],
defaults: ["odk_fuzz_library_defaults"],
defaults: ["cas_odk_fuzz_library_defaults"],
proprietary: true,
}
cc_fuzz {
name: "odk_renewal_response_fuzz_with_mutator",
name: "cas_odk_renewal_response_fuzz_with_mutator",
srcs: [
"odk_renewal_response_fuzz_with_mutator.cpp",
],
@@ -143,15 +143,15 @@ cc_fuzz {
},
corpus: ["corpus/little_endian_64bit/renewal_response_corpus/*"],
static_libs: [
"libwv_kdo",
"libwv_odk",
"libwvcas_kdo",
"libwvcas_odk",
],
defaults: ["odk_fuzz_library_defaults"],
defaults: ["cas_odk_fuzz_library_defaults"],
proprietary: true,
}
cc_fuzz {
name: "odk_provisioning_response_fuzz_with_mutator",
name: "cas_odk_provisioning_response_fuzz_with_mutator",
srcs: [
"odk_provisioning_response_fuzz_with_mutator.cpp",
],
@@ -160,9 +160,9 @@ cc_fuzz {
},
corpus: ["corpus/little_endian_64bit/provisioning_response_corpus/*"],
static_libs: [
"libwv_kdo",
"libwv_odk",
"libwvcas_kdo",
"libwvcas_odk",
],
defaults: ["odk_fuzz_library_defaults"],
defaults: ["cas_odk_fuzz_library_defaults"],
proprietary: true,
}

View File

@@ -10,7 +10,7 @@
// Builds libwv_odk.so, The ODK shared Library (libwv_odk) is used
// by the OEMCrypto unit tests to generate corpus for ODK fuzz scrips.
cc_library_shared {
name: "libwv_odk_corpus_generator",
name: "libwvcas_odk_corpus_generator",
include_dirs: [
"vendor/widevine/libwvmediacas/oemcrypto/include",
"vendor/widevine/libwvmediacas/oemcrypto/odk/include",

View File

@@ -4,22 +4,87 @@
#include "oemcrypto_entitled_key_session.h"
#include <fcntl.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <unistd.h>
#include <algorithm>
#include <cstring>
#include "log.h"
namespace wvoec_ref {
namespace {
constexpr size_t kContentKeySize = 16;
constexpr size_t kContentIvSize = 16;
// Returns the open file descriptor.
int OpenHardwareKeySlot() {
// Must be hardware location in production, instead of a file that is publicly
// visible.
// Not able to create (permission denied). The file must already exist.
int fd = open("/data/local/tmp/wv", O_RDWR);
if (fd < 0) {
LOGE("File for shared memory open failed: %d", errno);
}
return fd;
}
// Returns true if the lock is success.
bool LockHardwareKeySlot(int fd) {
flock lock;
lock.l_type = F_WRLCK; /* read/write (exclusive versus shared) lock */
lock.l_whence = SEEK_SET; /* base for seek offsets */
lock.l_start = 0; /* 1st byte in file */
lock.l_len = 0; /* 0 here means 'until EOF' */
lock.l_pid = getpid(); /* process id */
// Wait until we get the lock.
if (fcntl(fd, F_SETLKW, &lock) < 0) {
LOGE("Failed to lock file: %d", errno);
return false;
}
return true;
}
void UnlockAndCloseHardwareKeySlot(int fd) {
if (fd < 0) {
return;
}
flock lock;
lock.l_type = F_UNLCK;
lock.l_whence = SEEK_SET; /* base for seek offsets */
lock.l_start = 0; /* 1st byte in file */
lock.l_len = 0; /* 0 here means 'until EOF' */
lock.l_pid = getpid(); /* process id */
if (fcntl(fd, F_SETLK, &lock) < 0) {
LOGE("explicit unlocking failed.");
}
close(fd); /* close the file: would unlock if needed */
}
} // namespace
EntitledKeySession::~EntitledKeySession() { ClearKeySlot(); }
const Key* EntitledKeySession::GetEntitlementKey(
const KeyId& content_key_id) const {
if (entitlement_key_map_.find(content_key_id) == entitlement_key_map_.end()) {
if (content_key_info_map_.find(content_key_id) ==
content_key_info_map_.end()) {
return nullptr;
}
return entitlement_key_map_.at(content_key_id);
return content_key_info_map_.at(content_key_id)->entitlement_key;
}
EntitledKey* EntitledKeySession::GetContentKey(
const KeyId& content_key_id) const {
if (content_key_map_.find(content_key_id) == content_key_map_.end()) {
if (content_key_info_map_.find(content_key_id) ==
content_key_info_map_.end()) {
return nullptr;
}
return content_key_map_.at(content_key_id).get();
return content_key_info_map_.at(content_key_id)->content_key.get();
}
bool EntitledKeySession::AddOrUpdateContentKey(
@@ -29,32 +94,151 @@ bool EntitledKeySession::AddOrUpdateContentKey(
content_key == nullptr) {
return false;
}
// Remove the entry if |entitlement_key| already exists. Each entitlement key
// can only be referred by one content key within an entitled key session.
for (auto const& content_id_entitlement : entitlement_key_map_) {
if (content_id_entitlement.second == entitlement_key) {
RemoveContentKey(content_id_entitlement.first);
// Remove the entry if |entitlement_key| already referenced by a content key
// with the same parity. Each entitlement key can only be referred by one
// even and one odd content key within an entitled key session.
for (auto const& content_key_entry : content_key_info_map_) {
const ContentKeyInfo* const key_info = content_key_entry.second.get();
if (key_info->entitlement_key == entitlement_key &&
key_info->content_key->is_even_key() == content_key->is_even_key()) {
RemoveContentKey(content_key_entry.first);
break;
}
}
// |content_key_id| must be unique.
if (content_key_map_.find(content_key_id) != content_key_map_.end()) {
if (content_key_info_map_.find(content_key_id) !=
content_key_info_map_.end()) {
return false;
}
content_key_map_[content_key_id] = std::move(content_key);
entitlement_key_map_[content_key_id] = entitlement_key;
content_key_info_map_[content_key_id] =
std::unique_ptr<ContentKeyInfo>(new ContentKeyInfo());
content_key_info_map_[content_key_id]->content_key = std::move(content_key);
content_key_info_map_[content_key_id]->entitlement_key = entitlement_key;
return true;
}
bool EntitledKeySession::RemoveContentKey(const KeyId& content_key_id) {
if (content_key_map_.find(content_key_id) == content_key_map_.end()) {
if (content_key_info_map_.find(content_key_id) ==
content_key_info_map_.end()) {
return false;
}
content_key_map_.erase(content_key_id);
entitlement_key_map_.erase(content_key_id);
content_key_info_map_.erase(content_key_id);
return true;
}
EntitledKeySession::ContentKeySlot* EntitledKeySession::GetKeySlotToUpdate(
uint8_t* buffer) const {
if (buffer == nullptr) {
return nullptr;
}
// Read the current content to know where to write.
auto content_key_slots = reinterpret_cast<ContentKeySlots*>(buffer);
int use_index = -1;
for (size_t i = 0; i < sizeof(ContentKeySlots) / sizeof(ContentKeySlot);
++i) {
const ContentKeySlot& current_key_slot = content_key_slots->key_slots[i];
// Use the existing slot, or the first available slot if there is no
// existing one.
if (current_key_slot.entitled_key_session_id == key_sid_) {
use_index = i;
break;
}
if (current_key_slot.entitled_key_session_id == 0 && use_index < 0) {
use_index = i;
}
}
if (use_index < 0) {
LOGE("No key slot available to write keys.");
return nullptr;
}
return &content_key_slots->key_slots[use_index];
}
bool EntitledKeySession::WriteContentKeyToKeySlot(
const KeyId& content_key_id, ContentKeySlot* key_slot) const {
if (key_slot == nullptr) {
LOGE("key_slot is null");
return false;
}
EntitledKey* entitled_key = GetContentKey(content_key_id);
if (entitled_key == nullptr) {
LOGE("Content key is not found.");
return false;
}
key_slot->entitled_key_session_id = key_sid_;
key_slot->cipher_mode = static_cast<uint8_t>(entitled_key->cipher_mode());
memcpy(entitled_key->is_even_key() ? &key_slot->even_key[0]
: &key_slot->odd_key[0],
entitled_key->value().data(),
std::min(entitled_key->value().size(), kContentKeySize));
memcpy(entitled_key->is_even_key() ? &key_slot->even_iv[0]
: &key_slot->odd_iv[0],
entitled_key->content_iv().data(),
std::min(entitled_key->content_iv().size(), kContentIvSize));
msync(reinterpret_cast<void*>(key_slot), sizeof(ContentKeySlot), MS_SYNC);
return true;
}
bool EntitledKeySession::WriteToKeySlot(const KeyId& content_key_id) const {
bool result = false;
const int fd = OpenHardwareKeySlot();
if (fd < 0) {
return result;
}
if (!LockHardwareKeySlot(fd)) {
close(fd);
return result;
}
ftruncate(fd, sizeof(ContentKeySlots));
uint8_t* buffer = static_cast<uint8_t*>(mmap(nullptr, sizeof(ContentKeySlots),
PROT_READ | PROT_WRITE,
MAP_SHARED, fd, /*offset=*/0));
if (buffer == MAP_FAILED) {
LOGE("Fail to get mmap buffer %d", errno);
close(fd);
return result;
}
ContentKeySlot* key_slot = GetKeySlotToUpdate(buffer);
if (key_slot != nullptr) {
result = WriteContentKeyToKeySlot(content_key_id, key_slot);
}
munmap(reinterpret_cast<void*>(buffer), sizeof(ContentKeySlots));
UnlockAndCloseHardwareKeySlot(fd);
return result;
}
void EntitledKeySession::ClearKeySlot() const {
const int fd = OpenHardwareKeySlot();
if (fd < 0) {
return;
}
if (!LockHardwareKeySlot(fd)) {
close(fd);
return;
}
ftruncate(fd, sizeof(ContentKeySlots));
uint8_t* buffer = static_cast<uint8_t*>(mmap(nullptr, sizeof(ContentKeySlots),
PROT_READ | PROT_WRITE,
MAP_SHARED, fd, /*offset=*/0));
if (buffer == MAP_FAILED) {
LOGE("Fail to get mmap buffer %d", errno);
close(fd);
return;
}
ContentKeySlot* key_slot = GetKeySlotToUpdate(buffer);
if (key_slot != nullptr) {
memset(key_slot, 0, sizeof(ContentKeySlot));
msync(reinterpret_cast<void*>(key_slot), sizeof(ContentKeySlot), MS_SYNC);
}
munmap(reinterpret_cast<void*>(buffer), sizeof(ContentKeySlots));
UnlockAndCloseHardwareKeySlot(fd);
}
/***************************************/
EntitledKeySession* EntitledKeySessionTable::CreateEntitledKeySession(

View File

@@ -28,7 +28,7 @@ class EntitledKeySession {
current_entitlement_key_(nullptr){};
EntitledKeySession(const EntitledKeySession&) = delete;
EntitledKeySession(EntitledKeySession&&) = delete;
~EntitledKeySession() = default;
~EntitledKeySession();
// Get id of this entitled key session .
SessionId GetSessionId() const { return key_sid_; }
@@ -55,17 +55,47 @@ class EntitledKeySession {
// Remove a content key |content_key_id|.
bool RemoveContentKey(const KeyId& content_key_id);
// Write the content key info to hardware key slot, which can be retrieved
// from Android TV Tuner Hal implementation.
bool WriteToKeySlot(const KeyId& content_key_id) const;
// Clear the content keys written to hardware key slots by this entitled key
// session. The function is called by destructor.
void ClearKeySlot() const;
// Total number of content keys this entitled key session holds.
size_t size() const { return content_key_map_.size(); }
size_t size() const { return content_key_info_map_.size(); }
private:
struct ContentKeyInfo {
std::unique_ptr<EntitledKey> content_key;
Key* entitlement_key;
};
// Must have the same exact definition on the tuner hal side.
typedef struct {
uint32_t entitled_key_session_id;
uint8_t cipher_mode;
uint8_t even_key[16];
uint8_t even_iv[16];
uint8_t odd_key[16];
uint8_t odd_iv[16];
} ContentKeySlot;
// Must have the same exact definition on the tuner hal side.
typedef struct {
// Assume max number of slots is 16.
ContentKeySlot key_slots[16];
} ContentKeySlots;
ContentKeySlot* GetKeySlotToUpdate(uint8_t* buffer) const;
bool WriteContentKeyToKeySlot(const KeyId& content_key_id,
ContentKeySlot* key_slot) const;
const SessionId key_sid_;
EntitledKey* current_content_key_;
const Key* current_entitlement_key_;
// Map from content key id to content key.
std::map<KeyId, std::unique_ptr<EntitledKey>> content_key_map_;
// Map from content key id to referenced entitlement key.
std::map<KeyId, Key*> entitlement_key_map_;
// Map from content key id to content key info.
std::map<KeyId, std::unique_ptr<ContentKeyInfo>> content_key_info_map_;
};
class EntitledKeySessionTable {

View File

@@ -68,7 +68,9 @@ class Key {
class EntitledKey {
public:
explicit EntitledKey(std::vector<uint8_t> key_string)
: value_(std::move(key_string)), cipher_mode_(OEMCrypto_CipherMode_CTR){};
: value_(std::move(key_string)),
cipher_mode_(OEMCrypto_CipherMode_CTR),
is_even_key_(true){};
EntitledKey(const EntitledKey&) = default;
EntitledKey(EntitledKey&&) = default;
~EntitledKey() = default;
@@ -78,11 +80,14 @@ class EntitledKey {
void set_cipher_mode(OEMCryptoCipherMode mode) { cipher_mode_ = mode; }
void set_content_iv(const std::vector<uint8_t>& iv) { content_iv_ = iv; }
const std::vector<uint8_t>& content_iv() const { return content_iv_; }
bool is_even_key() const { return is_even_key_; }
void set_is_even_key(bool is_even_key) { is_even_key_ = is_even_key; }
private:
std::vector<uint8_t> value_;
OEMCryptoCipherMode cipher_mode_;
std::vector<uint8_t> content_iv_;
bool is_even_key_;
};
} // namespace wvoec_ref

View File

@@ -470,16 +470,16 @@ OEMCRYPTO_API OEMCryptoResult OEMCrypto_LoadCasECMKeys(
LOGE("[OEMCrypto_LoadCasECMKeys(): ERROR_INVALID_SESSION]");
return OEMCrypto_ERROR_INVALID_SESSION;
}
std::vector<OEMCrypto_EntitledCasKeyObject> key_array;
std::vector<const OEMCrypto_EntitledCasKeyObject*> key_array;
key_array.reserve(2);
if (even_key) key_array.push_back(*even_key);
if (odd_key) key_array.push_back(*odd_key);
if (even_key) key_array.push_back(even_key);
if (odd_key) key_array.push_back(odd_key);
for (unsigned int i = 0; i < key_array.size(); i++) {
if (!RangeCheck(message_length, key_array[i].entitlement_key_id, false) ||
!RangeCheck(message_length, key_array[i].content_key_id, false) ||
!RangeCheck(message_length, key_array[i].content_key_data_iv, false) ||
!RangeCheck(message_length, key_array[i].content_key_data, false) ||
!RangeCheck(message_length, key_array[i].content_iv, false)) {
if (!RangeCheck(message_length, key_array[i]->entitlement_key_id, false) ||
!RangeCheck(message_length, key_array[i]->content_key_id, false) ||
!RangeCheck(message_length, key_array[i]->content_key_data_iv, false) ||
!RangeCheck(message_length, key_array[i]->content_key_data, false) ||
!RangeCheck(message_length, key_array[i]->content_iv, true)) {
LOGE(
"[OEMCrypto_LoadCasECMKeys(): "
"OEMCrypto_ERROR_INVALID_CONTEXT -range "
@@ -489,8 +489,7 @@ OEMCRYPTO_API OEMCryptoResult OEMCrypto_LoadCasECMKeys(
}
}
return session_ctx->LoadEntitledCasKeys(entitled_key_session, message,
message_length, key_array.size(),
&key_array[0]);
message_length, even_key, odd_key);
}
OEMCRYPTO_API OEMCryptoResult OEMCrypto_LoadRenewal(OEMCrypto_SESSION session,

View File

@@ -840,9 +840,9 @@ OEMCryptoResult SessionContext::LoadEntitledContentKeys(
OEMCryptoResult SessionContext::LoadEntitledCasKeys(
EntitledKeySession* key_session, const uint8_t* message,
size_t message_length, size_t key_array_length,
const OEMCrypto_EntitledCasKeyObject* key_array) {
if (!key_array) {
size_t message_length, const OEMCrypto_EntitledCasKeyObject* even_key,
const OEMCrypto_EntitledCasKeyObject* odd_key) {
if (even_key == nullptr && odd_key == nullptr) {
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
if (session_keys_ == nullptr ||
@@ -853,8 +853,13 @@ OEMCryptoResult SessionContext::LoadEntitledCasKeys(
return OEMCrypto_ERROR_INVALID_ENTITLED_KEY_SESSION;
}
for (size_t i = 0; i < key_array_length; ++i) {
const OEMCrypto_EntitledCasKeyObject* key_data = &key_array[i];
const std::vector<const OEMCrypto_EntitledCasKeyObject*> key_array = {
even_key, odd_key};
for (size_t i = 0; i < key_array.size(); ++i) {
if (key_array[i] == nullptr) {
continue;
}
const OEMCrypto_EntitledCasKeyObject* key_data = key_array[i];
std::vector<uint8_t> entitlement_key_id;
entitlement_key_id.assign(message + key_data->entitlement_key_id.offset,
message + key_data->entitlement_key_id.offset +
@@ -864,6 +869,15 @@ OEMCryptoResult SessionContext::LoadEntitledCasKeys(
if (entitlement_key == nullptr) {
return OEMCrypto_KEY_NOT_ENTITLED;
}
// Assume in Tuner Hal, buffer type is always secure.
OEMCryptoResult result = CheckKeyControlBlockUse(
entitlement_key->control(), "LoadEntitledCasKeys", /*use_type=*/0,
OEMCrypto_BufferType_Secure);
if (result != OEMCrypto_SUCCESS) {
return result;
}
std::vector<uint8_t> content_key;
std::vector<uint8_t> iv;
std::vector<uint8_t> encrypted_content_key;
@@ -893,11 +907,19 @@ OEMCryptoResult SessionContext::LoadEntitledCasKeys(
content_key_obj->set_content_iv(content_iv);
}
content_key_obj->set_cipher_mode(key_data->cipher_mode);
content_key_obj->set_is_even_key(i % 2 == 0);
if (!key_session->AddOrUpdateContentKey(entitlement_key, content_key_id,
std::move(content_key_obj))) {
return OEMCrypto_ERROR_UNKNOWN_FAILURE;
}
if (!key_session->WriteToKeySlot(content_key_id)) {
// Currently assume this is acceptable.
LOGE("Failed to update content keys to hardware KeySlots.");
} else {
LOGI("Updated content keys to hardware KeySlots.");
}
}
return OEMCrypto_SUCCESS;
}

View File

@@ -118,8 +118,8 @@ class SessionContext {
const OEMCrypto_EntitledContentKeyObject* key_array);
virtual OEMCryptoResult LoadEntitledCasKeys(
EntitledKeySession* key_session, const uint8_t* message,
size_t message_length, size_t key_array_length,
const OEMCrypto_EntitledCasKeyObject* key_array);
size_t message_length, const OEMCrypto_EntitledCasKeyObject* even_key,
const OEMCrypto_EntitledCasKeyObject* odd_key);
virtual OEMCryptoResult InstallKey(
const KeyId& key_id, const std::vector<uint8_t>& key_data,
const std::vector<uint8_t>& key_data_iv,

View File

@@ -794,13 +794,79 @@ void EntitledMessage::LoadKeys(OEMCryptoResult expected_sts) {
VerifyEntitlementTestKeys();
}
void EntitledMessage::LoadCasKeys(OEMCryptoResult expected_sts, bool load_even,
bool load_odd) {
for (size_t i = 0; i < num_keys_; ++i) {
EntitledContentKeyData* key_data = &entitled_key_data_[i];
const size_t entitlement_key_index = key_data->key_index;
MessageKeyData* entitlement_key =
&license_messages_->response_data().keys[entitlement_key_index];
// Load the entitlement key from |key_array_|.
AES_KEY aes_key;
AES_set_encrypt_key(entitlement_key->key_data, 256, &aes_key);
// Encrypt the content key with the entitlement key.
uint8_t iv[16];
memcpy(&iv[0], key_data->content_key_data_iv, KEY_IV_SIZE);
AES_cbc_encrypt(key_data->content_key_data,
key_data->encrypted_content_key_data, KEY_SIZE, &aes_key,
iv, AES_ENCRYPT);
}
// Convert the OEMCrypto_EntitledContentKeyObject to
// OEMCrypto_EntitledCasKeyObject. Only the first two key object is used.
OEMCrypto_EntitledCasKeyObject even_key;
OEMCrypto_EntitledCasKeyObject odd_key;
bool has_even = load_even && num_keys_ >= 1;
bool has_odd = load_odd && num_keys_ >= 2;
if (has_even) {
even_key.entitlement_key_id = entitled_key_array_[0].entitlement_key_id;
even_key.content_key_id = entitled_key_array_[0].content_key_id;
even_key.content_key_data_iv = entitled_key_array_[0].content_key_data_iv;
even_key.content_key_data = entitled_key_array_[0].content_key_data;
even_key.content_iv.length = 0;
}
if (has_odd) {
odd_key.entitlement_key_id = entitled_key_array_[1].entitlement_key_id;
odd_key.content_key_id = entitled_key_array_[1].content_key_id;
odd_key.content_key_data_iv = entitled_key_array_[1].content_key_data_iv;
odd_key.content_key_data = entitled_key_array_[1].content_key_data;
odd_key.content_iv.length = 0;
}
ASSERT_EQ(
expected_sts,
OEMCrypto_LoadCasECMKeys(
key_session_, reinterpret_cast<const uint8_t*>(entitled_key_data_),
sizeof(entitled_key_data_), has_even ? &even_key : nullptr,
has_odd ? &odd_key : nullptr));
if (expected_sts != OEMCrypto_SUCCESS) {
return;
}
if (has_even) {
VerifyEntitlementTestKey(0);
}
if (has_odd) {
VerifyEntitlementTestKey(1);
}
}
// This function verifies that the key control block reported by OEMCrypto agree
// with the truth key control block. Failures in this function probably
// indicate the OEMCrypto_LoadEntitledKeys did not correctly process the key
// control block.
void EntitledMessage::VerifyEntitlementTestKeys() {
for (unsigned int i = 0; i < num_keys_; i++) {
EntitledContentKeyData* key_data = &entitled_key_data_[i];
VerifyEntitlementTestKey(i);
}
}
void EntitledMessage::VerifyEntitlementTestKey(size_t index) {
ASSERT_GE(num_keys_, index);
EntitledContentKeyData* key_data = &entitled_key_data_[index];
const size_t entitlement_key_index = key_data->key_index;
MessageKeyData* entitlement_key =
&license_messages_->response_data().keys[entitlement_key_index];
@@ -816,11 +882,10 @@ void EntitledMessage::VerifyEntitlementTestKeys() {
// we change to host byte order.
ASSERT_EQ((htonl_fnc(entitlement_key->control.duration)),
(htonl_fnc(block.duration)))
<< "For key " << i;
<< "For key " << index;
ASSERT_EQ(htonl_fnc(entitlement_key->control.control_bits),
htonl_fnc(block.control_bits))
<< "For key " << i;
}
<< "For key " << index;
}
}

View File

@@ -419,12 +419,14 @@ class EntitledMessage {
key_session_ = key_session;
}
void LoadKeys(OEMCryptoResult expected_sts);
void LoadCasKeys(OEMCryptoResult expected_sts, bool load_even, bool load_odd);
void set_num_keys(uint32_t num_keys) { num_keys_ = num_keys; }
uint32_t num_keys() const { return num_keys_; }
void SetEntitlementKeyId(unsigned int index, const std::string& key_id);
void SetContentKeyId(unsigned int index, const std::string& key_id);
// Verify that key control blocks of the loaded keys.
void VerifyEntitlementTestKeys();
void VerifyEntitlementTestKey(size_t index);
private:
// Find the offset of the give pointer, relative to |entitled_key_data_|.

View File

@@ -896,7 +896,7 @@ TEST_P(OEMCryptoLicenseTest, LoadKeyWithNonceTwiceAPI16) {
}
// This verifies that entitlement keys and entitled content keys can be loaded.
TEST_P(OEMCryptoLicenseTest, LoadEntitlementKeysAPI17) {
TEST_P(OEMCryptoLicenseTest, LoadEntitlementKeysAPI16) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
license_messages_.set_license_type(OEMCrypto_EntitlementLicense);
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
@@ -906,25 +906,24 @@ TEST_P(OEMCryptoLicenseTest, LoadEntitlementKeysAPI17) {
uint32_t key_session_id = 0;
OEMCryptoResult sts = OEMCrypto_CreateEntitledKeySession(
session_.session_id(), &key_session_id);
if (sts == OEMCrypto_ERROR_NOT_IMPLEMENTED) {
return;
}
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
ASSERT_NE(key_session_id, 0u);
EntitledMessage entitled_message_1(&license_messages_);
entitled_message_1.FillKeyArray();
entitled_message_1.SetEntitledKeySession(key_session_id);
ASSERT_NO_FATAL_FAILURE(entitled_message_1.LoadKeys(OEMCrypto_SUCCESS));
ASSERT_NO_FATAL_FAILURE(entitled_message_1.LoadCasKeys(
OEMCrypto_SUCCESS, /*load_even=*/true, /*load_odd=*/true));
EntitledMessage entitled_message_2(&license_messages_);
entitled_message_2.FillKeyArray();
entitled_message_2.SetEntitledKeySession(key_session_id);
ASSERT_NO_FATAL_FAILURE(entitled_message_2.LoadKeys(OEMCrypto_SUCCESS));
ASSERT_NO_FATAL_FAILURE(entitled_message_2.LoadCasKeys(
OEMCrypto_SUCCESS, /*load_even=*/true, /*load_odd=*/true));
}
// This verifies that entitled content keys cannot be loaded if we have not yet
// loaded the entitlement keys.
TEST_P(OEMCryptoLicenseTest, LoadEntitlementKeysNoEntitlementKeysAPI17) {
TEST_P(OEMCryptoLicenseTest, LoadEntitlementKeysNoEntitlementKeysAPI16) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
license_messages_.set_license_type(OEMCrypto_EntitlementLicense);
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
@@ -933,22 +932,19 @@ TEST_P(OEMCryptoLicenseTest, LoadEntitlementKeysNoEntitlementKeysAPI17) {
uint32_t key_session_id = 0;
OEMCryptoResult sts = OEMCrypto_CreateEntitledKeySession(
session_.session_id(), &key_session_id);
if (sts == OEMCrypto_ERROR_NOT_IMPLEMENTED) {
return;
}
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
ASSERT_NE(key_session_id, 0u);
EntitledMessage entitled_message_1(&license_messages_);
entitled_message_1.FillKeyArray();
entitled_message_1.SetEntitledKeySession(key_session_id);
ASSERT_NO_FATAL_FAILURE(
entitled_message_1.LoadKeys(OEMCrypto_ERROR_INVALID_CONTEXT));
ASSERT_NO_FATAL_FAILURE(entitled_message_1.LoadCasKeys(
OEMCrypto_ERROR_INVALID_CONTEXT, /*load_even=*/true, /*load_odd=*/true));
}
// This verifies that entitled content keys cannot be loaded if we have loaded
// the wrong entitlement keys.
TEST_P(OEMCryptoLicenseTest, LoadEntitlementKeysWrongEntitlementKeysAPI17) {
TEST_P(OEMCryptoLicenseTest, LoadEntitlementKeysWrongEntitlementKeysAPI16) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
license_messages_.set_license_type(OEMCrypto_EntitlementLicense);
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
@@ -958,9 +954,6 @@ TEST_P(OEMCryptoLicenseTest, LoadEntitlementKeysWrongEntitlementKeysAPI17) {
uint32_t key_session_id = 0;
OEMCryptoResult sts = OEMCrypto_CreateEntitledKeySession(
session_.session_id(), &key_session_id);
if (sts == OEMCrypto_ERROR_NOT_IMPLEMENTED) {
return;
}
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
ASSERT_NE(key_session_id, 0u);
@@ -969,13 +962,13 @@ TEST_P(OEMCryptoLicenseTest, LoadEntitlementKeysWrongEntitlementKeysAPI17) {
const std::string key_id = "no_key";
entitled_message_1.SetEntitlementKeyId(0, key_id);
entitled_message_1.SetEntitledKeySession(key_session_id);
ASSERT_NO_FATAL_FAILURE(
entitled_message_1.LoadKeys(OEMCrypto_KEY_NOT_ENTITLED));
ASSERT_NO_FATAL_FAILURE(entitled_message_1.LoadCasKeys(
OEMCrypto_KEY_NOT_ENTITLED, /*load_even=*/true, /*load_odd=*/true));
}
// This verifies that entitled content keys cannot be loaded if we specify an
// entitled key session that has not been created.
TEST_P(OEMCryptoLicenseTest, LoadEntitlementKeysWrongEntitledKeySessionAPI17) {
TEST_P(OEMCryptoLicenseTest, LoadEntitlementKeysWrongEntitledKeySessionAPI16) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
license_messages_.set_license_type(OEMCrypto_EntitlementLicense);
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
@@ -985,22 +978,20 @@ TEST_P(OEMCryptoLicenseTest, LoadEntitlementKeysWrongEntitledKeySessionAPI17) {
uint32_t key_session_id = 0;
OEMCryptoResult sts = OEMCrypto_CreateEntitledKeySession(
session_.session_id(), &key_session_id);
if (sts == OEMCrypto_ERROR_NOT_IMPLEMENTED) {
return;
}
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
ASSERT_NE(key_session_id, 0u);
EntitledMessage entitled_message_1(&license_messages_);
entitled_message_1.FillKeyArray();
entitled_message_1.SetEntitledKeySession(0);
ASSERT_NO_FATAL_FAILURE(entitled_message_1.LoadKeys(
OEMCrypto_ERROR_INVALID_ENTITLED_KEY_SESSION));
ASSERT_NO_FATAL_FAILURE(entitled_message_1.LoadCasKeys(
OEMCrypto_ERROR_INVALID_ENTITLED_KEY_SESSION, /*load_even=*/true,
/*load_odd=*/true));
}
// This verifies that entitled content keys cannot be loaded if we specify an
// entitled key session that is actually an oemcrypto session.
TEST_P(OEMCryptoLicenseTest, LoadEntitlementKeysOemcryptoSessionAPI17) {
TEST_P(OEMCryptoLicenseTest, LoadEntitlementKeysOemcryptoSessionAPI16) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
license_messages_.set_license_type(OEMCrypto_EntitlementLicense);
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
@@ -1010,17 +1001,15 @@ TEST_P(OEMCryptoLicenseTest, LoadEntitlementKeysOemcryptoSessionAPI17) {
uint32_t key_session_id = 0;
OEMCryptoResult sts = OEMCrypto_CreateEntitledKeySession(
session_.session_id(), &key_session_id);
if (sts == OEMCrypto_ERROR_NOT_IMPLEMENTED) {
return;
}
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
ASSERT_NE(key_session_id, 0u);
EntitledMessage entitled_message_1(&license_messages_);
entitled_message_1.FillKeyArray();
entitled_message_1.SetEntitledKeySession(session_.session_id());
ASSERT_NO_FATAL_FAILURE(entitled_message_1.LoadKeys(
OEMCrypto_ERROR_INVALID_ENTITLED_KEY_SESSION));
ASSERT_NO_FATAL_FAILURE(entitled_message_1.LoadCasKeys(
OEMCrypto_ERROR_INVALID_ENTITLED_KEY_SESSION, /*load_even=*/true,
/*load_odd=*/true));
}
// This tests load license with an 8k license response.
@@ -1479,7 +1468,7 @@ TEST_P(OEMCryptoLicenseTest, SelectKeyNotThereAPI16) {
}
}
TEST_P(OEMCryptoLicenseTest, SelectKeyEntitledKeyAPI17) {
TEST_P(OEMCryptoLicenseTest, SelectKeyEntitledKeyAPI16) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
license_messages_.set_license_type(OEMCrypto_EntitlementLicense);
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
@@ -1490,16 +1479,14 @@ TEST_P(OEMCryptoLicenseTest, SelectKeyEntitledKeyAPI17) {
uint32_t key_session_id;
OEMCryptoResult sts = OEMCrypto_CreateEntitledKeySession(
session_.session_id(), &key_session_id);
if (sts == OEMCrypto_ERROR_NOT_IMPLEMENTED) {
return;
}
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
EntitledMessage entitled_message_1(&license_messages_);
entitled_message_1.FillKeyArray();
entitled_message_1.SetEntitledKeySession(key_session_id);
const char* content_key_id = "content_key_id";
entitled_message_1.SetContentKeyId(0, content_key_id);
ASSERT_NO_FATAL_FAILURE(entitled_message_1.LoadKeys(OEMCrypto_SUCCESS));
ASSERT_NO_FATAL_FAILURE(entitled_message_1.LoadCasKeys(
OEMCrypto_SUCCESS, /*load_even=*/true, /*load_odd=*/false));
ASSERT_EQ(
OEMCrypto_SUCCESS,
@@ -1510,7 +1497,7 @@ TEST_P(OEMCryptoLicenseTest, SelectKeyEntitledKeyAPI17) {
// SelectEntitledKey should fail if we attempt to select a key that has not been
// loaded. Also, the error should be NO_CONTENT_KEY.
TEST_P(OEMCryptoLicenseTest, SelectKeyEntitledKeyNotThereAPI17) {
TEST_P(OEMCryptoLicenseTest, SelectKeyEntitledKeyNotThereAPI16) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
license_messages_.set_license_type(OEMCrypto_EntitlementLicense);
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
@@ -1521,14 +1508,12 @@ TEST_P(OEMCryptoLicenseTest, SelectKeyEntitledKeyNotThereAPI17) {
uint32_t key_session_id;
OEMCryptoResult sts = OEMCrypto_CreateEntitledKeySession(
session_.session_id(), &key_session_id);
if (sts == OEMCrypto_ERROR_NOT_IMPLEMENTED) {
return;
}
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
EntitledMessage entitled_message_1(&license_messages_);
entitled_message_1.FillKeyArray();
entitled_message_1.SetEntitledKeySession(key_session_id);
ASSERT_NO_FATAL_FAILURE(entitled_message_1.LoadKeys(OEMCrypto_SUCCESS));
ASSERT_NO_FATAL_FAILURE(entitled_message_1.LoadCasKeys(
OEMCrypto_SUCCESS, /*load_even=*/true, /*load_odd=*/true));
const char* content_key_id = "no_key";
ASSERT_EQ(
@@ -1540,7 +1525,7 @@ TEST_P(OEMCryptoLicenseTest, SelectKeyEntitledKeyNotThereAPI17) {
// Select key with entitlement license fails if the key id is entitilement key
// id.
TEST_P(OEMCryptoLicenseTest, SelectKeyEntitlementKeyAPI17) {
TEST_P(OEMCryptoLicenseTest, SelectKeyEntitlementKeyAPI16) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
license_messages_.set_license_type(OEMCrypto_EntitlementLicense);
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
@@ -1551,14 +1536,12 @@ TEST_P(OEMCryptoLicenseTest, SelectKeyEntitlementKeyAPI17) {
uint32_t key_session_id;
OEMCryptoResult sts = OEMCrypto_CreateEntitledKeySession(
session_.session_id(), &key_session_id);
if (sts == OEMCrypto_ERROR_NOT_IMPLEMENTED) {
return;
}
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
EntitledMessage entitled_message_1(&license_messages_);
entitled_message_1.FillKeyArray();
entitled_message_1.SetEntitledKeySession(key_session_id);
ASSERT_NO_FATAL_FAILURE(entitled_message_1.LoadKeys(OEMCrypto_SUCCESS));
ASSERT_NO_FATAL_FAILURE(entitled_message_1.LoadCasKeys(
OEMCrypto_SUCCESS, /*load_even=*/true, /*load_odd=*/true));
ASSERT_EQ(OEMCrypto_ERROR_INVALID_CONTEXT,
OEMCrypto_SelectKey(session_.session_id(),
@@ -1568,7 +1551,7 @@ TEST_P(OEMCryptoLicenseTest, SelectKeyEntitlementKeyAPI17) {
}
// This verifies that entitled key sessions can be created and removed.
TEST_P(OEMCryptoLicenseTest, EntitledKeySessionsAPI17) {
TEST_P(OEMCryptoLicenseTest, EntitledKeySessionsAPI16) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
license_messages_.set_license_type(OEMCrypto_EntitlementLicense);
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
@@ -1579,9 +1562,6 @@ TEST_P(OEMCryptoLicenseTest, EntitledKeySessionsAPI17) {
uint32_t key_session_id_1;
OEMCryptoResult sts = OEMCrypto_CreateEntitledKeySession(
session_.session_id(), &key_session_id_1);
if (sts == OEMCrypto_ERROR_NOT_IMPLEMENTED) {
return;
}
ASSERT_NE(key_session_id_1, 0u); // 0 is a reserved id number.
uint32_t key_session_id_2;
@@ -1599,7 +1579,7 @@ TEST_P(OEMCryptoLicenseTest, EntitledKeySessionsAPI17) {
// This verifies that multiple entitled key sessions can be created. They can
// load and select keys independently.
TEST_P(OEMCryptoLicenseTest, EntitledKeySessionMultipleKeySessionsAPI17) {
TEST_P(OEMCryptoLicenseTest, EntitledKeySessionMultipleKeySessionsAPI16) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
license_messages_.set_license_type(OEMCrypto_EntitlementLicense);
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
@@ -1610,16 +1590,14 @@ TEST_P(OEMCryptoLicenseTest, EntitledKeySessionMultipleKeySessionsAPI17) {
uint32_t key_session_id_1;
OEMCryptoResult sts = OEMCrypto_CreateEntitledKeySession(
session_.session_id(), &key_session_id_1);
if (sts == OEMCrypto_ERROR_NOT_IMPLEMENTED) {
return;
}
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
EntitledMessage entitled_message_1(&license_messages_);
entitled_message_1.FillKeyArray();
entitled_message_1.SetEntitledKeySession(key_session_id_1);
const char* content_key_id_1 = "content_key_id_1";
entitled_message_1.SetContentKeyId(0, content_key_id_1);
ASSERT_NO_FATAL_FAILURE(entitled_message_1.LoadKeys(OEMCrypto_SUCCESS));
ASSERT_NO_FATAL_FAILURE(entitled_message_1.LoadCasKeys(
OEMCrypto_SUCCESS, /*load_even=*/true, /*load_odd=*/true));
// We can select content key 1 in entitled key session 1.
ASSERT_EQ(
OEMCrypto_SUCCESS,
@@ -1638,7 +1616,8 @@ TEST_P(OEMCryptoLicenseTest, EntitledKeySessionMultipleKeySessionsAPI17) {
entitled_message_2.SetEntitledKeySession(key_session_id_2);
const char* content_key_id_2 = "content_key_id_2";
entitled_message_2.SetContentKeyId(0, content_key_id_2);
ASSERT_NO_FATAL_FAILURE(entitled_message_2.LoadKeys(OEMCrypto_SUCCESS));
ASSERT_NO_FATAL_FAILURE(entitled_message_2.LoadCasKeys(
OEMCrypto_SUCCESS, /*load_even=*/true, /*load_odd=*/true));
// We can select content key 2 in entitled key session 2.
ASSERT_EQ(
OEMCrypto_SUCCESS,
@@ -1660,9 +1639,9 @@ TEST_P(OEMCryptoLicenseTest, EntitledKeySessionMultipleKeySessionsAPI17) {
}
// This verifies that within an entitled key session, each entitlement key can
// corresponds to only one content key at most.
// corresponds to only one even content key at most.
TEST_P(OEMCryptoLicenseTest,
EntitledKeySessionOneContentKeyPerEntitlementAPI17) {
EntitledKeySessionOneContentKeyPerEntitlementAPI16) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
license_messages_.set_license_type(OEMCrypto_EntitlementLicense);
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
@@ -1673,9 +1652,6 @@ TEST_P(OEMCryptoLicenseTest,
uint32_t key_session_id;
OEMCryptoResult sts = OEMCrypto_CreateEntitledKeySession(
session_.session_id(), &key_session_id);
if (sts == OEMCrypto_ERROR_NOT_IMPLEMENTED) {
return;
}
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
// Construct and load content keys to entitled key session.
EntitledMessage entitled_message_1(&license_messages_);
@@ -1683,7 +1659,8 @@ TEST_P(OEMCryptoLicenseTest,
entitled_message_1.SetEntitledKeySession(key_session_id);
const char* content_key_id_1 = "content_key_id_1";
entitled_message_1.SetContentKeyId(0, content_key_id_1);
ASSERT_NO_FATAL_FAILURE(entitled_message_1.LoadKeys(OEMCrypto_SUCCESS));
ASSERT_NO_FATAL_FAILURE(entitled_message_1.LoadCasKeys(
OEMCrypto_SUCCESS, /*load_even=*/true, /*load_odd=*/true));
// We can select content key 1 in entitled key session.
ASSERT_EQ(
OEMCrypto_SUCCESS,
@@ -1693,7 +1670,8 @@ TEST_P(OEMCryptoLicenseTest,
// Load content key with new content id.
const char* content_key_id_2 = "content_key_id_2";
entitled_message_1.SetContentKeyId(0, content_key_id_2);
ASSERT_NO_FATAL_FAILURE(entitled_message_1.LoadKeys(OEMCrypto_SUCCESS));
ASSERT_NO_FATAL_FAILURE(entitled_message_1.LoadCasKeys(
OEMCrypto_SUCCESS, /*load_even=*/true, /*load_odd=*/true));
// We can select content key 2 in entitled key session.
ASSERT_EQ(
OEMCrypto_SUCCESS,
@@ -1709,6 +1687,55 @@ TEST_P(OEMCryptoLicenseTest,
strlen(content_key_id_1), OEMCrypto_CipherMode_CTR));
}
// This verifies that within an entitled key session, each entitlement key can
// be shared by both even and odd content keys.
TEST_P(OEMCryptoLicenseTest,
EntitledKeySessionEvenOddContentKeysPerEntitlementAPI16) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
license_messages_.set_license_type(OEMCrypto_EntitlementLicense);
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
uint32_t key_session_id;
OEMCryptoResult sts = OEMCrypto_CreateEntitledKeySession(
session_.session_id(), &key_session_id);
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
// Construct and load even content keys to entitled key session.
EntitledMessage entitled_message_1(&license_messages_);
entitled_message_1.FillKeyArray();
entitled_message_1.SetEntitledKeySession(key_session_id);
const char* content_key_id_1 = "content_key_id_1";
entitled_message_1.SetContentKeyId(0, content_key_id_1);
ASSERT_NO_FATAL_FAILURE(entitled_message_1.LoadCasKeys(
OEMCrypto_SUCCESS, /*load_even=*/true, /*load_odd=*/false));
// We can select content key 1 (even key) in entitled key session.
ASSERT_EQ(
OEMCrypto_SUCCESS,
OEMCrypto_SelectKey(key_session_id,
reinterpret_cast<const uint8_t*>(content_key_id_1),
strlen(content_key_id_1), OEMCrypto_CipherMode_CTR));
// Load odd content key with new content id.
const char* content_key_id_2 = "content_key_id_2";
entitled_message_1.SetContentKeyId(1, content_key_id_2);
ASSERT_NO_FATAL_FAILURE(entitled_message_1.LoadCasKeys(
OEMCrypto_SUCCESS, /*load_even=*/false, /*load_odd=*/true));
// We can select content key 2 (odd key) in entitled key session.
ASSERT_EQ(
OEMCrypto_SUCCESS,
OEMCrypto_SelectKey(key_session_id,
reinterpret_cast<const uint8_t*>(content_key_id_2),
strlen(content_key_id_2), OEMCrypto_CipherMode_CTR));
// Content key one is still in the entitled key session as they are even and
// odd keys that can use the same entitlement key.
ASSERT_EQ(
OEMCrypto_SUCCESS,
OEMCrypto_SelectKey(key_session_id,
reinterpret_cast<const uint8_t*>(content_key_id_1),
strlen(content_key_id_1), OEMCrypto_CipherMode_CTR));
}
// 'cens' mode is no longer supported in v16
TEST_P(OEMCryptoLicenseTest, RejectCensAPI16) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
@@ -1819,9 +1846,6 @@ TEST_P(OEMCryptoLicenseTest, QueryKeyControl) {
session_.session_id(), license_messages_.response_data().keys[0].key_id,
license_messages_.response_data().keys[0].key_id_length,
reinterpret_cast<uint8_t*>(&block), &size);
if (sts == OEMCrypto_ERROR_NOT_IMPLEMENTED) {
return;
}
ASSERT_EQ(OEMCrypto_ERROR_SHORT_BUFFER, sts);
const char* key_id = "no_key";
size = sizeof(block);
@@ -2029,6 +2053,60 @@ TEST_P(OEMCryptoSessionTestDecryptWithHDCP, DecryptAPI09) {
INSTANTIATE_TEST_CASE_P(TestHDCP, OEMCryptoSessionTestDecryptWithHDCP,
Range(1, 6));
// Used to test the different HDCP versions. This test is parameterized by the
// required HDCP version in the key control block.
class OEMCryptoSessionTestLoadCasKeysWithHDCP : public OEMCryptoSessionTests,
public WithParamInterface<int> {
protected:
void LoadCasKeysWithHDCP(OEMCrypto_HDCP_Capability version) {
OEMCryptoResult sts;
OEMCrypto_HDCP_Capability current, maximum;
sts = OEMCrypto_GetHDCPCapability(&current, &maximum);
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
Session s;
ASSERT_NO_FATAL_FAILURE(s.open());
ASSERT_NO_FATAL_FAILURE(InstallTestRSAKey(&s));
LicenseRoundTrip license_messages(&s);
license_messages.set_control((version << wvoec::kControlHDCPVersionShift) |
wvoec::kControlObserveHDCP |
wvoec::kControlHDCPRequired);
license_messages.set_license_type(OEMCrypto_EntitlementLicense);
ASSERT_NO_FATAL_FAILURE(license_messages.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_SUCCESS, license_messages.LoadResponse());
uint32_t key_session_id;
sts = OEMCrypto_CreateEntitledKeySession(s.session_id(), &key_session_id);
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
EntitledMessage entitled_message_1(&license_messages);
entitled_message_1.FillKeyArray();
entitled_message_1.SetEntitledKeySession(key_session_id);
if (version > current) {
ASSERT_NO_FATAL_FAILURE(
entitled_message_1.LoadCasKeys(OEMCrypto_ERROR_INSUFFICIENT_HDCP,
/*load_even=*/true, /*load_odd=*/true))
<< "Failed when current HDCP = " << HDCPCapabilityAsString(current)
<< ", maximum HDCP = " << HDCPCapabilityAsString(maximum)
<< ", license HDCP = " << HDCPCapabilityAsString(version);
} else {
ASSERT_NO_FATAL_FAILURE(entitled_message_1.LoadCasKeys(
OEMCrypto_SUCCESS, /*load_even=*/true, /*load_odd=*/true))
<< "Failed when current HDCP = " << HDCPCapabilityAsString(current)
<< ", maximum HDCP = " << HDCPCapabilityAsString(maximum)
<< ", license HDCP = " << HDCPCapabilityAsString(version);
}
}
};
TEST_P(OEMCryptoSessionTestLoadCasKeysWithHDCP, LoadCasECMKeysAPI16) {
// Test parameterized by HDCP version.
LoadCasKeysWithHDCP(static_cast<OEMCrypto_HDCP_Capability>(GetParam()));
}
INSTANTIATE_TEST_CASE_P(TestHDCP, OEMCryptoSessionTestLoadCasKeysWithHDCP,
Range(1, 6));
//
// Load, Refresh Keys Test
//
@@ -2924,6 +3002,54 @@ TEST_P(OEMCryptoLicenseTest, KeyDuration) {
ASSERT_NO_FATAL_FAILURE(session_.TestSelectExpired(0));
}
TEST_P(OEMCryptoLicenseTest, LoadCasKeysNoAnalogAPI16) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
license_messages_.set_license_type(OEMCrypto_EntitlementLicense);
license_messages_.set_control(wvoec::kControlDisableAnalogOutput);
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
uint32_t key_session_id;
OEMCryptoResult sts = OEMCrypto_CreateEntitledKeySession(
session_.session_id(), &key_session_id);
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
EntitledMessage entitled_message(&license_messages_);
entitled_message.FillKeyArray();
entitled_message.SetEntitledKeySession(key_session_id);
ASSERT_NO_FATAL_FAILURE(entitled_message.LoadCasKeys(
OEMCrypto_ERROR_ANALOG_OUTPUT, /*load_even=*/true, /*load_odd=*/true));
}
// Test that key duration is honored.
TEST_P(OEMCryptoLicenseTest, LoadCasKeysKeyDurationAPI16) {
ASSERT_NO_FATAL_FAILURE(session_.GenerateNonce());
license_messages_.set_license_type(OEMCrypto_EntitlementLicense);
license_messages_.core_response()
.timer_limits.total_playback_duration_seconds = kDuration;
ASSERT_NO_FATAL_FAILURE(license_messages_.SignAndVerifyRequest());
ASSERT_NO_FATAL_FAILURE(license_messages_.CreateDefaultResponse());
ASSERT_NO_FATAL_FAILURE(license_messages_.EncryptAndSignResponse());
ASSERT_EQ(OEMCrypto_SUCCESS, license_messages_.LoadResponse());
uint32_t key_session_id;
OEMCryptoResult sts = OEMCrypto_CreateEntitledKeySession(
session_.session_id(), &key_session_id);
ASSERT_EQ(OEMCrypto_SUCCESS, sts);
EntitledMessage entitled_message(&license_messages_);
entitled_message.FillKeyArray();
entitled_message.SetEntitledKeySession(key_session_id);
ASSERT_NO_FATAL_FAILURE(entitled_message.LoadCasKeys(
OEMCrypto_SUCCESS, /*load_even=*/true, /*load_odd=*/true));
wvutil::TestSleep::Sleep(kShortSleep); // Should still be valid key.
ASSERT_NO_FATAL_FAILURE(entitled_message.LoadCasKeys(
OEMCrypto_SUCCESS, /*load_even=*/true, /*load_odd=*/true));
wvutil::TestSleep::Sleep(kLongSleep); // Should be expired key.
ASSERT_NO_FATAL_FAILURE(entitled_message.LoadCasKeys(
OEMCrypto_ERROR_KEY_EXPIRED, /*load_even=*/true, /*load_odd=*/true));
}
INSTANTIATE_TEST_CASE_P(TestAll, OEMCryptoLicenseTest,
Range<uint32_t>(kCurrentAPI - 1, kCurrentAPI + 1));

View File

@@ -10,6 +10,8 @@ cc_library_static {
"src/widevine_media_cas.cpp",
"src/cas_license.cpp",
"src/ecm_parser.cpp",
"src/ecm_parser_v2.cpp",
"src/ecm_parser_v3.cpp",
"src/license_key_status.cpp",
"src/oemcrypto_interface.cpp",
"src/policy_engine.cpp",

View File

@@ -11,6 +11,8 @@
#define CAS_QUERY_EVENT_START 4000
#define CAS_ERROR_EVENT_START 5000
#define CAS_PARENTAL_CONTROL_EVENT_START 6000
#define CAS_FINGERPRINTING_EVENT_START 6100
#define CAS_SERVICE_BLOCKING_EVENT_START 6200
#define CAS_TEST_EVENT_START 10000
typedef enum {
@@ -48,9 +50,41 @@ typedef enum {
ACCESS_DENIED_BY_PARENTAL_CONTROL,
AGE_RESTRICTION_UPDATED,
// The content of FINGERPRINTING_INFO events follows TLV (Type (1 byte) -
// Length (2 bytes) - Value) format. See FingerprintingFieldType for possible
// types. A FINGERPRINTING_INFO event contains {one or more CHANNEL, one
// CONTROL}.
FINGERPRINTING_INFO = CAS_FINGERPRINTING_EVENT_START,
// Fingerprinting control info for a session. The content of the event follows
// TLV (Type (1 byte) - Length (2 bytes) - Value) format. See
// SessionFingerprintingFieldType for possible types. It will contain {one
// FINGERPRINTING_CONTROL}.
SESSION_FINGERPRINTING_INFO,
// The content of SERVICE_BLOCKING_INFO events follows TLV (Type (1 byte) -
// Length (2 bytes) - Value) format. See ServiceBlockingFieldType for possible
// types. A SERVICE_BLOCKING_INFO event contains {one or more CHANNEL, one or
// more DEVICE_GROUP, zero or one START_TIME_SECONDS, one END_TIME_SECONDS}.
SERVICE_BLOCKING_INFO = CAS_SERVICE_BLOCKING_EVENT_START,
// Service blocking device group for a session. The content of the event
// follows TLV (Type (1 byte) - Length (2 bytes) - Value) format. See
// SessionServiceBlockingFieldType for possible types. It will contain {one or
// more SERVICE_BLOCKING_DEVICE_GROUP}.
SESSION_SERVICE_BLOCKING_INFO,
TEST_FOR_ECHO =
CAS_TEST_EVENT_START, // Request an ECHO response to test events passing.
ECHO, // Respond to TEST_FOR_ECHO.
} CasEventId;
// Types used inside an SESSION_FINGERPRINTING_CONTROL event.
typedef enum {
FINGERPRINTING_CONTROL = 0,
} SessionFingerprintingFieldType;
// Types used inside an SESSION_SERVICE_BLOCKING_GROUPS event.
typedef enum {
SERVICE_BLOCKING_DEVICE_GROUP = 0,
} SessionServiceBlockingFieldType;
#endif // CAS_EVENTS_H

View File

@@ -110,6 +110,13 @@ class CasLicense : public wvutil::TimerHandler, public wvcas::CasEventListener {
void OnAgeRestrictionUpdated(const WvCasSessionId& sessionId,
uint8_t ecm_age_restriction) override;
void OnSessionFingerprintingUpdated(const WvCasSessionId& sessionId,
const CasData& fingerprinting) override;
void OnSessionServiceBlockingUpdated(
const WvCasSessionId& sessionId,
const CasData& service_blocking) override;
// Query to see if the license is expired.
virtual bool IsExpired() const;

View File

@@ -89,6 +89,14 @@ class CasEventListener {
virtual void OnAgeRestrictionUpdated(const WvCasSessionId& sessionId,
uint8_t ecm_age_restriction) = 0;
// Notifies listeners of new fingerprinting info.
virtual void OnSessionFingerprintingUpdated(
const WvCasSessionId& sessionId, const CasData& fingerprinting) = 0;
// Notifies listeners of new service blocking info.
virtual void OnSessionServiceBlockingUpdated(
const WvCasSessionId& sessionId, const CasData& service_blocking) = 0;
CasEventListener(const CasEventListener&) = delete;
CasEventListener& operator=(const CasEventListener&) = delete;
};

View File

@@ -9,56 +9,42 @@
#include <vector>
#include "cas_types.h"
#include "media_cas.pb.h"
namespace wvcas {
enum class KeySlotId { kEvenKeySlot, kOddKeySlot };
struct EcmKeyData;
// EcmParser allows random access to the fields of an ECM.
// The only validation performed is to ensure that the ecm
// passed in is large enough to hold a single key entry.
class EcmParser {
protected:
EcmParser() {}
public:
EcmParser() = default;
virtual ~EcmParser() {}
// The EcmParser factory method.
// Validates the ecm. If validations is successful returns true and constructs
// an EcmParser in |parser| using |ecm|.
static bool create(const CasEcm& ecm,
std::unique_ptr<const EcmParser>* parser);
static std::unique_ptr<const EcmParser> Create(const CasEcm& ecm);
// Accessor methods.
virtual uint8_t version() const;
virtual uint8_t sequence_count() const;
virtual CryptoMode crypto_mode() const;
virtual bool rotation_enabled() const;
virtual size_t content_iv_size() const;
virtual uint8_t age_restriction() const;
virtual const std::vector<uint8_t> entitlement_key_id(KeySlotId id) const;
virtual const std::vector<uint8_t> content_key_id(KeySlotId id) const;
virtual const std::vector<uint8_t> wrapped_key_data(KeySlotId id) const;
virtual const std::vector<uint8_t> wrapped_key_iv(KeySlotId id) const;
virtual const std::vector<uint8_t> content_iv(KeySlotId id) const;
virtual uint8_t version() const = 0;
virtual CryptoMode crypto_mode() const = 0;
virtual bool rotation_enabled() const = 0;
virtual size_t content_iv_size() const = 0;
virtual uint8_t age_restriction() const = 0;
virtual std::vector<uint8_t> entitlement_key_id(KeySlotId id) const = 0;
virtual std::vector<uint8_t> content_key_id(KeySlotId id) const = 0;
virtual std::vector<uint8_t> wrapped_key_data(KeySlotId id) const = 0;
virtual std::vector<uint8_t> wrapped_key_iv(KeySlotId id) const = 0;
virtual std::vector<uint8_t> content_iv(KeySlotId id) const = 0;
EcmParser(const EcmParser&) = delete;
EcmParser& operator=(const EcmParser&) = delete;
private:
// Constructs an EcmParser using |ecm|.
explicit EcmParser(const CasEcm& ecm);
size_t key_data_size() const;
// Returns false if the ecm used to construct the object is not a valid size.
// TODO(jfore): Add validation using the version field.
bool is_valid_size() const;
const EcmKeyData* key_slot_data(KeySlotId id) const;
CasEcm ecm_;
virtual bool has_fingerprinting() const = 0;
virtual video_widevine::Fingerprinting fingerprinting() const = 0;
virtual bool has_service_blocking() const = 0;
virtual video_widevine::ServiceBlocking service_blocking() const = 0;
// The serialized payload that the signature is calculated on.
virtual std::string ecm_serialized_payload() const = 0;
virtual std::string signature() const = 0;
};
} // namespace wvcas

View File

@@ -0,0 +1,76 @@
// Copyright 2018 Google LLC. All Rights Reserved. This file and proprietary
// source code may only be used and distributed under the Widevine Master
// License Agreement.
#ifndef ECM_PARSER_V2_H
#define ECM_PARSER_V2_H
#include <memory>
#include <vector>
#include "cas_types.h"
#include "ecm_parser.h"
namespace wvcas {
struct EcmKeyData;
// EcmParserV2 allows random access to the fields of an ECM version 2 and under.
// It should be initialized via EcmParser factory create only.
class EcmParserV2 : public EcmParser {
public:
~EcmParserV2() override = default;
EcmParserV2(const EcmParserV2&) = delete;
EcmParserV2& operator=(const EcmParserV2&) = delete;
// The EcmParserV2 factory method.
// |ecm| must be Widevine ECM v2 or under without section header.
// Validates the ecm. The only validation performed is to ensure that the ecm
// passed in is large enough to hold a single key entry. If validations is
// successful returns true and constructs an EcmParserV2 in |parser| using
// |ecm|.
static bool create(const CasEcm& cas_ecm,
std::unique_ptr<const EcmParserV2>* parser);
// Accessor methods.
uint8_t version() const override;
CryptoMode crypto_mode() const override;
bool rotation_enabled() const override;
size_t content_iv_size() const override;
uint8_t age_restriction() const override;
std::vector<uint8_t> entitlement_key_id(KeySlotId id) const override;
std::vector<uint8_t> content_key_id(KeySlotId id) const override;
std::vector<uint8_t> wrapped_key_data(KeySlotId id) const override;
std::vector<uint8_t> wrapped_key_iv(KeySlotId id) const override;
std::vector<uint8_t> content_iv(KeySlotId id) const override;
// ECM v2 or under does not have these fields.
bool has_fingerprinting() const override { return false; }
video_widevine::Fingerprinting fingerprinting() const override {
video_widevine::Fingerprinting fingerprinting;
return fingerprinting;
}
bool has_service_blocking() const override { return false; };
video_widevine::ServiceBlocking service_blocking() const override {
video_widevine::ServiceBlocking service_blocking;
return service_blocking;
}
std::string ecm_serialized_payload() const override { return ""; }
std::string signature() const override { return ""; }
private:
// Constructs an EcmParserV2 using |ecm|.
explicit EcmParserV2(const CasEcm& ecm);
size_t key_data_size() const;
// Returns false if the ecm used to construct the object is not a valid size.
// TODO(jfore): Add validation using the version field.
bool is_valid_size() const;
const EcmKeyData* key_slot_data(KeySlotId id) const;
CasEcm ecm_;
};
} // namespace wvcas
#endif // ECM_PARSER_V2_H

View File

@@ -0,0 +1,60 @@
// Copyright 2018 Google LLC. All Rights Reserved. This file and proprietary
// source code may only be used and distributed under the Widevine Master
// License Agreement.
#ifndef ECM_PARSER_V3_H
#define ECM_PARSER_V3_H
#include <memory>
#include <vector>
#include "cas_types.h"
#include "ecm_parser.h"
#include "media_cas.pb.h"
namespace wvcas {
// EcmParser allows random access to the fields of an ECM.
class EcmParserV3 : public EcmParser {
public:
~EcmParserV3() override = default;
EcmParserV3(const EcmParserV3&) = delete;
EcmParserV3& operator=(const EcmParserV3&) = delete;
// The EcmParserV3 factory method.
// |ecm| must be Widevine ECM v3 (or higher if compatible) without section
// header. Validates the ecm. If validations is successful returns an
// EcmParserV3, otherwise an nullptr.
static std::unique_ptr<const EcmParserV3> Create(const CasEcm& ecm);
// Accessor methods.
uint8_t version() const override;
CryptoMode crypto_mode() const override;
bool rotation_enabled() const override;
size_t content_iv_size() const override;
uint8_t age_restriction() const override;
std::vector<uint8_t> entitlement_key_id(KeySlotId id) const override;
std::vector<uint8_t> content_key_id(KeySlotId id) const override;
std::vector<uint8_t> wrapped_key_data(KeySlotId id) const override;
std::vector<uint8_t> wrapped_key_iv(KeySlotId id) const override;
std::vector<uint8_t> content_iv(KeySlotId id) const override;
bool has_fingerprinting() const override;
video_widevine::Fingerprinting fingerprinting() const override;
bool has_service_blocking() const override;
video_widevine::ServiceBlocking service_blocking() const override;
// The serialized payload that the signature is calculated on.
std::string ecm_serialized_payload() const override;
std::string signature() const override;
private:
// Constructs an EcmParserV3 using |ecm|.
EcmParserV3(video_widevine::SignedEcmPayload signed_ecm_payload,
video_widevine::EcmPayload ecm_payload);
video_widevine::SignedEcmPayload signed_ecm_payload_;
video_widevine::EcmPayload ecm_payload_;
};
} // namespace wvcas
#endif // ECM_PARSER_V3_H

View File

@@ -7,11 +7,13 @@
#include <memory>
#include <mutex>
#include <set>
#include <string>
#include "cas_types.h"
#include "crypto_session.h"
#include "ecm_parser.h"
#include "media_cas.pb.h"
namespace wvcas {
@@ -45,7 +47,7 @@ class WidevineCasSession {
virtual ~WidevineCasSession();
CasStatus initialize(std::shared_ptr<CryptoSession> crypto_session,
uint32_t* session_id);
CasEventListener* event_listener, uint32_t* session_id);
// Get the current key information. This method will be used by a descrambler
// plugin to obtain the current key information.
@@ -80,6 +82,13 @@ class WidevineCasSession {
std::shared_ptr<CryptoSession> crypto_session_;
// Id of the entitled key session in OEMCrypto associated with this session.
uint32_t key_session_id_;
CasEventListener* event_listener_ = nullptr;
// Fingerprinting events sent in processing last ECM/EMM. Used to avoid
// sending a same event again.
std::vector<uint8_t> last_fingerprinting_message_;
// Service blocking events sent in processing last ECM/EMM. Used to avoid
// sending a same event again.
std::vector<uint8_t> last_service_blocking_message_;
};
} // namespace wvcas

View File

@@ -112,6 +112,11 @@ class WidevineCasPlugin : public CasPlugin, public CasEventListener {
void OnLicenseExpiration() override;
void OnAgeRestrictionUpdated(const WvCasSessionId& sessionId,
uint8_t ecm_age_restriction) override;
void OnSessionFingerprintingUpdated(const WvCasSessionId& sessionId,
const CasData& fingerprinting) override;
void OnSessionServiceBlockingUpdated(
const WvCasSessionId& sessionId,
const CasData& service_blocking) override;
// Choose to use |callback_| or |callback_ext_| to send back information.
// |sessionId| is ignored if |callback_ext_| is null,

View File

@@ -1018,4 +1018,20 @@ void CasLicense::OnAgeRestrictionUpdated(const WvCasSessionId& sessionId,
event_listener_->OnAgeRestrictionUpdated(sessionId, ecm_age_restriction);
}
}
void CasLicense::OnSessionFingerprintingUpdated(const WvCasSessionId& sessionId,
const CasData& fingerprinting) {
if (event_listener_ != nullptr) {
event_listener_->OnSessionFingerprintingUpdated(sessionId, fingerprinting);
}
}
void CasLicense::OnSessionServiceBlockingUpdated(
const WvCasSessionId& sessionId, const CasData& service_blocking) {
if (event_listener_ != nullptr) {
event_listener_->OnSessionServiceBlockingUpdated(sessionId,
service_blocking);
}
}
} // namespace wvcas

View File

@@ -85,39 +85,6 @@ void FillEntitledContentKeyObjectFromKeyData(
dest->cipher_mode = CipherModeFromKeyData(src.cipher_mode);
}
// Increment the IV based on the number of encrypted block. IV size is assumed
// to be 16 bytes.
static constexpr uint32_t kIvSizeBytesBytes = 16;
static constexpr uint32_t kCencIvSize = 8;
static const uint32_t kAesBlockSizeBytes = 16;
bool Ctr128Add(size_t block_count, uint8_t* counter) {
if (counter == nullptr) return false;
if (0 == block_count) return true;
uint8_t carry = 0;
uint8_t n = kIvSizeBytesBytes - 1;
// Update the counter one byte at a time.
while (n >= kCencIvSize) {
// Grab a single byte of the block_count.
uint32_t temp = block_count & 0xff;
// Add the corresponding byte from the counter value.
temp += counter[n];
// Add in the carry.
temp += carry;
// Write back the updated counter byte and set the carry value as needed.
counter[n] = temp & 0xff;
carry = (temp & 0x100) ? 1 : 0;
// Update block_count and set the counter index for the next byte.
block_count = block_count >> 8;
n--;
// Early exit if nothing to do.
if (!block_count && !carry) {
break;
}
}
return true;
}
} // namespace
shared_mutex CryptoLock::static_field_mutex_;

View File

@@ -4,29 +4,17 @@
#include "ecm_parser.h"
#include <arpa/inet.h>
#include <algorithm>
#include "ecm_parser_v2.h"
#include "ecm_parser_v3.h"
#include "log.h"
namespace wvcas {
namespace {
// ECM constants
constexpr uint8_t kSequenceCountMask = 0xF8; // Mode bits 3..7
constexpr uint8_t kCryptoModeFlags = (0x3 << 1); // Mode bits 1..2
constexpr uint8_t kCryptoModeFlagsV2 = (0xF << 1); // Mode bits 1..4
constexpr uint8_t kRotationFlag = (0x1 << 0); // Mode bit 0
constexpr uint8_t kContentIVSizeFlag = (0x1 << 6);
constexpr uint8_t kAgeRestrictionMask = (0x1F << 1);
constexpr size_t kEntitlementKeyIDSizeBytes = 16;
constexpr size_t kContentKeyIDSizeBytes = 16;
constexpr size_t kContentKeyDataSizeBytes = 16;
constexpr size_t kWrappedKeyIVSizeBytes = 16;
// Size is either 8 or 16 bytes, depending on ContentIVSize flag.
constexpr size_t kContentKeyMaxIVSizeBytes = 16;
// 2 bytes cas id, 1 byte version.
constexpr int kEcmHeaderSize = 3;
constexpr int kCasIdIndex = 0;
constexpr int kVersionIndex = 2;
// Legacy Widevine CAS ID
constexpr uint16_t kWidevineCasId = 0x4AD4;
@@ -43,8 +31,6 @@ constexpr size_t kSectionHeaderSize = 3;
constexpr size_t kSectionHeaderWithPointerSize = 4;
constexpr uint8_t kPointerFieldZero = 0x00;
constexpr size_t kMaxTsPayloadSizeBytes = 184;
// Returns the possible starting index of ECM. It assumes the pointer field will
// always set to 0, if present.
int find_ecm_start_index(const CasEcm& cas_ecm) {
@@ -65,183 +51,34 @@ int find_ecm_start_index(const CasEcm& cas_ecm) {
} // namespace
#pragma pack(push, 1) // No padding in ecm struct definition.
struct EcmKeyData {
const uint8_t entitlement_key_id[kEntitlementKeyIDSizeBytes];
const uint8_t content_key_id[kContentKeyIDSizeBytes];
const uint8_t control_word[kContentKeyDataSizeBytes];
const uint8_t control_word_iv[kWrappedKeyIVSizeBytes];
// Actual size can be either 8 or 16 bytes.
const uint8_t content_iv[kContentKeyMaxIVSizeBytes];
};
struct EcmDescriptor {
const uint16_t ca_id;
const uint8_t version;
const uint8_t flags_cipher_rotation;
const uint8_t flags_iv_age;
};
static_assert((sizeof(EcmDescriptor) + 2 * sizeof(EcmKeyData)) <=
kMaxTsPayloadSizeBytes,
"Maximum possible ecm size is larger than a ts payload");
#pragma pack(pop) // Revert padding value to previous.
EcmParser::EcmParser(const CasEcm& ecm) : ecm_(ecm) {}
size_t EcmParser::key_data_size() const {
return sizeof(EcmKeyData) + content_iv_size() - kContentKeyMaxIVSizeBytes;
}
bool EcmParser::is_valid_size() const {
size_t expected_size =
sizeof(EcmDescriptor) + key_data_size() * (rotation_enabled() ? 2 : 1);
// Parser always receives entire ts payload of 184 bytes.
return ecm_.size() >= expected_size;
}
const EcmKeyData* EcmParser::key_slot_data(KeySlotId id) const {
// ECM descriptor is followed by either one or two ECM key data.
size_t key_data_offset = sizeof(EcmDescriptor);
if (rotation_enabled()) {
if (id == KeySlotId::kOddKeySlot) {
key_data_offset += key_data_size();
} else if (id != KeySlotId::kEvenKeySlot) {
return nullptr;
}
} else {
// No rotation enabled.
if (id != KeySlotId::kEvenKeySlot) {
return nullptr;
}
}
return reinterpret_cast<const EcmKeyData*>(&ecm_[key_data_offset]);
}
bool EcmParser::create(const CasEcm& cas_ecm,
std::unique_ptr<const EcmParser>* parser) {
if (parser == nullptr) {
return false;
}
std::unique_ptr<const EcmParser> EcmParser::Create(const CasEcm& cas_ecm) {
// Detect and strip optional section header.
int offset = find_ecm_start_index(cas_ecm);
if (offset < 0 || (static_cast<int>(cas_ecm.size()) - offset <
static_cast<int>(sizeof(EcmDescriptor)))) {
return false;
const int offset = find_ecm_start_index(cas_ecm);
if (offset < 0 ||
(offset + kEcmHeaderSize > static_cast<int>(cas_ecm.size()))) {
LOGE("Unable to find start of ECM");
return nullptr;
}
const CasEcm ecm(cas_ecm.begin() + offset, cas_ecm.end());
// Reconfirm ecm data should start with valid Widevine CAS ID.
uint16_t cas_id_val = ntohs(*reinterpret_cast<const uint16_t*>(ecm.data()));
// Confirm ecm data starts with valid Widevine CAS ID.
uint16_t cas_id_val = (ecm[kCasIdIndex] << 8) | ecm[kCasIdIndex + 1];
if (cas_id_val != kWidevineCasId &&
(cas_id_val < kWidevineNewCasIdLowerBound ||
cas_id_val > kWidevineNewCasIdUpperBound)) {
LOGE("Supported Widevine CAS IDs not found at the start of ECM. Found: %u",
cas_id_val);
return false;
return nullptr;
}
// Using 'new' to access a non-public constructor.
std::unique_ptr<const EcmParser> new_parser =
std::unique_ptr<const EcmParser>(new EcmParser(ecm));
if (!new_parser->is_valid_size()) {
return false;
if (ecm[kVersionIndex] <= 2) {
std::unique_ptr<const EcmParserV2> parser;
if (!EcmParserV2::create(ecm, &parser)) {
return nullptr;
}
*parser = std::move(new_parser);
return true;
return parser;
} else {
return EcmParserV3::Create(ecm);
}
uint8_t EcmParser::version() const {
const EcmDescriptor* ecm = reinterpret_cast<const EcmDescriptor*>(&ecm_[0]);
return ecm->version;
}
uint8_t EcmParser::sequence_count() const {
if (version() == 1) {
const EcmDescriptor* ecm = reinterpret_cast<const EcmDescriptor*>(&ecm_[0]);
return (ecm->flags_cipher_rotation & kSequenceCountMask) >> 3;
}
return 0;
}
CryptoMode EcmParser::crypto_mode() const {
const EcmDescriptor* ecm = reinterpret_cast<const EcmDescriptor*>(&ecm_[0]);
if (version() == 1) {
return static_cast<CryptoMode>(
(ecm->flags_cipher_rotation & kCryptoModeFlags) >> 1);
}
return static_cast<CryptoMode>(
(ecm->flags_cipher_rotation & kCryptoModeFlagsV2) >> 1);
}
bool EcmParser::rotation_enabled() const {
const EcmDescriptor* ecm = reinterpret_cast<const EcmDescriptor*>(&ecm_[0]);
return (ecm->flags_cipher_rotation & kRotationFlag);
}
size_t EcmParser::content_iv_size() const {
const EcmDescriptor* ecm = reinterpret_cast<const EcmDescriptor*>(&ecm_[0]);
// Content key IV size is 8 bytes if flag is zero, and 16 if flag is set.
return (ecm->flags_iv_age & kContentIVSizeFlag) ? 16 : 8;
}
uint8_t EcmParser::age_restriction() const {
if (version() == 1) {
return 0;
}
const EcmDescriptor* ecm = reinterpret_cast<const EcmDescriptor*>(&ecm_[0]);
return (ecm->flags_iv_age & kAgeRestrictionMask) >> 1;
}
const std::vector<uint8_t> EcmParser::entitlement_key_id(KeySlotId id) const {
std::vector<uint8_t> ekey_id;
const EcmKeyData* key_data = key_slot_data(id);
if (key_data) {
ekey_id.assign(
&key_data->entitlement_key_id[0],
&key_data->entitlement_key_id[0] + kEntitlementKeyIDSizeBytes);
}
return ekey_id;
}
const std::vector<uint8_t> EcmParser::content_key_id(KeySlotId id) const {
std::vector<uint8_t> ckey_id;
const EcmKeyData* key_data = key_slot_data(id);
if (key_data) {
ckey_id.assign(&key_data->content_key_id[0],
&key_data->content_key_id[0] + kContentKeyIDSizeBytes);
}
return ckey_id;
}
const std::vector<uint8_t> EcmParser::wrapped_key_data(KeySlotId id) const {
std::vector<uint8_t> ckey_data;
const EcmKeyData* key_data = key_slot_data(id);
if (key_data) {
ckey_data.assign(&key_data->control_word[0],
&key_data->control_word[0] + kContentKeyDataSizeBytes);
}
return ckey_data;
}
const std::vector<uint8_t> EcmParser::wrapped_key_iv(KeySlotId id) const {
std::vector<uint8_t> iv;
const EcmKeyData* key_data = key_slot_data(id);
if (key_data) {
iv.assign(&key_data->control_word_iv[0],
&key_data->control_word_iv[0] + kWrappedKeyIVSizeBytes);
}
return iv;
}
const std::vector<uint8_t> EcmParser::content_iv(KeySlotId id) const {
std::vector<uint8_t> iv;
const EcmKeyData* key_data = key_slot_data(id);
if (key_data) {
iv.assign(&key_data->content_iv[0],
&key_data->content_iv[0] + content_iv_size());
}
return iv;
}
} // namespace wvcas

View File

@@ -0,0 +1,182 @@
// Copyright 2018 Google LLC. All Rights Reserved. This file and proprietary
// source code may only be used and distributed under the Widevine Master
// License Agreement.
#include "ecm_parser_v2.h"
#include <algorithm>
namespace wvcas {
namespace {
// ECM constants
constexpr uint8_t kCryptoModeFlags = (0x3 << 1); // Mode bits 1..2
constexpr uint8_t kCryptoModeFlagsV2 = (0xF << 1); // Mode bits 1..4
constexpr uint8_t kRotationFlag = (0x1 << 0); // Mode bit 0
constexpr uint8_t kContentIVSizeFlag = (0x1 << 6);
constexpr uint8_t kAgeRestrictionMask = (0x1F << 1);
constexpr size_t kEntitlementKeyIDSizeBytes = 16;
constexpr size_t kContentKeyIDSizeBytes = 16;
constexpr size_t kContentKeyDataSizeBytes = 16;
constexpr size_t kWrappedKeyIVSizeBytes = 16;
// Size is either 8 or 16 bytes, depending on ContentIVSize flag.
constexpr size_t kContentKeyMaxIVSizeBytes = 16;
constexpr size_t kMaxTsPayloadSizeBytes = 184;
} // namespace
#pragma pack(push, 1) // No padding in ecm struct definition.
struct EcmKeyData {
const uint8_t entitlement_key_id[kEntitlementKeyIDSizeBytes];
const uint8_t content_key_id[kContentKeyIDSizeBytes];
const uint8_t control_word[kContentKeyDataSizeBytes];
const uint8_t control_word_iv[kWrappedKeyIVSizeBytes];
// Actual size can be either 8 or 16 bytes.
const uint8_t content_iv[kContentKeyMaxIVSizeBytes];
};
struct EcmDescriptor {
const uint16_t ca_id;
const uint8_t version;
const uint8_t flags_cipher_rotation;
const uint8_t flags_iv_age;
};
static_assert((sizeof(EcmDescriptor) + 2 * sizeof(EcmKeyData)) <=
kMaxTsPayloadSizeBytes,
"Maximum possible ecm size is larger than a ts payload");
#pragma pack(pop) // Revert padding value to previous.
EcmParserV2::EcmParserV2(const CasEcm& ecm) : ecm_(ecm) {}
size_t EcmParserV2::key_data_size() const {
return sizeof(EcmKeyData) + content_iv_size() - kContentKeyMaxIVSizeBytes;
}
bool EcmParserV2::is_valid_size() const {
size_t expected_size =
sizeof(EcmDescriptor) + key_data_size() * (rotation_enabled() ? 2 : 1);
// Parser always receives entire ts payload of 184 bytes.
return ecm_.size() >= expected_size;
}
const EcmKeyData* EcmParserV2::key_slot_data(KeySlotId id) const {
// ECM descriptor is followed by either one or two ECM key data.
size_t key_data_offset = sizeof(EcmDescriptor);
if (rotation_enabled()) {
if (id == KeySlotId::kOddKeySlot) {
key_data_offset += key_data_size();
} else if (id != KeySlotId::kEvenKeySlot) {
return nullptr;
}
} else {
// No rotation enabled.
if (id != KeySlotId::kEvenKeySlot) {
return nullptr;
}
}
return reinterpret_cast<const EcmKeyData*>(&ecm_[key_data_offset]);
}
bool EcmParserV2::create(const CasEcm& cas_ecm,
std::unique_ptr<const EcmParserV2>* parser) {
if (parser == nullptr) {
return false;
}
// Using 'new' to access a non-public constructor.
auto new_parser =
std::unique_ptr<const EcmParserV2>(new EcmParserV2(cas_ecm));
if (!new_parser->is_valid_size()) {
return false;
}
*parser = std::move(new_parser);
return true;
}
uint8_t EcmParserV2::version() const {
const EcmDescriptor* ecm = reinterpret_cast<const EcmDescriptor*>(&ecm_[0]);
return ecm->version;
}
CryptoMode EcmParserV2::crypto_mode() const {
const EcmDescriptor* ecm = reinterpret_cast<const EcmDescriptor*>(&ecm_[0]);
if (version() == 1) {
return static_cast<CryptoMode>(
(ecm->flags_cipher_rotation & kCryptoModeFlags) >> 1);
}
return static_cast<CryptoMode>(
(ecm->flags_cipher_rotation & kCryptoModeFlagsV2) >> 1);
}
bool EcmParserV2::rotation_enabled() const {
const EcmDescriptor* ecm = reinterpret_cast<const EcmDescriptor*>(&ecm_[0]);
return (ecm->flags_cipher_rotation & kRotationFlag);
}
size_t EcmParserV2::content_iv_size() const {
const EcmDescriptor* ecm = reinterpret_cast<const EcmDescriptor*>(&ecm_[0]);
// Content key IV size is 8 bytes if flag is zero, and 16 if flag is set.
return (ecm->flags_iv_age & kContentIVSizeFlag) ? 16 : 8;
}
uint8_t EcmParserV2::age_restriction() const {
if (version() == 1) {
return 0;
}
const EcmDescriptor* ecm = reinterpret_cast<const EcmDescriptor*>(&ecm_[0]);
return (ecm->flags_iv_age & kAgeRestrictionMask) >> 1;
}
std::vector<uint8_t> EcmParserV2::entitlement_key_id(KeySlotId id) const {
std::vector<uint8_t> ekey_id;
const EcmKeyData* key_data = key_slot_data(id);
if (key_data) {
ekey_id.assign(
&key_data->entitlement_key_id[0],
&key_data->entitlement_key_id[0] + kEntitlementKeyIDSizeBytes);
}
return ekey_id;
}
std::vector<uint8_t> EcmParserV2::content_key_id(KeySlotId id) const {
std::vector<uint8_t> ckey_id;
const EcmKeyData* key_data = key_slot_data(id);
if (key_data) {
ckey_id.assign(&key_data->content_key_id[0],
&key_data->content_key_id[0] + kContentKeyIDSizeBytes);
}
return ckey_id;
}
std::vector<uint8_t> EcmParserV2::wrapped_key_data(KeySlotId id) const {
std::vector<uint8_t> ckey_data;
const EcmKeyData* key_data = key_slot_data(id);
if (key_data) {
ckey_data.assign(&key_data->control_word[0],
&key_data->control_word[0] + kContentKeyDataSizeBytes);
}
return ckey_data;
}
std::vector<uint8_t> EcmParserV2::wrapped_key_iv(KeySlotId id) const {
std::vector<uint8_t> iv;
const EcmKeyData* key_data = key_slot_data(id);
if (key_data) {
iv.assign(&key_data->control_word_iv[0],
&key_data->control_word_iv[0] + kWrappedKeyIVSizeBytes);
}
return iv;
}
std::vector<uint8_t> EcmParserV2::content_iv(KeySlotId id) const {
std::vector<uint8_t> iv;
const EcmKeyData* key_data = key_slot_data(id);
if (key_data) {
iv.assign(&key_data->content_iv[0],
&key_data->content_iv[0] + content_iv_size());
}
return iv;
}
} // namespace wvcas

View File

@@ -0,0 +1,174 @@
// Copyright 2018 Google LLC. All Rights Reserved. This file and proprietary
// source code may only be used and distributed under the Widevine Master
// License Agreement.
#include "ecm_parser_v3.h"
#include <utility>
#include "log.h"
namespace wvcas {
namespace {
using video_widevine::EcmKeyData;
using video_widevine::EcmMetaData;
using video_widevine::EcmPayload;
using video_widevine::SignedEcmPayload;
constexpr int kEcmHeaderSize = 3;
constexpr uint8_t kEcmVersion = 3;
// 16 bytes fixed content key ids
constexpr uint8_t kEvenContentKeyId[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00};
constexpr uint8_t kOddContentKeyId[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x01};
CryptoMode ConvertProtoCipherMode(EcmMetaData::CipherMode cipher_mode) {
switch (cipher_mode) {
case EcmMetaData::AES_CBC:
return CryptoMode::kAesCBC;
case EcmMetaData::AES_CTR:
return CryptoMode::kAesCTR;
case EcmMetaData::DVB_CSA2:
return CryptoMode::kDvbCsa2;
case EcmMetaData::DVB_CSA3:
return CryptoMode::kDvbCsa3;
case EcmMetaData::AES_OFB:
return CryptoMode::kAesOFB;
case EcmMetaData::AES_SCTE52:
return CryptoMode::kAesSCTE;
case EcmMetaData::UNSPECIFIED:
default:
return CryptoMode::kInvalid;
}
}
} // namespace
EcmParserV3::EcmParserV3(SignedEcmPayload signed_ecm_payload,
EcmPayload ecm_payload)
: signed_ecm_payload_(std::move(signed_ecm_payload)),
ecm_payload_(std::move(ecm_payload)) {}
std::unique_ptr<const EcmParserV3> EcmParserV3::Create(const CasEcm& cas_ecm) {
if (cas_ecm.size() <= kEcmHeaderSize) {
LOGE("ECM is too short. Size: %u", cas_ecm.size());
return nullptr;
}
SignedEcmPayload signed_ecm_payload;
// The 3 byte ecm header is ignored.
if (!signed_ecm_payload.ParseFromArray(cas_ecm.data() + kEcmHeaderSize,
cas_ecm.size() - kEcmHeaderSize)) {
LOGE("Unable to parse signed ecm payload");
return nullptr;
}
EcmPayload ecm_payload;
if (!ecm_payload.ParseFromString(signed_ecm_payload.serialized_payload())) {
LOGE("Unable to parse ecm payload");
return nullptr;
}
// Using 'new' to access a non-public constructor.
return std::unique_ptr<const EcmParserV3>(
new EcmParserV3(signed_ecm_payload, ecm_payload));
}
uint8_t EcmParserV3::version() const { return kEcmVersion; }
CryptoMode EcmParserV3::crypto_mode() const {
return ConvertProtoCipherMode(ecm_payload_.meta_data().cipher_mode());
}
bool EcmParserV3::rotation_enabled() const {
return ecm_payload_.has_odd_key_data();
}
size_t EcmParserV3::content_iv_size() const {
return ecm_payload_.even_key_data().content_iv().size();
}
uint8_t EcmParserV3::age_restriction() const {
return static_cast<uint8_t>(ecm_payload_.meta_data().age_restriction());
}
std::vector<uint8_t> EcmParserV3::entitlement_key_id(KeySlotId id) const {
// Use the even entitlement_key_id if the odd one is empty (omitted).
const EcmKeyData& key_data =
id == KeySlotId::kOddKeySlot &&
!ecm_payload_.odd_key_data().entitlement_key_id().empty()
? ecm_payload_.odd_key_data()
: ecm_payload_.even_key_data();
return {key_data.entitlement_key_id().begin(),
key_data.entitlement_key_id().end()};
}
std::vector<uint8_t> EcmParserV3::content_key_id(KeySlotId id) const {
if (id == KeySlotId::kEvenKeySlot && ecm_payload_.has_even_key_data()) {
return {kEvenContentKeyId, kEvenContentKeyId + sizeof(kEvenContentKeyId)};
} else if (id == KeySlotId::kOddKeySlot && ecm_payload_.has_odd_key_data()) {
return {kOddContentKeyId, kOddContentKeyId + sizeof(kOddContentKeyId)};
}
return {};
}
std::vector<uint8_t> EcmParserV3::wrapped_key_data(KeySlotId id) const {
const EcmKeyData& key_data = id == KeySlotId::kOddKeySlot
? ecm_payload_.odd_key_data()
: ecm_payload_.even_key_data();
return {key_data.wrapped_key_data().begin(),
key_data.wrapped_key_data().end()};
}
std::vector<uint8_t> EcmParserV3::wrapped_key_iv(KeySlotId id) const {
// Use the even wrapped_key_iv if the odd one is empty (omitted).
const EcmKeyData& key_data =
id == KeySlotId::kOddKeySlot &&
!ecm_payload_.odd_key_data().wrapped_key_iv().empty()
? ecm_payload_.odd_key_data()
: ecm_payload_.even_key_data();
return {key_data.wrapped_key_iv().begin(), key_data.wrapped_key_iv().end()};
}
std::vector<uint8_t> EcmParserV3::content_iv(KeySlotId id) const {
// Use the even content_iv if the odd one is empty (omitted).
const EcmKeyData& key_data =
id == KeySlotId::kOddKeySlot &&
!ecm_payload_.odd_key_data().content_iv().empty()
? ecm_payload_.odd_key_data()
: ecm_payload_.even_key_data();
return {key_data.content_iv().begin(), key_data.content_iv().end()};
}
bool EcmParserV3::has_fingerprinting() const {
return ecm_payload_.has_fingerprinting();
}
video_widevine::Fingerprinting EcmParserV3::fingerprinting() const {
return ecm_payload_.fingerprinting();
}
bool EcmParserV3::has_service_blocking() const {
return ecm_payload_.has_service_blocking();
}
video_widevine::ServiceBlocking EcmParserV3::service_blocking() const {
return ecm_payload_.service_blocking();
}
std::string EcmParserV3::ecm_serialized_payload() const {
return signed_ecm_payload_.serialized_payload();
}
std::string EcmParserV3::signature() const {
return signed_ecm_payload_.signature();
}
} // namespace wvcas

View File

@@ -190,7 +190,7 @@ CasStatus WidevineCas::openSession(WvCasSessionId* sessionId) {
CasSessionPtr session = newCasSession();
CasStatus status = session->initialize(
crypto_session_, reinterpret_cast<uint32_t*>(sessionId));
crypto_session_, event_listener_, reinterpret_cast<uint32_t*>(sessionId));
if (CasStatusCode::kNoError != status.status_code()) {
return status;
}

View File

@@ -3,10 +3,13 @@
// License Agreement.
#include "widevine_cas_session.h"
#include <cas_events.h>
#include <cstring>
#include <memory>
#include "log.h"
#include "media_cas.pb.h"
namespace wvcas {
@@ -25,7 +28,8 @@ WidevineCasSession::~WidevineCasSession() {
}
CasStatus WidevineCasSession::initialize(
std::shared_ptr<CryptoSession> crypto_session, uint32_t* session_id) {
std::shared_ptr<CryptoSession> crypto_session,
CasEventListener* event_listener, uint32_t* session_id) {
if (crypto_session == nullptr || session_id == nullptr) {
LOGE("WidevineCasSession::initialize: missing input parameters");
return CasStatus(CasStatusCode::kInvalidParameter,
@@ -34,6 +38,7 @@ CasStatus WidevineCasSession::initialize(
crypto_session_ = std::move(crypto_session);
crypto_session_->CreateEntitledKeySession(&key_session_id_);
*session_id = key_session_id_;
event_listener_ = event_listener;
return CasStatusCode::kNoError;
}
@@ -49,7 +54,7 @@ CasStatus WidevineCasSession::processEcm(const CasEcm& ecm,
if (ecm != current_ecm_) {
LOGD("WidevineCasSession::processEcm: received new ecm");
std::unique_ptr<const EcmParser> ecm_parser = getEcmParser(ecm);
if (!ecm_parser) {
if (ecm_parser == nullptr) {
return CasStatus(CasStatusCode::kInvalidParameter, "invalid ecm");
}
@@ -61,6 +66,46 @@ CasStatus WidevineCasSession::processEcm(const CasEcm& ecm,
return CasStatus(CasStatusCode::kAccessDeniedByParentalControl, message);
}
std::vector<uint8_t> message;
if (!ecm_parser->fingerprinting().control().empty()) {
message.push_back(static_cast<uint8_t>(
SessionFingerprintingFieldType::FINGERPRINTING_CONTROL));
const std::string control = ecm_parser->fingerprinting().control();
message.push_back((control.size() >> 8) & 0xff);
message.push_back(control.size() & 0xff);
message.insert(message.end(), control.begin(), control.end());
}
if (message != last_fingerprinting_message_) {
last_fingerprinting_message_ = message;
if (event_listener_ == nullptr) {
LOGW("event_listener is null. Fingerprinting info ignored!");
} else {
event_listener_->OnSessionFingerprintingUpdated(key_session_id_,
message);
}
}
message.clear();
for (int i = 0; i < ecm_parser->service_blocking().device_groups_size();
++i) {
message.push_back(static_cast<uint8_t>(
SessionServiceBlockingFieldType::SERVICE_BLOCKING_DEVICE_GROUP));
const std::string device_group =
ecm_parser->service_blocking().device_groups(i);
message.push_back((device_group.size() >> 8) & 0xff);
message.push_back(device_group.size() & 0xff);
message.insert(message.end(), device_group.begin(), device_group.end());
}
if (message != last_service_blocking_message_) {
last_service_blocking_message_ = message;
if (event_listener_ == nullptr) {
LOGW("event_listener is null. Service blocking info ignored!");
} else {
event_listener_->OnSessionServiceBlockingUpdated(key_session_id_,
message);
}
}
bool load_even = false;
bool load_odd = false;
@@ -118,11 +163,7 @@ CasStatus WidevineCasSession::processEcm(const CasEcm& ecm,
std::unique_ptr<const EcmParser> WidevineCasSession::getEcmParser(
const CasEcm& ecm) const {
std::unique_ptr<const EcmParser> new_ecm_parser;
if (!EcmParser::create(ecm, &new_ecm_parser)) {
return std::unique_ptr<const EcmParser>();
}
return new_ecm_parser;
return EcmParser::Create(ecm);
}
const char* WidevineCasSession::securityLevel() {

View File

@@ -461,6 +461,33 @@ void WidevineCasPlugin::OnAgeRestrictionUpdated(const WvCasSessionId& sessionId,
sessionId, &ecm_age_restriction, 1, &android_session_id);
}
void WidevineCasPlugin::OnSessionFingerprintingUpdated(
const WvCasSessionId& sessionId, const CasData& fingerprinting) {
LOGI("OnSessionFingerprintingUpdated");
const CasSessionId& android_session_id =
widevineSessionIdToAndroid(sessionId);
CallBack(reinterpret_cast<void*>(app_data_),
SESSION_FINGERPRINTING_INFO, /*arg=*/
0,
fingerprinting.empty() ? nullptr
: const_cast<uint8_t*>(&fingerprinting[0]),
fingerprinting.size(), &android_session_id);
}
void WidevineCasPlugin::OnSessionServiceBlockingUpdated(
const WvCasSessionId& sessionId, const CasData& service_blocking) {
LOGI("OnSessionServiceBlockingUpdated");
const CasSessionId& android_session_id =
widevineSessionIdToAndroid(sessionId);
CallBack(reinterpret_cast<void*>(app_data_),
SESSION_SERVICE_BLOCKING_INFO, /*arg=*/
0,
service_blocking.empty()
? nullptr
: const_cast<uint8_t*>(&service_blocking[0]),
service_blocking.size(), &android_session_id);
}
void WidevineCasPlugin::CallBack(void* appData, int32_t event, int32_t arg,
uint8_t* data, size_t size,
const CasSessionId* sessionId) const {

View File

@@ -16,3 +16,83 @@ message CaDescriptorPrivateData {
// Content ID.
optional bytes content_id = 2;
}
// Widevine fingerprinting.
message Fingerprinting {
// Channels that will be applied with the controls.
repeated bytes channels = 1;
// Fingerprinting controls are opaque to Widevine.
optional bytes control = 2;
}
// Widevine service blocking.
message ServiceBlocking {
// Channels that will be blocked.
repeated bytes channels = 1;
// Device groups that will be blocked. Group definition is opaque to Widevine.
repeated bytes device_groups = 2;
// Blocking start time in seconds since epoch. Start time is "immediate" if
// this field is not set.
optional int64 start_time_sec = 3;
// Required. Blocking end time in seconds since epoch.
optional int64 end_time_sec = 4;
}
message EcmMetaData {
enum CipherMode {
UNSPECIFIED = 0;
AES_CBC = 1;
AES_CTR = 2;
DVB_CSA2 = 3;
DVB_CSA3 = 4;
AES_OFB = 5;
AES_SCTE52 = 6;
}
// Required. The cipher mode used to encrypt/decrypt the content.
optional CipherMode cipher_mode = 1;
// Optional. The minimum age required to watch the content. The value
// represents actual age, with 0 means no restriction.
optional uint32 age_restriction = 2 [default = 0];
}
message EcmKeyData {
// The wrapped content key data (aka control word).
// Required.
optional bytes wrapped_key_data = 1;
// The ID of the entitlement key used to wrap the content key. The secure key
// data associated with this ID is held by the license server. The client gets
// the key from the license server through a license request.
// Required for the even key data, optional for the odd key data if it is the
// same as the even key data.
optional bytes entitlement_key_id = 2;
// IV for decrypting the wrapped_key_data.
// Required for the even key data, optional for the odd key data if it is the
// same as the even key data.
optional bytes wrapped_key_iv = 3;
// IV for decrypting the content stream.
// Optional. If not specified in the even key data, 8 bytes 0x00 will be used;
// If not specified in the odd key data, the same content iv in the even key
// data will be used.
optional bytes content_iv = 4;
}
message EcmPayload {
// Required. Meta info carried by the ECM.
optional EcmMetaData meta_data = 1;
// Required. The key data for the even slot.
optional EcmKeyData even_key_data = 2;
// Optional. The key data for the odd slot if key rotation is enabled.
optional EcmKeyData odd_key_data = 3;
// Optional. Widevine fingerprinting information.
optional Fingerprinting fingerprinting = 4;
// Optional. Widevine service blocking information.
optional ServiceBlocking service_blocking = 5;
}
// The payload field for an ECM with signature.
message SignedEcmPayload {
// Serialized EcmPayload.
optional bytes serialized_payload = 1;
// ECC (Elliptic Curve Cryptography) signature of |serialized_payload|.
optional bytes signature = 2;
}

View File

@@ -6,6 +6,8 @@ cc_binary {
"src/cas_license_test.cpp",
"src/crypto_session_test.cpp",
"src/ecm_parser_test.cpp",
"src/ecm_parser_v2_test.cpp",
"src/ecm_parser_v3_test.cpp",
"src/test_properties.cpp",
"src/widevine_cas_session_test.cpp",
"src/cas_session_map_test.cpp",

View File

@@ -4,49 +4,23 @@
#include "ecm_parser.h"
#include <arpa/inet.h>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <bitset>
#include <tuple>
#include "media_cas.pb.h"
namespace wvcas {
namespace {
constexpr int kCasIdSizeBytes = 2;
constexpr int kModeSizeBytes = 1;
constexpr int kVersionSizeBytes = 1;
constexpr int kIVFlagsSizeBytes = 1;
constexpr int kEntitlementKeyIDSizeBytes = 16;
constexpr int kContentKeyIDSizeBytes = 16;
constexpr int kContentKeyDataSize = 16;
constexpr int kWrappedKeyIVSizeBytes = 16;
constexpr int kEcmHeaderSizeBytes = kCasIdSizeBytes + kVersionSizeBytes;
constexpr int kEcmVersion2 = 2;
constexpr int kEcmVersion3 = 3;
constexpr int kEcmDescriptorSizeBytes =
kCasIdSizeBytes + kModeSizeBytes + kVersionSizeBytes + kIVFlagsSizeBytes;
constexpr int kECMVersion = 2;
// The cipher mode flags field in the ECM V2 is 4 bits.
constexpr uint8_t kAESCBCCryptoModeFlagsVal = (0x0 << 1);
constexpr uint8_t kAESCTRCryptoModeFlagsVal = (0x1 << 1);
constexpr uint8_t kDvbCsa2CryptoModeFlagsVal = (0x2 << 1);
constexpr uint8_t kDvbCsa3CryptoModeFlagsVal = (0x3 << 1);
constexpr uint8_t kDvbOFBCryptoModeFlagsVal = (0x4 << 1);
constexpr uint8_t kDvbSCTECryptoModeFlagsVal = (0x5 << 1);
constexpr uint8_t kRotationFlag = (0x1 << 0);
constexpr uint8_t kContentIVSizeFlag = (0x1 << 6);
constexpr uint8_t kEntitlementKeyIDFill = '1';
constexpr uint8_t kEvenContentKeyIDFill = '2';
constexpr uint8_t kEvenContentKeyDataFill = '3';
constexpr uint8_t kEvenWrappedKeyIVFill = '4';
constexpr uint8_t kEvenContentKeyIVFill = '5';
constexpr uint8_t kOddContentKeyIDFill = '6';
constexpr uint8_t kOddContentKeyDataFill = '7';
constexpr uint8_t kOddWrappedKeyIVFill = '8';
constexpr uint8_t kOddContentKeyIVFill = '9';
constexpr size_t kMaxEcmSizeBytes = 184;
constexpr size_t kValidEcmV2SizeBytes = 165;
constexpr uint16_t kSectionHeader1 = 0x80;
constexpr uint16_t kSectionHeader2 = 0x81;
@@ -56,242 +30,56 @@ constexpr uint16_t kWidevineCasId = 0x4AD4;
// New Widevine CAS IDs 0x56C0 to 0x56C9 (all inclusive).
constexpr uint16_t kWidevineNewCasIdLowerBound = 0x56C0;
constexpr uint16_t kWidevineNewCasIdUpperBound = 0x56C9;
} // namespace
class EcmParserTest : public testing::Test {
protected:
void SetUp() {
BuildEcm(kWidevineCasId, /*with_rotation=*/true, /*content_iv_flag=*/false);
std::vector<uint8_t> BuildEcm(uint16_t cas_id, uint8_t version) {
std::vector<uint8_t> ecm_data;
ecm_data.resize(kEcmHeaderSizeBytes);
ecm_data[0] = cas_id >> 8;
ecm_data[1] = cas_id & 0xff;
ecm_data[2] = version;
// Put some dummy data to make the ECM a valid one.
if (version <= 2) {
ecm_data.resize(kValidEcmV2SizeBytes);
} else {
video_widevine::EcmPayload ecm_payload;
ecm_payload.mutable_even_key_data()->set_entitlement_key_id("123");
video_widevine::SignedEcmPayload signed_ecm_payload;
signed_ecm_payload.set_serialized_payload(ecm_payload.SerializeAsString());
ecm_data.resize(ecm_data.size() + signed_ecm_payload.ByteSize());
signed_ecm_payload.SerializeToArray(ecm_data.data() + kEcmHeaderSizeBytes,
signed_ecm_payload.ByteSize());
}
size_t ContentKeyIVSize(bool content_iv_flag);
size_t CalculateEcmSize(bool with_rotation, bool content_iv_flag = false);
void BuildEcm(uint16_t cas_id, bool with_rotation, bool content_iv_flag);
std::vector<uint8_t> ecm_data_;
std::unique_ptr<const wvcas::EcmParser> parser_;
};
size_t EcmParserTest::ContentKeyIVSize(bool content_iv_flag) {
// Content key iv is 8 bytes if Content_IV flag is zero, and 16 bytes
// othersize.
return content_iv_flag ? 16 : 8;
return ecm_data;
}
size_t EcmParserTest::CalculateEcmSize(bool with_rotation,
bool content_iv_flag) {
size_t ecm_key_data_size =
kContentKeyIDSizeBytes + kContentKeyDataSize + kWrappedKeyIVSizeBytes +
kEntitlementKeyIDSizeBytes + ContentKeyIVSize(content_iv_flag);
return kEcmDescriptorSizeBytes + ecm_key_data_size * (with_rotation ? 2 : 1);
// Verifies ECM parser can be created with different version.
class EcmParserVersionTest : public testing::Test,
public ::testing::WithParamInterface<uint8_t> {};
TEST_P(EcmParserVersionTest, CreateSuccess) {
std::vector<uint8_t> ecm_data = BuildEcm(kWidevineCasId, GetParam());
ASSERT_TRUE(wvcas::EcmParser::Create(ecm_data) != nullptr);
}
void EcmParserTest::BuildEcm(uint16_t cas_id, bool with_rotation,
bool content_iv_flag) {
ecm_data_.clear();
ecm_data_.reserve(CalculateEcmSize(with_rotation, content_iv_flag));
ecm_data_.resize(kCasIdSizeBytes, 0);
ecm_data_[0] = cas_id >> 8;
ecm_data_[1] = cas_id & 0xff;
ecm_data_.resize(ecm_data_.size() + kVersionSizeBytes, kECMVersion);
ecm_data_.resize(ecm_data_.size() + kModeSizeBytes,
kAESCBCCryptoModeFlagsVal);
uint8_t iv_flag_value = content_iv_flag ? kContentIVSizeFlag : 0;
ecm_data_.resize(ecm_data_.size() + kIVFlagsSizeBytes, iv_flag_value);
ASSERT_EQ(kEcmDescriptorSizeBytes, ecm_data_.size());
// Even key fields.
ecm_data_.resize(ecm_data_.size() + kEntitlementKeyIDSizeBytes,
kEntitlementKeyIDFill);
ecm_data_.resize(ecm_data_.size() + kContentKeyIDSizeBytes,
kEvenContentKeyIDFill);
ecm_data_.resize(ecm_data_.size() + kContentKeyDataSize,
kEvenContentKeyDataFill);
ecm_data_.resize(ecm_data_.size() + kWrappedKeyIVSizeBytes,
kEvenWrappedKeyIVFill);
ecm_data_.resize(ecm_data_.size() + ContentKeyIVSize(content_iv_flag),
kEvenContentKeyIVFill);
ASSERT_EQ(CalculateEcmSize(false, content_iv_flag), ecm_data_.size());
if (with_rotation) {
// Entitlement key id field for odd key.
ecm_data_.resize(ecm_data_.size() + kEntitlementKeyIDSizeBytes,
kEntitlementKeyIDFill);
ecm_data_.resize(ecm_data_.size() + kContentKeyIDSizeBytes,
kOddContentKeyIDFill);
ecm_data_.resize(ecm_data_.size() + kContentKeyDataSize,
kOddContentKeyDataFill);
ecm_data_.resize(ecm_data_.size() + kWrappedKeyIVSizeBytes,
kOddWrappedKeyIVFill);
ecm_data_.resize(ecm_data_.size() + ContentKeyIVSize(content_iv_flag),
kOddContentKeyIVFill);
ASSERT_EQ(CalculateEcmSize(true, content_iv_flag), ecm_data_.size());
}
}
TEST_F(EcmParserTest, FieldsWithoutKeyRotation) {
bool content_key_iv_16b = false;
ecm_data_.resize(CalculateEcmSize(false, content_key_iv_16b));
ASSERT_TRUE(wvcas::EcmParser::create(ecm_data_, &parser_));
ASSERT_FALSE(parser_->rotation_enabled());
std::vector<uint8_t> test_data;
test_data.resize(kEntitlementKeyIDSizeBytes, kEntitlementKeyIDFill);
EXPECT_EQ(test_data,
parser_->entitlement_key_id(wvcas::KeySlotId::kEvenKeySlot));
test_data.clear();
test_data.resize(kContentKeyIDSizeBytes, kEvenContentKeyIDFill);
EXPECT_EQ(test_data, parser_->content_key_id(wvcas::KeySlotId::kEvenKeySlot));
test_data.clear();
test_data.resize(kContentKeyIDSizeBytes, kEvenContentKeyDataFill);
EXPECT_EQ(test_data,
parser_->wrapped_key_data(wvcas::KeySlotId::kEvenKeySlot));
test_data.clear();
test_data.resize(kWrappedKeyIVSizeBytes, kEvenWrappedKeyIVFill);
EXPECT_EQ(test_data, parser_->wrapped_key_iv(wvcas::KeySlotId::kEvenKeySlot));
test_data.clear();
test_data.resize(ContentKeyIVSize(content_key_iv_16b), kEvenContentKeyIVFill);
EXPECT_EQ(test_data, parser_->content_iv(wvcas::KeySlotId::kEvenKeySlot));
EXPECT_TRUE(parser_->content_key_id(wvcas::KeySlotId::kOddKeySlot).empty());
EXPECT_TRUE(parser_->wrapped_key_data(wvcas::KeySlotId::kOddKeySlot).empty());
EXPECT_TRUE(parser_->wrapped_key_iv(wvcas::KeySlotId::kOddKeySlot).empty());
EXPECT_TRUE(parser_->content_iv(wvcas::KeySlotId::kOddKeySlot).empty());
}
TEST_F(EcmParserTest, FieldsWithKeyRotation) {
ecm_data_[3] |= kRotationFlag;
ASSERT_TRUE(wvcas::EcmParser::create(ecm_data_, &parser_));
ASSERT_TRUE(parser_->rotation_enabled());
std::vector<uint8_t> test_data;
test_data.resize(kEntitlementKeyIDSizeBytes, kEntitlementKeyIDFill);
EXPECT_EQ(test_data,
parser_->entitlement_key_id(wvcas::KeySlotId::kEvenKeySlot));
test_data.clear();
test_data.resize(kContentKeyIDSizeBytes, kEvenContentKeyIDFill);
EXPECT_EQ(test_data, parser_->content_key_id(wvcas::KeySlotId::kEvenKeySlot));
test_data.clear();
test_data.resize(kContentKeyIDSizeBytes, kEvenContentKeyDataFill);
EXPECT_EQ(test_data,
parser_->wrapped_key_data(wvcas::KeySlotId::kEvenKeySlot));
test_data.clear();
test_data.resize(kWrappedKeyIVSizeBytes, kEvenWrappedKeyIVFill);
EXPECT_EQ(test_data, parser_->wrapped_key_iv(wvcas::KeySlotId::kEvenKeySlot));
test_data.clear();
bool content_key_iv_16b = false;
test_data.resize(ContentKeyIVSize(content_key_iv_16b), kEvenContentKeyIVFill);
EXPECT_EQ(test_data, parser_->content_iv(wvcas::KeySlotId::kEvenKeySlot));
test_data.clear();
test_data.resize(kContentKeyIDSizeBytes, kOddContentKeyIDFill);
EXPECT_EQ(test_data, parser_->content_key_id(wvcas::KeySlotId::kOddKeySlot));
test_data.clear();
test_data.resize(kContentKeyIDSizeBytes, kOddContentKeyDataFill);
EXPECT_EQ(test_data,
parser_->wrapped_key_data(wvcas::KeySlotId::kOddKeySlot));
test_data.clear();
test_data.resize(kWrappedKeyIVSizeBytes, kOddWrappedKeyIVFill);
EXPECT_EQ(test_data, parser_->wrapped_key_iv(wvcas::KeySlotId::kOddKeySlot));
test_data.clear();
test_data.resize(ContentKeyIVSize(content_key_iv_16b), kOddContentKeyIVFill);
EXPECT_EQ(test_data, parser_->content_iv(wvcas::KeySlotId::kOddKeySlot));
}
TEST_F(EcmParserTest, create) {
EXPECT_TRUE(wvcas::EcmParser::create(ecm_data_, &parser_));
ecm_data_.resize(4);
EXPECT_FALSE(wvcas::EcmParser::create(ecm_data_, &parser_));
ecm_data_.resize(4 + CalculateEcmSize(false));
EXPECT_TRUE(wvcas::EcmParser::create(ecm_data_, &parser_));
ecm_data_.resize(kMaxEcmSizeBytes);
EXPECT_TRUE(wvcas::EcmParser::create(ecm_data_, &parser_));
ecm_data_.resize(CalculateEcmSize(true));
EXPECT_TRUE(wvcas::EcmParser::create(ecm_data_, &parser_));
EXPECT_FALSE(wvcas::EcmParser::create(ecm_data_, nullptr));
ecm_data_.resize(CalculateEcmSize(true));
EXPECT_TRUE(wvcas::EcmParser::create(ecm_data_, &parser_));
EXPECT_FALSE(wvcas::EcmParser::create(ecm_data_, nullptr));
}
TEST_F(EcmParserTest, crypto_mode) {
ASSERT_TRUE(wvcas::EcmParser::create(ecm_data_, &parser_));
EXPECT_EQ(parser_->crypto_mode(), wvcas::CryptoMode::kAesCBC);
ecm_data_[3] = kAESCTRCryptoModeFlagsVal;
ASSERT_TRUE(wvcas::EcmParser::create(ecm_data_, &parser_));
EXPECT_EQ(parser_->crypto_mode(), wvcas::CryptoMode::kAesCTR);
ecm_data_[3] = kDvbCsa2CryptoModeFlagsVal;
ASSERT_TRUE(wvcas::EcmParser::create(ecm_data_, &parser_));
EXPECT_EQ(parser_->crypto_mode(), wvcas::CryptoMode::kDvbCsa2);
ecm_data_[3] = kDvbCsa3CryptoModeFlagsVal;
ASSERT_TRUE(wvcas::EcmParser::create(ecm_data_, &parser_));
EXPECT_EQ(parser_->crypto_mode(), wvcas::CryptoMode::kDvbCsa3);
ecm_data_[3] = kDvbOFBCryptoModeFlagsVal;
ASSERT_TRUE(wvcas::EcmParser::create(ecm_data_, &parser_));
EXPECT_EQ(parser_->crypto_mode(), wvcas::CryptoMode::kAesOFB);
ecm_data_[3] = kDvbSCTECryptoModeFlagsVal;
ASSERT_TRUE(wvcas::EcmParser::create(ecm_data_, &parser_));
EXPECT_EQ(parser_->crypto_mode(), wvcas::CryptoMode::kAesSCTE);
}
TEST_F(EcmParserTest, ContentKeyIVSizes) {
bool with_rotation = true;
bool iv_flag = false;
ecm_data_.resize(CalculateEcmSize(with_rotation, iv_flag));
ASSERT_TRUE(wvcas::EcmParser::create(ecm_data_, &parser_));
EXPECT_EQ(parser_->content_iv_size(), ContentKeyIVSize(iv_flag));
iv_flag = true;
ecm_data_[4] = kContentIVSizeFlag;
ecm_data_.resize(CalculateEcmSize(with_rotation, iv_flag));
ASSERT_TRUE(wvcas::EcmParser::create(ecm_data_, &parser_));
EXPECT_EQ(parser_->content_iv_size(), ContentKeyIVSize(iv_flag));
}
TEST_F(EcmParserTest, AgeRestriction) {
ASSERT_TRUE(wvcas::EcmParser::create(ecm_data_, &parser_));
EXPECT_EQ(0, parser_->age_restriction());
uint8_t age_restriction = 16;
ecm_data_[4] |= age_restriction << 1;
ASSERT_TRUE(wvcas::EcmParser::create(ecm_data_, &parser_));
EXPECT_EQ(age_restriction, parser_->age_restriction());
}
INSTANTIATE_TEST_SUITE_P(EcmParserVersionTest, EcmParserVersionTest,
::testing::Values(kEcmVersion2, kEcmVersion3));
// Verifies CAS ID returned by the parser must be expected ones.
class EcmParserCasIdTest
: public EcmParserTest,
public ::testing::WithParamInterface<::testing::tuple<uint16_t, bool>> {
protected:
void SetUp() override {
const uint16_t cas_id = ::testing::get<0>(GetParam());
BuildEcm(cas_id, /*with_rotation=*/true, /*content_iv_flag=*/false);
}
};
: public testing::Test,
public ::testing::WithParamInterface<::testing::tuple<uint16_t, bool>> {};
TEST_P(EcmParserCasIdTest, ValidateCasIds) {
bool expected_result = ::testing::get<1>(GetParam());
ASSERT_EQ(wvcas::EcmParser::create(ecm_data_, &parser_), expected_result);
const uint16_t cas_id = ::testing::get<0>(GetParam());
std::vector<uint8_t> ecm_data = BuildEcm(cas_id, kEcmVersion2);
const bool is_valid_id = ::testing::get<1>(GetParam());
if (is_valid_id) {
ASSERT_TRUE(wvcas::EcmParser::Create(ecm_data) != nullptr);
} else {
ASSERT_TRUE(wvcas::EcmParser::Create(ecm_data) == nullptr);
}
}
INSTANTIATE_TEST_SUITE_P(EcmWithLegacyCasId, EcmParserCasIdTest,
@@ -315,23 +103,28 @@ INSTANTIATE_TEST_SUITE_P(
// Verifies Section header and pointer field may be prepended to ECM.
class EcmParserSectionHeaderTest
: public EcmParserTest,
: public testing::Test,
public ::testing::WithParamInterface<uint8_t> {};
TEST_P(EcmParserSectionHeaderTest, EcmWithSectionHeaderOnly) {
std::vector<uint8_t> ecm_data = BuildEcm(kWidevineCasId, kEcmVersion2);
const std::vector<uint8_t> section_header = {GetParam(), 0, 0};
ecm_data_.insert(ecm_data_.begin(), section_header.begin(),
ecm_data.insert(ecm_data.begin(), section_header.begin(),
section_header.end());
ASSERT_TRUE(wvcas::EcmParser::create(ecm_data_, &parser_));
ASSERT_TRUE(wvcas::EcmParser::Create(ecm_data) != nullptr);
}
TEST_P(EcmParserSectionHeaderTest, EcmWithSectionHeaderAndPointerField) {
std::vector<uint8_t> ecm_data = BuildEcm(kWidevineCasId, kEcmVersion2);
const std::vector<uint8_t> section_header = {kPointerFieldZero, GetParam(), 0,
0};
ecm_data_.insert(ecm_data_.begin(), section_header.begin(),
ecm_data.insert(ecm_data.begin(), section_header.begin(),
section_header.end());
ASSERT_TRUE(wvcas::EcmParser::create(ecm_data_, &parser_));
ASSERT_TRUE(wvcas::EcmParser::Create(ecm_data) != nullptr);
}
INSTANTIATE_TEST_SUITE_P(EcmWithSectionHeader, EcmParserSectionHeaderTest,
::testing::Values(kSectionHeader1, kSectionHeader2));
} // namespace
} // namespace wvcas

View File

@@ -0,0 +1,270 @@
// Copyright 2018 Google LLC. All Rights Reserved. This file and proprietary
// source code may only be used and distributed under the Widevine Master
// License Agreement.
#include "ecm_parser_v2.h"
#include <gmock/gmock.h>
#include <gtest/gtest.h>
namespace {
constexpr int kCasIdSizeBytes = 2;
constexpr int kModeSizeBytes = 1;
constexpr int kVersionSizeBytes = 1;
constexpr int kIVFlagsSizeBytes = 1;
constexpr int kEntitlementKeyIDSizeBytes = 16;
constexpr int kContentKeyIDSizeBytes = 16;
constexpr int kContentKeyDataSize = 16;
constexpr int kWrappedKeyIVSizeBytes = 16;
constexpr int kEcmDescriptorSizeBytes =
kCasIdSizeBytes + kModeSizeBytes + kVersionSizeBytes + kIVFlagsSizeBytes;
constexpr int kECMVersion = 2;
// The cipher mode flags field in the ECM V2 is 4 bits.
constexpr uint8_t kAESCBCCryptoModeFlagsVal = (0x0 << 1);
constexpr uint8_t kAESCTRCryptoModeFlagsVal = (0x1 << 1);
constexpr uint8_t kDvbCsa2CryptoModeFlagsVal = (0x2 << 1);
constexpr uint8_t kDvbCsa3CryptoModeFlagsVal = (0x3 << 1);
constexpr uint8_t kDvbOFBCryptoModeFlagsVal = (0x4 << 1);
constexpr uint8_t kDvbSCTECryptoModeFlagsVal = (0x5 << 1);
constexpr uint8_t kRotationFlag = (0x1 << 0);
constexpr uint8_t kContentIVSizeFlag = (0x1 << 6);
constexpr uint8_t kEntitlementKeyIDFill = '1';
constexpr uint8_t kEvenContentKeyIDFill = '2';
constexpr uint8_t kEvenContentKeyDataFill = '3';
constexpr uint8_t kEvenWrappedKeyIVFill = '4';
constexpr uint8_t kEvenContentKeyIVFill = '5';
constexpr uint8_t kOddContentKeyIDFill = '6';
constexpr uint8_t kOddContentKeyDataFill = '7';
constexpr uint8_t kOddWrappedKeyIVFill = '8';
constexpr uint8_t kOddContentKeyIVFill = '9';
constexpr size_t kMaxEcmSizeBytes = 184;
constexpr uint16_t kWidevineCasId = 0x4AD4;
} // namespace
class EcmParserV2Test : public testing::Test {
protected:
void SetUp() { BuildEcm(/*with_rotation=*/true, /*content_iv_flag=*/false); }
size_t ContentKeyIVSize(bool content_iv_flag);
size_t CalculateEcmSize(bool with_rotation, bool content_iv_flag = false);
void BuildEcm(bool with_rotation, bool content_iv_flag);
std::vector<uint8_t> ecm_data_;
std::unique_ptr<const wvcas::EcmParserV2> parser_;
};
size_t EcmParserV2Test::ContentKeyIVSize(bool content_iv_flag) {
// Content key iv is 8 bytes if Content_IV flag is zero, and 16 bytes
// othersize.
return content_iv_flag ? 16 : 8;
}
size_t EcmParserV2Test::CalculateEcmSize(bool with_rotation,
bool content_iv_flag) {
size_t ecm_key_data_size =
kContentKeyIDSizeBytes + kContentKeyDataSize + kWrappedKeyIVSizeBytes +
kEntitlementKeyIDSizeBytes + ContentKeyIVSize(content_iv_flag);
return kEcmDescriptorSizeBytes + ecm_key_data_size * (with_rotation ? 2 : 1);
}
void EcmParserV2Test::BuildEcm(bool with_rotation, bool content_iv_flag) {
ecm_data_.clear();
ecm_data_.reserve(CalculateEcmSize(with_rotation, content_iv_flag));
ecm_data_.resize(kCasIdSizeBytes, 0);
ecm_data_[0] = kWidevineCasId >> 8;
ecm_data_[1] = kWidevineCasId & 0xff;
ecm_data_.resize(ecm_data_.size() + kVersionSizeBytes, kECMVersion);
ecm_data_.resize(ecm_data_.size() + kModeSizeBytes,
kAESCBCCryptoModeFlagsVal);
uint8_t iv_flag_value = content_iv_flag ? kContentIVSizeFlag : 0;
ecm_data_.resize(ecm_data_.size() + kIVFlagsSizeBytes, iv_flag_value);
ASSERT_EQ(kEcmDescriptorSizeBytes, ecm_data_.size());
// Even key fields.
ecm_data_.resize(ecm_data_.size() + kEntitlementKeyIDSizeBytes,
kEntitlementKeyIDFill);
ecm_data_.resize(ecm_data_.size() + kContentKeyIDSizeBytes,
kEvenContentKeyIDFill);
ecm_data_.resize(ecm_data_.size() + kContentKeyDataSize,
kEvenContentKeyDataFill);
ecm_data_.resize(ecm_data_.size() + kWrappedKeyIVSizeBytes,
kEvenWrappedKeyIVFill);
ecm_data_.resize(ecm_data_.size() + ContentKeyIVSize(content_iv_flag),
kEvenContentKeyIVFill);
ASSERT_EQ(CalculateEcmSize(false, content_iv_flag), ecm_data_.size());
if (with_rotation) {
// Entitlement key id field for odd key.
ecm_data_.resize(ecm_data_.size() + kEntitlementKeyIDSizeBytes,
kEntitlementKeyIDFill);
ecm_data_.resize(ecm_data_.size() + kContentKeyIDSizeBytes,
kOddContentKeyIDFill);
ecm_data_.resize(ecm_data_.size() + kContentKeyDataSize,
kOddContentKeyDataFill);
ecm_data_.resize(ecm_data_.size() + kWrappedKeyIVSizeBytes,
kOddWrappedKeyIVFill);
ecm_data_.resize(ecm_data_.size() + ContentKeyIVSize(content_iv_flag),
kOddContentKeyIVFill);
ASSERT_EQ(CalculateEcmSize(true, content_iv_flag), ecm_data_.size());
}
}
TEST_F(EcmParserV2Test, FieldsWithoutKeyRotation) {
bool content_key_iv_16b = false;
ecm_data_.resize(CalculateEcmSize(false, content_key_iv_16b));
ASSERT_TRUE(wvcas::EcmParserV2::create(ecm_data_, &parser_));
ASSERT_FALSE(parser_->rotation_enabled());
std::vector<uint8_t> test_data;
test_data.resize(kEntitlementKeyIDSizeBytes, kEntitlementKeyIDFill);
EXPECT_EQ(test_data,
parser_->entitlement_key_id(wvcas::KeySlotId::kEvenKeySlot));
test_data.clear();
test_data.resize(kContentKeyIDSizeBytes, kEvenContentKeyIDFill);
EXPECT_EQ(test_data, parser_->content_key_id(wvcas::KeySlotId::kEvenKeySlot));
test_data.clear();
test_data.resize(kContentKeyIDSizeBytes, kEvenContentKeyDataFill);
EXPECT_EQ(test_data,
parser_->wrapped_key_data(wvcas::KeySlotId::kEvenKeySlot));
test_data.clear();
test_data.resize(kWrappedKeyIVSizeBytes, kEvenWrappedKeyIVFill);
EXPECT_EQ(test_data, parser_->wrapped_key_iv(wvcas::KeySlotId::kEvenKeySlot));
test_data.clear();
test_data.resize(ContentKeyIVSize(content_key_iv_16b), kEvenContentKeyIVFill);
EXPECT_EQ(test_data, parser_->content_iv(wvcas::KeySlotId::kEvenKeySlot));
EXPECT_TRUE(parser_->content_key_id(wvcas::KeySlotId::kOddKeySlot).empty());
EXPECT_TRUE(parser_->wrapped_key_data(wvcas::KeySlotId::kOddKeySlot).empty());
EXPECT_TRUE(parser_->wrapped_key_iv(wvcas::KeySlotId::kOddKeySlot).empty());
EXPECT_TRUE(parser_->content_iv(wvcas::KeySlotId::kOddKeySlot).empty());
}
TEST_F(EcmParserV2Test, FieldsWithKeyRotation) {
ecm_data_[3] |= kRotationFlag;
ASSERT_TRUE(wvcas::EcmParserV2::create(ecm_data_, &parser_));
ASSERT_TRUE(parser_->rotation_enabled());
std::vector<uint8_t> test_data;
test_data.resize(kEntitlementKeyIDSizeBytes, kEntitlementKeyIDFill);
EXPECT_EQ(test_data,
parser_->entitlement_key_id(wvcas::KeySlotId::kEvenKeySlot));
test_data.clear();
test_data.resize(kContentKeyIDSizeBytes, kEvenContentKeyIDFill);
EXPECT_EQ(test_data, parser_->content_key_id(wvcas::KeySlotId::kEvenKeySlot));
test_data.clear();
test_data.resize(kContentKeyIDSizeBytes, kEvenContentKeyDataFill);
EXPECT_EQ(test_data,
parser_->wrapped_key_data(wvcas::KeySlotId::kEvenKeySlot));
test_data.clear();
test_data.resize(kWrappedKeyIVSizeBytes, kEvenWrappedKeyIVFill);
EXPECT_EQ(test_data, parser_->wrapped_key_iv(wvcas::KeySlotId::kEvenKeySlot));
test_data.clear();
bool content_key_iv_16b = false;
test_data.resize(ContentKeyIVSize(content_key_iv_16b), kEvenContentKeyIVFill);
EXPECT_EQ(test_data, parser_->content_iv(wvcas::KeySlotId::kEvenKeySlot));
test_data.clear();
test_data.resize(kContentKeyIDSizeBytes, kOddContentKeyIDFill);
EXPECT_EQ(test_data, parser_->content_key_id(wvcas::KeySlotId::kOddKeySlot));
test_data.clear();
test_data.resize(kContentKeyIDSizeBytes, kOddContentKeyDataFill);
EXPECT_EQ(test_data,
parser_->wrapped_key_data(wvcas::KeySlotId::kOddKeySlot));
test_data.clear();
test_data.resize(kWrappedKeyIVSizeBytes, kOddWrappedKeyIVFill);
EXPECT_EQ(test_data, parser_->wrapped_key_iv(wvcas::KeySlotId::kOddKeySlot));
test_data.clear();
test_data.resize(ContentKeyIVSize(content_key_iv_16b), kOddContentKeyIVFill);
EXPECT_EQ(test_data, parser_->content_iv(wvcas::KeySlotId::kOddKeySlot));
}
TEST_F(EcmParserV2Test, create) {
EXPECT_TRUE(wvcas::EcmParserV2::create(ecm_data_, &parser_));
ecm_data_.resize(4);
EXPECT_FALSE(wvcas::EcmParserV2::create(ecm_data_, &parser_));
ecm_data_.resize(4 + CalculateEcmSize(false));
EXPECT_TRUE(wvcas::EcmParserV2::create(ecm_data_, &parser_));
ecm_data_.resize(kMaxEcmSizeBytes);
EXPECT_TRUE(wvcas::EcmParserV2::create(ecm_data_, &parser_));
ecm_data_.resize(CalculateEcmSize(true));
EXPECT_TRUE(wvcas::EcmParserV2::create(ecm_data_, &parser_));
EXPECT_FALSE(wvcas::EcmParserV2::create(ecm_data_, nullptr));
ecm_data_.resize(CalculateEcmSize(true));
EXPECT_TRUE(wvcas::EcmParserV2::create(ecm_data_, &parser_));
EXPECT_FALSE(wvcas::EcmParserV2::create(ecm_data_, nullptr));
}
TEST_F(EcmParserV2Test, crypto_mode) {
ASSERT_TRUE(wvcas::EcmParserV2::create(ecm_data_, &parser_));
EXPECT_EQ(parser_->crypto_mode(), wvcas::CryptoMode::kAesCBC);
ecm_data_[3] = kAESCTRCryptoModeFlagsVal;
ASSERT_TRUE(wvcas::EcmParserV2::create(ecm_data_, &parser_));
EXPECT_EQ(parser_->crypto_mode(), wvcas::CryptoMode::kAesCTR);
ecm_data_[3] = kDvbCsa2CryptoModeFlagsVal;
ASSERT_TRUE(wvcas::EcmParserV2::create(ecm_data_, &parser_));
EXPECT_EQ(parser_->crypto_mode(), wvcas::CryptoMode::kDvbCsa2);
ecm_data_[3] = kDvbCsa3CryptoModeFlagsVal;
ASSERT_TRUE(wvcas::EcmParserV2::create(ecm_data_, &parser_));
EXPECT_EQ(parser_->crypto_mode(), wvcas::CryptoMode::kDvbCsa3);
ecm_data_[3] = kDvbOFBCryptoModeFlagsVal;
ASSERT_TRUE(wvcas::EcmParserV2::create(ecm_data_, &parser_));
EXPECT_EQ(parser_->crypto_mode(), wvcas::CryptoMode::kAesOFB);
ecm_data_[3] = kDvbSCTECryptoModeFlagsVal;
ASSERT_TRUE(wvcas::EcmParserV2::create(ecm_data_, &parser_));
EXPECT_EQ(parser_->crypto_mode(), wvcas::CryptoMode::kAesSCTE);
}
TEST_F(EcmParserV2Test, ContentKeyIVSizes) {
bool with_rotation = true;
bool iv_flag = false;
ecm_data_.resize(CalculateEcmSize(with_rotation, iv_flag));
ASSERT_TRUE(wvcas::EcmParserV2::create(ecm_data_, &parser_));
EXPECT_EQ(parser_->content_iv_size(), ContentKeyIVSize(iv_flag));
iv_flag = true;
ecm_data_[4] = kContentIVSizeFlag;
ecm_data_.resize(CalculateEcmSize(with_rotation, iv_flag));
ASSERT_TRUE(wvcas::EcmParserV2::create(ecm_data_, &parser_));
EXPECT_EQ(parser_->content_iv_size(), ContentKeyIVSize(iv_flag));
}
TEST_F(EcmParserV2Test, AgeRestriction) {
ASSERT_TRUE(wvcas::EcmParserV2::create(ecm_data_, &parser_));
EXPECT_EQ(0, parser_->age_restriction());
uint8_t age_restriction = 16;
ecm_data_[4] |= age_restriction << 1;
ASSERT_TRUE(wvcas::EcmParserV2::create(ecm_data_, &parser_));
EXPECT_EQ(age_restriction, parser_->age_restriction());
}
TEST_F(EcmParserV2Test, Version) {
EXPECT_TRUE(wvcas::EcmParserV2::create(ecm_data_, &parser_));
EXPECT_EQ(parser_->version(), kECMVersion);
}

View File

@@ -0,0 +1,291 @@
// Copyright 2018 Google LLC. All Rights Reserved. This file and proprietary
// source code may only be used and distributed under the Widevine Master
// License Agreement.
#include "ecm_parser_v3.h"
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <vector>
#include "media_cas.pb.h"
namespace wvcas {
namespace {
using video_widevine::EcmMetaData;
using video_widevine::EcmPayload;
using video_widevine::SignedEcmPayload;
constexpr int kEcmVersion = 3;
constexpr uint16_t kWidevineCasId = 0x4AD4;
constexpr int kEcmHeaderSizeByte = 3;
constexpr char kWrappedKeyIv[] = "wrapped_key_iv..";
constexpr char kWrappedKeyIv2[] = "wrapped_key_iv.2";
constexpr char kEntitlementId[] = "entitlement_id..";
constexpr char kEntitlementId2[] = "entitlement_id.2";
constexpr char kContentIv[] = "c_iv....c_iv....";
constexpr char kContentIv2[] = "c_iv....c_iv...2";
constexpr char kWrappedContentKey[] = "wrapped_key.....";
constexpr char kWrappedContentKey2[] = "wrapped_key....2";
void WriteEcmHeader(std::vector<uint8_t>* ecm) {
ecm->push_back(kWidevineCasId >> 8);
ecm->push_back(kWidevineCasId & 0xff);
ecm->push_back(kEcmVersion);
}
std::vector<uint8_t> GenerateEcm(const SignedEcmPayload& signed_ecm_payload) {
std::vector<uint8_t> ecm;
WriteEcmHeader(&ecm);
ecm.resize(kEcmHeaderSizeByte + signed_ecm_payload.ByteSize());
signed_ecm_payload.SerializeToArray(ecm.data() + kEcmHeaderSizeByte,
signed_ecm_payload.ByteSize());
return ecm;
}
TEST(EcmParserV3Test, CreateWithEmptyEcmFail) {
std::vector<uint8_t> ecm;
EXPECT_TRUE(EcmParserV3::Create(ecm) == nullptr);
}
TEST(EcmParserV3Test, CreateWithOnlyEcmHeaderFail) {
std::vector<uint8_t> ecm;
WriteEcmHeader(&ecm);
EXPECT_TRUE(EcmParserV3::Create(ecm) == nullptr);
}
TEST(EcmParserV3Test, CreateWithInvalidSignedEcmPayloadFail) {
std::vector<uint8_t> ecm;
WriteEcmHeader(&ecm);
// appends some chars as payload
ecm.resize(100, 'x');
EXPECT_TRUE(EcmParserV3::Create(ecm) == nullptr);
}
TEST(EcmParserV3Test, CreateWithInvalidSerializedEcmFail) {
SignedEcmPayload signed_ecm_payload;
signed_ecm_payload.set_serialized_payload("invalid");
std::vector<uint8_t> ecm = GenerateEcm(signed_ecm_payload);
EXPECT_TRUE(EcmParserV3::Create(ecm) == nullptr);
}
TEST(EcmParserV3Test, CreateWithEvenKeySuccess) {
EcmPayload ecm_payload;
ecm_payload.mutable_even_key_data()->set_entitlement_key_id(kEntitlementId);
ecm_payload.mutable_even_key_data()->set_wrapped_key_data(kWrappedContentKey);
ecm_payload.mutable_even_key_data()->set_content_iv(kContentIv);
ecm_payload.mutable_even_key_data()->set_wrapped_key_iv(kWrappedKeyIv);
SignedEcmPayload signed_ecm_payload;
signed_ecm_payload.set_serialized_payload(ecm_payload.SerializeAsString());
std::vector<uint8_t> ecm = GenerateEcm(signed_ecm_payload);
std::unique_ptr<const EcmParserV3> parser = EcmParserV3::Create(ecm);
ASSERT_TRUE(parser != nullptr);
EXPECT_EQ(parser->version(), kEcmVersion);
EXPECT_EQ(parser->age_restriction(), 0);
EXPECT_EQ(parser->crypto_mode(), CryptoMode::kInvalid);
EXPECT_FALSE(parser->has_fingerprinting());
EXPECT_FALSE(parser->has_service_blocking());
EXPECT_EQ(parser->ecm_serialized_payload(), ecm_payload.SerializeAsString());
EXPECT_TRUE(parser->signature().empty());
EXPECT_FALSE(parser->rotation_enabled());
EXPECT_EQ(parser->content_iv_size(), 16);
std::vector<uint8_t> result =
parser->entitlement_key_id(KeySlotId::kEvenKeySlot);
EXPECT_EQ(std::string(result.begin(), result.end()), kEntitlementId);
result = parser->wrapped_key_data(KeySlotId::kEvenKeySlot);
EXPECT_EQ(std::string(result.begin(), result.end()), kWrappedContentKey);
result = parser->content_iv(KeySlotId::kEvenKeySlot);
EXPECT_EQ(std::string(result.begin(), result.end()), kContentIv);
result = parser->wrapped_key_iv(KeySlotId::kEvenKeySlot);
EXPECT_EQ(std::string(result.begin(), result.end()), kWrappedKeyIv);
}
TEST(EcmParserV3Test, CreateWithEvenOddKeysSuccess) {
EcmPayload ecm_payload;
ecm_payload.mutable_even_key_data()->set_entitlement_key_id(kEntitlementId);
ecm_payload.mutable_even_key_data()->set_wrapped_key_data(kWrappedContentKey);
ecm_payload.mutable_even_key_data()->set_content_iv(kContentIv);
ecm_payload.mutable_even_key_data()->set_wrapped_key_iv(kWrappedKeyIv);
ecm_payload.mutable_odd_key_data()->set_entitlement_key_id(kEntitlementId2);
ecm_payload.mutable_odd_key_data()->set_wrapped_key_data(kWrappedContentKey2);
ecm_payload.mutable_odd_key_data()->set_content_iv(kContentIv2);
ecm_payload.mutable_odd_key_data()->set_wrapped_key_iv(kWrappedKeyIv2);
SignedEcmPayload signed_ecm_payload;
signed_ecm_payload.set_serialized_payload(ecm_payload.SerializeAsString());
std::vector<uint8_t> ecm = GenerateEcm(signed_ecm_payload);
std::unique_ptr<const EcmParserV3> parser = EcmParserV3::Create(ecm);
ASSERT_TRUE(parser != nullptr);
EXPECT_TRUE(parser->rotation_enabled());
std::vector<uint8_t> result =
parser->entitlement_key_id(KeySlotId::kEvenKeySlot);
EXPECT_EQ(std::string(result.begin(), result.end()), kEntitlementId);
result = parser->wrapped_key_data(KeySlotId::kEvenKeySlot);
EXPECT_EQ(std::string(result.begin(), result.end()), kWrappedContentKey);
result = parser->content_iv(KeySlotId::kEvenKeySlot);
EXPECT_EQ(std::string(result.begin(), result.end()), kContentIv);
result = parser->wrapped_key_iv(KeySlotId::kEvenKeySlot);
EXPECT_EQ(std::string(result.begin(), result.end()), kWrappedKeyIv);
result = parser->entitlement_key_id(KeySlotId::kOddKeySlot);
EXPECT_EQ(std::string(result.begin(), result.end()), kEntitlementId2);
result = parser->wrapped_key_data(KeySlotId::kOddKeySlot);
EXPECT_EQ(std::string(result.begin(), result.end()), kWrappedContentKey2);
result = parser->content_iv(KeySlotId::kOddKeySlot);
EXPECT_EQ(std::string(result.begin(), result.end()), kContentIv2);
result = parser->wrapped_key_iv(KeySlotId::kOddKeySlot);
EXPECT_EQ(std::string(result.begin(), result.end()), kWrappedKeyIv2);
}
TEST(EcmParserV3Test, CreateWithOmittedOddKeyFieldsSuccess) {
EcmPayload ecm_payload;
ecm_payload.mutable_even_key_data()->set_entitlement_key_id(kEntitlementId);
ecm_payload.mutable_even_key_data()->set_wrapped_key_data(kWrappedContentKey);
ecm_payload.mutable_even_key_data()->set_content_iv(kContentIv);
ecm_payload.mutable_even_key_data()->set_wrapped_key_iv(kWrappedKeyIv);
ecm_payload.mutable_odd_key_data()->set_wrapped_key_data(kWrappedContentKey2);
SignedEcmPayload signed_ecm_payload;
signed_ecm_payload.set_serialized_payload(ecm_payload.SerializeAsString());
std::vector<uint8_t> ecm = GenerateEcm(signed_ecm_payload);
std::unique_ptr<const EcmParserV3> parser = EcmParserV3::Create(ecm);
ASSERT_TRUE(parser != nullptr);
EXPECT_TRUE(parser->rotation_enabled());
std::vector<uint8_t> result =
parser->entitlement_key_id(KeySlotId::kEvenKeySlot);
EXPECT_EQ(std::string(result.begin(), result.end()), kEntitlementId);
result = parser->wrapped_key_data(KeySlotId::kEvenKeySlot);
EXPECT_EQ(std::string(result.begin(), result.end()), kWrappedContentKey);
result = parser->content_iv(KeySlotId::kEvenKeySlot);
EXPECT_EQ(std::string(result.begin(), result.end()), kContentIv);
result = parser->wrapped_key_iv(KeySlotId::kEvenKeySlot);
EXPECT_EQ(std::string(result.begin(), result.end()), kWrappedKeyIv);
result = parser->entitlement_key_id(KeySlotId::kOddKeySlot);
EXPECT_EQ(std::string(result.begin(), result.end()), kEntitlementId);
result = parser->wrapped_key_data(KeySlotId::kOddKeySlot);
EXPECT_EQ(std::string(result.begin(), result.end()), kWrappedContentKey2);
result = parser->content_iv(KeySlotId::kOddKeySlot);
EXPECT_EQ(std::string(result.begin(), result.end()), kContentIv);
result = parser->wrapped_key_iv(KeySlotId::kOddKeySlot);
EXPECT_EQ(std::string(result.begin(), result.end()), kWrappedKeyIv);
}
TEST(EcmParserV3Test, AgeRestrictionSuccess) {
const int expected_age_restriction = 3;
EcmPayload ecm_payload;
ecm_payload.mutable_meta_data()->set_age_restriction(
expected_age_restriction);
SignedEcmPayload signed_ecm_payload;
signed_ecm_payload.set_serialized_payload(ecm_payload.SerializeAsString());
std::vector<uint8_t> ecm = GenerateEcm(signed_ecm_payload);
std::unique_ptr<const EcmParserV3> parser = EcmParserV3::Create(ecm);
ASSERT_TRUE(parser != nullptr);
EXPECT_EQ(parser->age_restriction(), expected_age_restriction);
}
class EcmParserV3AgeRestrictionTest
: public testing::Test,
public testing::WithParamInterface<uint8_t> {};
TEST_P(EcmParserV3AgeRestrictionTest, ExpectedAgeRestriction) {
const uint8_t expected_age_restriction = GetParam();
EcmPayload ecm_payload;
ecm_payload.mutable_meta_data()->set_age_restriction(
expected_age_restriction);
SignedEcmPayload signed_ecm_payload;
signed_ecm_payload.set_serialized_payload(ecm_payload.SerializeAsString());
std::vector<uint8_t> ecm = GenerateEcm(signed_ecm_payload);
std::unique_ptr<const EcmParserV3> parser = EcmParserV3::Create(ecm);
ASSERT_TRUE(parser != nullptr);
EXPECT_EQ(parser->age_restriction(), expected_age_restriction);
}
INSTANTIATE_TEST_SUITE_P(EcmParserV3AgeRestrictionTest,
EcmParserV3AgeRestrictionTest,
testing::Values(0, 3, 18));
class EcmParserV3CipherModeTest
: public testing::Test,
public testing::WithParamInterface<
testing::tuple<CryptoMode, EcmMetaData::CipherMode>> {};
TEST_P(EcmParserV3CipherModeTest, ExpectedCipherMode) {
const CryptoMode expected = std::get<0>(GetParam());
EcmPayload ecm_payload;
ecm_payload.mutable_meta_data()->set_cipher_mode(std::get<1>(GetParam()));
SignedEcmPayload signed_ecm_payload;
signed_ecm_payload.set_serialized_payload(ecm_payload.SerializeAsString());
std::vector<uint8_t> ecm = GenerateEcm(signed_ecm_payload);
std::unique_ptr<const EcmParserV3> parser = EcmParserV3::Create(ecm);
ASSERT_TRUE(parser != nullptr);
EXPECT_EQ(parser->crypto_mode(), expected);
}
INSTANTIATE_TEST_SUITE_P(
EcmParserV3CipherModeTest, EcmParserV3CipherModeTest,
testing::Values(
std::make_tuple(CryptoMode::kAesCBC, EcmMetaData::AES_CBC),
std::make_tuple(CryptoMode::kAesCTR, EcmMetaData::AES_CTR),
std::make_tuple(CryptoMode::kDvbCsa2, EcmMetaData::DVB_CSA2),
std::make_tuple(CryptoMode::kDvbCsa3, EcmMetaData::DVB_CSA3),
std::make_tuple(CryptoMode::kAesOFB, EcmMetaData::AES_OFB),
std::make_tuple(CryptoMode::kAesSCTE, EcmMetaData::AES_SCTE52)));
TEST(EcmParserV3Test, FingerprintingSuccess) {
EcmPayload ecm_payload;
ecm_payload.mutable_fingerprinting()->set_control("control");
SignedEcmPayload signed_ecm_payload;
signed_ecm_payload.set_serialized_payload(ecm_payload.SerializeAsString());
std::vector<uint8_t> ecm = GenerateEcm(signed_ecm_payload);
std::unique_ptr<const EcmParserV3> parser = EcmParserV3::Create(ecm);
ASSERT_TRUE(parser != nullptr);
EXPECT_TRUE(parser->has_fingerprinting());
EXPECT_EQ(parser->fingerprinting().SerializeAsString(),
ecm_payload.fingerprinting().SerializeAsString());
}
TEST(EcmParserV3Test, ServiceBlockingSuccess) {
EcmPayload ecm_payload;
ecm_payload.mutable_service_blocking()->add_device_groups("group");
SignedEcmPayload signed_ecm_payload;
signed_ecm_payload.set_serialized_payload(ecm_payload.SerializeAsString());
std::vector<uint8_t> ecm = GenerateEcm(signed_ecm_payload);
std::unique_ptr<const EcmParserV3> parser = EcmParserV3::Create(ecm);
ASSERT_TRUE(parser != nullptr);
EXPECT_TRUE(parser->has_service_blocking());
EXPECT_EQ(parser->service_blocking().SerializeAsString(),
ecm_payload.service_blocking().SerializeAsString());
}
TEST(EcmParserV3Test, SignatureSuccess) {
const std::string expected_signature = "signature";
SignedEcmPayload signed_ecm_payload;
signed_ecm_payload.set_signature(expected_signature);
std::vector<uint8_t> ecm = GenerateEcm(signed_ecm_payload);
std::unique_ptr<const EcmParserV3> parser = EcmParserV3::Create(ecm);
ASSERT_TRUE(parser != nullptr);
EXPECT_EQ(parser->signature(), expected_signature);
}
} // namespace
} // namespace wvcas

View File

@@ -115,3 +115,6 @@ TEST(IntegrationTests, TestSessionEventPassing) {
EXPECT_EQ(kIntegrationTestPassed, RunNamedTest("TestSessionEventPassing"));
}
TEST(IntegrationTests, TestProcessEcmV3) {
EXPECT_EQ(kIntegrationTestPassed, RunNamedTest("TestProcessEcmV3"));
}

View File

@@ -91,6 +91,14 @@ class MockEventListener : public wvcas::CasEventListener {
MOCK_METHOD2(OnAgeRestrictionUpdated,
void(const wvcas::WvCasSessionId& sessionId,
uint8_t ecm_age_restriction));
MOCK_METHOD(void, OnSessionFingerprintingUpdated,
(const int32_t& sessionId,
const std::vector<uint8_t>& fingerprinting),
(override));
MOCK_METHOD(void, OnSessionServiceBlockingUpdated,
(const int32_t& sessionId,
const std::vector<uint8_t>& service_blocking),
(override));
};
class TestablePolicyEngine : public wvcas::PolicyEngine {

View File

@@ -85,6 +85,14 @@ class MockEventListener : public wvcas::CasEventListener {
MOCK_METHOD2(OnAgeRestrictionUpdated,
void(const wvcas::WvCasSessionId& sessionId,
uint8_t ecm_age_restriction));
MOCK_METHOD(void, OnSessionFingerprintingUpdated,
(const int32_t& sessionId,
const std::vector<uint8_t>& fingerprinting),
(override));
MOCK_METHOD(void, OnSessionServiceBlockingUpdated,
(const int32_t& sessionId,
const std::vector<uint8_t>& service_blocking),
(override));
};
typedef StrictMock<MockEventListener> StrictMockEventListener;
@@ -125,19 +133,9 @@ class MockFileSystem : public wvutil::FileSystem {
typedef NiceMock<MockFileSystem> NiceMockFileSystem;
class MockWidevineSession : public wvcas::WidevineCasSession {
class EcmParser : public wvcas::EcmParser {
public:
EcmParser() {}
~EcmParser() override {}
};
public:
MockWidevineSession() {}
~MockWidevineSession() override {}
std::unique_ptr<const wvcas::EcmParser> getEcmParser(
const wvcas::CasEcm& ecm) const override {
return make_unique<EcmParser>();
}
MOCK_METHOD2(processEcm, wvcas::CasStatus(const wvcas::CasEcm& ecm,
uint8_t parental_control_age));
MOCK_METHOD2(HandleProcessEcm,

View File

@@ -4,6 +4,7 @@
#include "widevine_cas_session.h"
#include <cas_events.h>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
@@ -11,10 +12,13 @@
#include <string>
#include <vector>
#include "cas_types.h"
#include "cas_util.h"
#include "media_cas.pb.h"
#include "mock_crypto_session.h"
#include "string_conversions.h"
namespace {
using ::testing::_;
using ::testing::DoAll;
using ::testing::Eq;
@@ -109,20 +113,24 @@ MATCHER(IsValidKeyOddSlotData, "") {
class MockEcmParser : public wvcas::EcmParser {
public:
MOCK_CONST_METHOD0(sequence_count, uint8_t());
MOCK_CONST_METHOD0(version, uint8_t());
MOCK_CONST_METHOD0(age_restriction, uint8_t());
MOCK_CONST_METHOD0(crypto_mode, wvcas::CryptoMode());
MOCK_CONST_METHOD0(rotation_enabled, bool());
MOCK_CONST_METHOD0(content_iv_size, size_t());
MOCK_CONST_METHOD1(entitlement_key_id,
const std::vector<uint8_t>(wvcas::KeySlotId id));
MOCK_CONST_METHOD1(content_key_id,
const std::vector<uint8_t>(wvcas::KeySlotId id));
std::vector<uint8_t>(wvcas::KeySlotId id));
MOCK_CONST_METHOD1(content_key_id, std::vector<uint8_t>(wvcas::KeySlotId id));
MOCK_CONST_METHOD1(wrapped_key_data,
const std::vector<uint8_t>(wvcas::KeySlotId id));
MOCK_CONST_METHOD1(wrapped_key_iv,
const std::vector<uint8_t>(wvcas::KeySlotId id));
MOCK_CONST_METHOD1(content_iv,
const std::vector<uint8_t>(wvcas::KeySlotId id));
std::vector<uint8_t>(wvcas::KeySlotId id));
MOCK_CONST_METHOD1(wrapped_key_iv, std::vector<uint8_t>(wvcas::KeySlotId id));
MOCK_CONST_METHOD1(content_iv, std::vector<uint8_t>(wvcas::KeySlotId id));
MOCK_CONST_METHOD0(has_fingerprinting, bool());
MOCK_CONST_METHOD0(fingerprinting, video_widevine::Fingerprinting());
MOCK_CONST_METHOD0(has_service_blocking, bool());
MOCK_CONST_METHOD0(service_blocking, video_widevine::ServiceBlocking());
MOCK_CONST_METHOD0(ecm_serialized_payload, std::string());
MOCK_CONST_METHOD0(signature, std::string());
};
class CasSessionTest : public ::testing::Test {
@@ -138,7 +146,7 @@ class TestCasSession : public wvcas::WidevineCasSession {
virtual ~TestCasSession() {}
std::unique_ptr<const wvcas::EcmParser> getEcmParser(
const wvcas::CasEcm& ecm) const;
const wvcas::CasEcm& ecm) const override;
std::vector<uint8_t> entitlement_key_id(wvcas::KeySlotId id) const {
std::string key_id;
@@ -194,15 +202,30 @@ class TestCasSession : public wvcas::WidevineCasSession {
age_restriction_ = age_restriction;
}
void set_fingerprinting_control(const std::string& control) {
fingerprinting_.clear_control();
if (!control.empty()) {
fingerprinting_.set_control(control);
}
}
void set_service_blocking_groups(const std::vector<std::string>& groups) {
service_blocking_.clear_device_groups();
for (auto const& group : groups) {
service_blocking_.add_device_groups(group);
}
}
private:
uint8_t age_restriction_ = 0;
video_widevine::Fingerprinting fingerprinting_;
video_widevine::ServiceBlocking service_blocking_;
};
std::unique_ptr<const wvcas::EcmParser> TestCasSession::getEcmParser(
const wvcas::CasEcm& ecm) const {
std::unique_ptr<NiceMock<MockEcmParser>> mock_ecm_parser(
new NiceMock<MockEcmParser>);
ON_CALL(*mock_ecm_parser, sequence_count()).WillByDefault(Return(0));
ON_CALL(*mock_ecm_parser, age_restriction())
.WillByDefault(Return(age_restriction_));
ON_CALL(*mock_ecm_parser, crypto_mode())
@@ -218,6 +241,14 @@ std::unique_ptr<const wvcas::EcmParser> TestCasSession::getEcmParser(
.WillByDefault(Invoke(this, &TestCasSession::wrapped_key_iv));
ON_CALL(*mock_ecm_parser, content_iv(_))
.WillByDefault(Invoke(this, &TestCasSession::content_iv));
ON_CALL(*mock_ecm_parser, has_fingerprinting())
.WillByDefault(Return(fingerprinting_.has_control()));
ON_CALL(*mock_ecm_parser, fingerprinting())
.WillByDefault(Return(fingerprinting_));
ON_CALL(*mock_ecm_parser, has_service_blocking())
.WillByDefault(Return(service_blocking_.device_groups_size() > 0));
ON_CALL(*mock_ecm_parser, service_blocking())
.WillByDefault(Return(service_blocking_));
return std::unique_ptr<const wvcas::EcmParser>(mock_ecm_parser.release());
}
@@ -231,7 +262,8 @@ TEST_F(CasSessionTest, processEcm) {
.WillOnce(DoAll(SetArgPointee<0>(kEntitledKeySessionId),
Return(wvcas::CasStatusCode::kNoError)));
ASSERT_EQ(wvcas::CasStatusCode::kNoError,
session.initialize(mock, &session_id).status_code());
session.initialize(mock, /*event_listener=*/nullptr, &session_id)
.status_code());
EXPECT_EQ(session_id, kEntitledKeySessionId);
wvcas::CasEcm ecm(184);
@@ -250,7 +282,8 @@ TEST_F(CasSessionTest, parentalControl) {
.WillOnce(DoAll(SetArgPointee<0>(kEntitledKeySessionId),
Return(wvcas::CasStatusCode::kNoError)));
ASSERT_EQ(wvcas::CasStatusCode::kNoError,
session.initialize(mock, &session_id).status_code());
session.initialize(mock, /*event_listener=*/nullptr, &session_id)
.status_code());
EXPECT_EQ(session_id, kEntitledKeySessionId);
EXPECT_CALL(*mock, LoadCasECMKeys(session_id, IsValidKeyEvenSlotData(),
@@ -281,3 +314,141 @@ TEST_F(CasSessionTest, parentalControl) {
session.processEcm(ecm, 3).status_code());
EXPECT_CALL(*mock, RemoveEntitledKeySession(session_id));
}
class MockEventListener : public wvcas::CasEventListener {
public:
MockEventListener() {}
~MockEventListener() override {}
MOCK_METHOD0(OnSessionRenewalNeeded, void());
MOCK_METHOD2(OnSessionKeysChange, void(const wvcas::KeyStatusMap& keys_status,
bool has_new_usable_key));
MOCK_METHOD1(OnExpirationUpdate, void(int64_t new_expiry_time_seconds));
MOCK_METHOD1(OnNewRenewalServerUrl,
void(const std::string& renewal_server_url));
MOCK_METHOD0(OnLicenseExpiration, void());
MOCK_METHOD2(OnAgeRestrictionUpdated,
void(const wvcas::WvCasSessionId& sessionId,
uint8_t ecm_age_restriction));
MOCK_METHOD(void, OnSessionFingerprintingUpdated,
(const int32_t& sessionId,
const std::vector<uint8_t>& fingerprinting),
(override));
MOCK_METHOD(void, OnSessionServiceBlockingUpdated,
(const int32_t& sessionId,
const std::vector<uint8_t>& service_blocking),
(override));
};
TEST_F(CasSessionTest, FingerprintingSuccess) {
TestCasSession session;
auto mock_crypto = std::make_shared<MockCryptoSession>();
MockEventListener mock_listener;
uint32_t session_id;
ASSERT_EQ(session.initialize(mock_crypto, &mock_listener, &session_id)
.status_code(),
wvcas::CasStatusCode::kNoError);
session.set_fingerprinting_control("control");
std::vector<uint8_t> expected_message = {0x00, 0x00, 0x07, 'c', 'o',
'n', 't', 'r', 'o', 'l'};
EXPECT_CALL(mock_listener,
OnSessionFingerprintingUpdated(session_id, expected_message))
.Times(1);
session.processEcm(wvcas::CasEcm(184, '0'), 0);
}
TEST_F(CasSessionTest, RepeatedFingerprintingNoEventSuccess) {
TestCasSession session;
auto mock_crypto = std::make_shared<MockCryptoSession>();
MockEventListener mock_listener;
uint32_t session_id;
ASSERT_EQ(session.initialize(mock_crypto, &mock_listener, &session_id)
.status_code(),
wvcas::CasStatusCode::kNoError);
session.set_fingerprinting_control("control");
EXPECT_CALL(mock_listener, OnSessionFingerprintingUpdated).Times(1);
session.processEcm(wvcas::CasEcm(184, '0'), 0);
// Same fingerprinting will not trigger event.
EXPECT_CALL(mock_listener, OnSessionFingerprintingUpdated).Times(0);
session.processEcm(wvcas::CasEcm(184, '1'), 0);
}
TEST_F(CasSessionTest, DifferentFingerprintingTriggerEventSuccess) {
TestCasSession session;
auto mock_crypto = std::make_shared<MockCryptoSession>();
MockEventListener mock_listener;
uint32_t session_id;
ASSERT_EQ(session.initialize(mock_crypto, &mock_listener, &session_id)
.status_code(),
wvcas::CasStatusCode::kNoError);
session.set_fingerprinting_control("control");
EXPECT_CALL(mock_listener, OnSessionFingerprintingUpdated).Times(1);
session.processEcm(wvcas::CasEcm(184, '0'), 0);
// Different fingerprinting will trigger event.
session.set_fingerprinting_control("control2");
EXPECT_CALL(mock_listener, OnSessionFingerprintingUpdated).Times(1);
session.processEcm(wvcas::CasEcm(184, '1'), 0);
// Different fingerprinting (including empty) will trigger event.
session.set_fingerprinting_control("");
EXPECT_CALL(mock_listener, OnSessionFingerprintingUpdated).Times(1);
session.processEcm(wvcas::CasEcm(184, '2'), 0);
}
TEST_F(CasSessionTest, ServiceBlockingSuccess) {
TestCasSession session;
auto mock_crypto = std::make_shared<MockCryptoSession>();
MockEventListener mock_listener;
uint32_t session_id;
ASSERT_EQ(session.initialize(mock_crypto, &mock_listener, &session_id)
.status_code(),
wvcas::CasStatusCode::kNoError);
session.set_service_blocking_groups({"Group1", "g2"});
std::vector<uint8_t> expected_message = {0x00, 0x00, 0x06, 'G', 'r',
'o', 'u', 'p', '1', 0x00,
0x00, 0x02, 'g', '2'};
EXPECT_CALL(mock_listener,
OnSessionServiceBlockingUpdated(session_id, expected_message))
.Times(1);
session.processEcm(wvcas::CasEcm(184, '0'), 0);
}
TEST_F(CasSessionTest, RepeatedServiceBlockingNoEventSuccess) {
TestCasSession session;
auto mock_crypto = std::make_shared<MockCryptoSession>();
MockEventListener mock_listener;
uint32_t session_id;
ASSERT_EQ(session.initialize(mock_crypto, &mock_listener, &session_id)
.status_code(),
wvcas::CasStatusCode::kNoError);
session.set_service_blocking_groups({"Group1", "g2"});
EXPECT_CALL(mock_listener, OnSessionServiceBlockingUpdated).Times(1);
session.processEcm(wvcas::CasEcm(184, '0'), 0);
EXPECT_CALL(mock_listener, OnSessionServiceBlockingUpdated).Times(0);
session.processEcm(wvcas::CasEcm(184, '1'), 0);
}
TEST_F(CasSessionTest, DifferentServiceBlockingTriggerEventSuccess) {
TestCasSession session;
auto mock_crypto = std::make_shared<MockCryptoSession>();
MockEventListener mock_listener;
uint32_t session_id;
ASSERT_EQ(session.initialize(mock_crypto, &mock_listener, &session_id)
.status_code(),
wvcas::CasStatusCode::kNoError);
session.set_service_blocking_groups({"Group1", "g2"});
EXPECT_CALL(mock_listener, OnSessionServiceBlockingUpdated).Times(1);
session.processEcm(wvcas::CasEcm(184, '0'), 0);
EXPECT_CALL(mock_listener, OnSessionServiceBlockingUpdated).Times(1);
session.set_service_blocking_groups({"Group1"});
session.processEcm(wvcas::CasEcm(184, '1'), 0);
EXPECT_CALL(mock_listener, OnSessionServiceBlockingUpdated).Times(1);
session.set_service_blocking_groups({});
session.processEcm(wvcas::CasEcm(184, '2'), 0);
}
} // namespace