Files
oemcrypto/util/test/cdm_random_unittest.cpp
Fred Gylys-Colwell 044a89ef55 Initial v17 Release
Headers and Unit tests have been updated to match the v17 spec.

Documentation can be found here:
https://developers.devsite.corp.google.com/widevine/drm/client/oemcrypto/v17
2021-12-04 01:13:15 +00:00

187 lines
5.8 KiB
C++

// Copyright 2019 Google LLC. All Rights Reserved. This file and proprietary
// source code may only be used and distributed under the Widevine License
// Agreement.
#include "cdm_random.h"
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <stdlib.h>
#include <algorithm>
#include <chrono>
#include <limits>
#include <string>
#include <thread>
#include <type_traits>
#include <vector>
namespace wvutil {
namespace {
// Random data vector lengths.
constexpr size_t kVectorLength = 1024;
constexpr size_t kMaxRandomDataLength =
CdmRandomGenerator::kMaxRandomDataLength;
constexpr size_t kAboveMaxRandomDataLength = std::numeric_limits<size_t>::max();
constexpr size_t kRandomTrialCount = 100;
constexpr size_t kThreadCount = 16;
constexpr unsigned int kSeeds[] = {0, 1337, 1565904109, 776964657};
class CdmRandomGeneratorTest : public testing::TestWithParam<unsigned int> {};
} // namespace
// Checks that the class CdmRandomGenerator meets the requirements of
// UniformRandomBitGenerator.
// ref: https://en.cppreference.com/w/cpp/named_req/UniformRandomBitGenerator
TEST(CdmRandomGeneratorTest, UniformRandomBitGeneratorRequirements) {
// Let G represent class CdmRandomGenerator, and g represent an instance
// of CdmRandomGenerator.
// 1) G::result_type is an unsigned integer (unspecified precision).
EXPECT_TRUE(std::is_integral<CdmRandomGenerator::result_type>::value);
EXPECT_TRUE(std::is_unsigned<CdmRandomGenerator::result_type>::value);
// 2&3 a) G::min() and G::max() have the result type of G::result_type.
EXPECT_TRUE((std::is_same<CdmRandomGenerator::result_type,
decltype(CdmRandomGenerator::min())>::value));
EXPECT_TRUE((std::is_same<CdmRandomGenerator::result_type,
decltype(CdmRandomGenerator::max())>::value));
// 2&3 b) G::min() is strictly less than G::max().
EXPECT_LT(CdmRandomGenerator::min(), CdmRandomGenerator::max());
// 4 a) g() have the result type of G::result_type.
CdmRandomGenerator g;
EXPECT_TRUE(
(std::is_same<CdmRandomGenerator::result_type, decltype(g())>::value));
// 4 b) g() is within [G::min() G::max()]
std::vector<CdmRandomGenerator::result_type> values;
for (size_t i = 0; i < kRandomTrialCount; ++i) {
CdmRandomGenerator::result_type x = g();
EXPECT_LE(CdmRandomGenerator::min(), x);
EXPECT_GE(CdmRandomGenerator::max(), x);
values.push_back(x);
}
// Verify compilation.
// std::shuffle(RandomIt first, RandomIt last, URBG&& g) requires the
// class URBG to meet "UniformRandomBitGenerator" requirements. This
// will fail to compile if the requirements are not met.
std::shuffle(values.begin(), values.end(), CdmRandomGenerator());
}
TEST_P(CdmRandomGeneratorTest, AllMethods) {
const unsigned int seed = GetParam();
CdmRandomGenerator rng;
rng.Seed();
rng.Seed(seed);
rng.Rand();
rng();
rng.RandomInRange(1234, 1000000);
rng.RandomInRange(1000000);
rng.RandomData(kVectorLength);
rng.RandomBool();
}
TEST_P(CdmRandomGeneratorTest, RandomInRange) {
const unsigned int seed = GetParam();
CdmRandomGenerator rng(seed);
for (size_t i = 0; i < kRandomTrialCount; ++i) {
const int rand_int = rng.Rand();
EXPECT_GE(rand_int, 0);
EXPECT_LE(rand_int, RAND_MAX);
}
// Range size of 1.
const uint64_t rand_u64_1 = rng.RandomInRange(100, 100);
EXPECT_EQ(rand_u64_1, 100ul);
// Range size of 2.
const uint64_t rand_u64_2 = rng.RandomInRange(1234, 1235);
EXPECT_GE(rand_u64_2, 1234ul);
EXPECT_LE(rand_u64_2, 1235ul);
// Small range.
const uint64_t rand_u64_3 = rng.RandomInRange(10);
EXPECT_LE(rand_u64_3, 10ul);
// Max range, mainly checking that nothing crashes.
rng.RandomInRange(0, std::numeric_limits<uint64_t>::max());
// Invalid range representation. Should swap the bounds.
const uint64_t rand_u64_4 = rng.RandomInRange(1235, 1234);
EXPECT_GE(rand_u64_4, 1234ul);
EXPECT_LE(rand_u64_4, 1235ul);
}
TEST_P(CdmRandomGeneratorTest, RandomDataLength) {
const unsigned int seed = GetParam();
CdmRandomGenerator rng(seed);
const std::string empty_data = rng.RandomData(0);
EXPECT_EQ(empty_data.size(), 0ul);
const std::string data = rng.RandomData(kVectorLength);
EXPECT_EQ(data.size(), kVectorLength);
const std::string max_data = rng.RandomData(kMaxRandomDataLength);
EXPECT_EQ(max_data.size(), kMaxRandomDataLength);
// Requesting data above the maximum length will result in an error,
// returning an empty string.
const std::string error_data = rng.RandomData(kAboveMaxRandomDataLength);
EXPECT_EQ(error_data.size(), 0ul);
}
TEST_P(CdmRandomGeneratorTest, Reproducibility) {
const unsigned int seed = GetParam();
CdmRandomGenerator rng(seed);
const std::string random_data_1 = rng.RandomData(kVectorLength);
// Reset generator.
rng.Seed(seed);
const std::string random_data_2 = rng.RandomData(kVectorLength);
EXPECT_EQ(random_data_1, random_data_2);
}
TEST_P(CdmRandomGeneratorTest, ThreadSafety) {
const unsigned int seed = GetParam();
CdmRandomGenerator rng(seed);
bool barrier = true;
auto thread_job = [&]() {
while (barrier) {
std::this_thread::sleep_for(std::chrono::microseconds(1));
}
for (size_t i = 0; i < kRandomTrialCount; ++i) {
rng.Rand();
}
};
std::vector<std::thread> threads;
for (size_t i = 0; i < kThreadCount; ++i) {
threads.push_back(std::thread(thread_job));
}
std::this_thread::sleep_for(std::chrono::microseconds(100));
barrier = false;
for (auto& thread : threads) {
thread.join();
}
}
INSTANTIATE_TEST_SUITE_P(VariousSeeds, CdmRandomGeneratorTest,
testing::ValuesIn(kSeeds));
TEST(CdmRandomTest, AllMethods) {
CdmRandom::Rand();
CdmRandom::RandomInRange(1234, 1000000);
CdmRandom::RandomInRange(1000000);
CdmRandom::RandomData(kVectorLength);
CdmRandom::RandomBool();
}
} // namespace wvutil