In this update we have:
- Added the verified platform tests. These tests show how some
platforms, when verified are allowed to by pass the normal policy
restrictions. This is done with ChromeOS, thus the name of the
tests use "chrome_os".
- Removed WB_RESULT_INVALID_PADDING. This error was when we the
non-license APIs exposed a AES function with padding. However,
those functions have been removed from the API and this error is
no longer used by the API.
- Tests have been updated to avoid signed-vs-unsigned comparison
and to use the Chromium path to gTest (which is mocked in this
library).
- Tests have been updated to use a new test base and golden data
system to make them easier to read.
353 lines
14 KiB
C++
353 lines
14 KiB
C++
////////////////////////////////////////////////////////////////////////////////
|
|
// Copyright 2016 Google LLC.
|
|
//
|
|
// This software is licensed under the terms defined in the Widevine Master
|
|
// License Agreement. For a copy of this agreement, please contact
|
|
// widevine-licensing@google.com.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
// Description:
|
|
// Unit test for rsa_util RSA utilties library.
|
|
|
|
#include "crypto_utils/rsa_util.h"
|
|
|
|
#include <stddef.h>
|
|
|
|
#include <cstdint>
|
|
#include <memory>
|
|
|
|
#include "base/logging.h"
|
|
#include "crypto_utils/rsa_test_keys.h"
|
|
#include "testing/gmock/include/gmock/gmock.h"
|
|
#include "testing/gtest/include/gtest/gtest.h"
|
|
#include "third_party/boringssl/src/include/openssl/bn.h"
|
|
|
|
using ::testing::NotNull;
|
|
|
|
namespace {
|
|
const uint32_t kRsaPublicExponent = 65537;
|
|
const int kTestRsaBits = 2048;
|
|
} // anonymous namespace
|
|
|
|
namespace widevine {
|
|
namespace rsa_util {
|
|
|
|
class RsaUtilTest : public ::testing::Test {
|
|
protected:
|
|
RsaTestKeys test_keys_;
|
|
};
|
|
|
|
TEST_F(RsaUtilTest, SerializeDeserializePrivateKey) {
|
|
RSA* private_key;
|
|
std::string serialized_private_key;
|
|
// Key 1
|
|
EXPECT_TRUE(DeserializeRsaPrivateKey(
|
|
test_keys_.private_test_key_1_3072_bits(), &private_key));
|
|
ASSERT_TRUE(private_key != NULL);
|
|
EXPECT_TRUE(SerializeRsaPrivateKey(private_key, &serialized_private_key));
|
|
EXPECT_EQ(serialized_private_key, test_keys_.private_test_key_1_3072_bits());
|
|
EXPECT_EQ(RSA_check_key(private_key), 1);
|
|
RSA_free(private_key);
|
|
// Key 2
|
|
EXPECT_TRUE(DeserializeRsaPrivateKey(
|
|
test_keys_.private_test_key_2_2048_bits(), &private_key));
|
|
ASSERT_TRUE(private_key != NULL);
|
|
EXPECT_TRUE(SerializeRsaPrivateKey(private_key, &serialized_private_key));
|
|
EXPECT_EQ(serialized_private_key, test_keys_.private_test_key_2_2048_bits());
|
|
EXPECT_EQ(RSA_check_key(private_key), 1);
|
|
RSA_free(private_key);
|
|
// Key 3
|
|
EXPECT_TRUE(DeserializeRsaPrivateKey(
|
|
test_keys_.private_test_key_3_2048_bits(), &private_key));
|
|
ASSERT_TRUE(private_key != NULL);
|
|
EXPECT_TRUE(SerializeRsaPrivateKey(private_key, &serialized_private_key));
|
|
EXPECT_EQ(serialized_private_key, test_keys_.private_test_key_3_2048_bits());
|
|
EXPECT_EQ(RSA_check_key(private_key), 1);
|
|
RSA_free(private_key);
|
|
// Invalid key
|
|
EXPECT_FALSE(DeserializeRsaPrivateKey("this is a bad key", &private_key));
|
|
}
|
|
|
|
TEST_F(RsaUtilTest, SerializeDeserializePublicKey) {
|
|
RSA* public_key;
|
|
std::string serialized_public_key;
|
|
// Key 1
|
|
EXPECT_TRUE(DeserializeRsaPublicKey(test_keys_.public_test_key_1_3072_bits(),
|
|
&public_key));
|
|
ASSERT_TRUE(public_key != NULL);
|
|
EXPECT_TRUE(SerializeRsaPublicKey(public_key, &serialized_public_key));
|
|
EXPECT_EQ(serialized_public_key, test_keys_.public_test_key_1_3072_bits());
|
|
RSA_free(public_key);
|
|
// Key 2
|
|
EXPECT_TRUE(DeserializeRsaPublicKey(test_keys_.public_test_key_2_2048_bits(),
|
|
&public_key));
|
|
ASSERT_TRUE(public_key != NULL);
|
|
EXPECT_TRUE(SerializeRsaPublicKey(public_key, &serialized_public_key));
|
|
EXPECT_EQ(serialized_public_key, test_keys_.public_test_key_2_2048_bits());
|
|
RSA_free(public_key);
|
|
// Key 3
|
|
EXPECT_TRUE(DeserializeRsaPublicKey(test_keys_.public_test_key_3_2048_bits(),
|
|
&public_key));
|
|
ASSERT_TRUE(public_key != NULL);
|
|
EXPECT_TRUE(SerializeRsaPublicKey(public_key, &serialized_public_key));
|
|
EXPECT_EQ(serialized_public_key, test_keys_.public_test_key_3_2048_bits());
|
|
RSA_free(public_key);
|
|
// Invalid key
|
|
EXPECT_FALSE(DeserializeRsaPublicKey("this is a bad key", &public_key));
|
|
}
|
|
|
|
TEST_F(RsaUtilTest, PublicKeyExtraction) {
|
|
RSA* private_key;
|
|
std::string serialized_public_key;
|
|
// Key 1
|
|
EXPECT_TRUE(DeserializeRsaPrivateKey(
|
|
test_keys_.private_test_key_1_3072_bits(), &private_key));
|
|
ASSERT_TRUE(private_key != NULL);
|
|
EXPECT_TRUE(SerializeRsaPublicKey(private_key, &serialized_public_key));
|
|
EXPECT_EQ(serialized_public_key, test_keys_.public_test_key_1_3072_bits());
|
|
RSA_free(private_key);
|
|
// Key 2
|
|
EXPECT_TRUE(DeserializeRsaPrivateKey(
|
|
test_keys_.private_test_key_2_2048_bits(), &private_key));
|
|
ASSERT_TRUE(private_key != NULL);
|
|
EXPECT_TRUE(SerializeRsaPublicKey(private_key, &serialized_public_key));
|
|
EXPECT_EQ(serialized_public_key, test_keys_.public_test_key_2_2048_bits());
|
|
RSA_free(private_key);
|
|
// Key 3
|
|
EXPECT_TRUE(DeserializeRsaPrivateKey(
|
|
test_keys_.private_test_key_3_2048_bits(), &private_key));
|
|
ASSERT_TRUE(private_key != NULL);
|
|
EXPECT_TRUE(SerializeRsaPublicKey(private_key, &serialized_public_key));
|
|
EXPECT_EQ(serialized_public_key, test_keys_.public_test_key_3_2048_bits());
|
|
RSA_free(private_key);
|
|
}
|
|
|
|
TEST_F(RsaUtilTest, Pkcs8PrivateKeyInfo) {
|
|
// The PKCS#1 <-> PKCS#8 conversion routines exercise all the PKCS#8
|
|
// serialization/deserialization functionality , so we test those.
|
|
std::string serialized_pkcs8;
|
|
std::string serialized_pkcs1;
|
|
// Key 1
|
|
EXPECT_TRUE(RsaPrivateKeyToPrivateKeyInfo(
|
|
test_keys_.private_test_key_1_3072_bits(), &serialized_pkcs8));
|
|
EXPECT_TRUE(
|
|
PrivateKeyInfoToRsaPrivateKey(serialized_pkcs8, &serialized_pkcs1));
|
|
EXPECT_NE(serialized_pkcs1, serialized_pkcs8);
|
|
EXPECT_EQ(test_keys_.private_test_key_1_3072_bits(), serialized_pkcs1);
|
|
// Key 2
|
|
EXPECT_TRUE(RsaPrivateKeyToPrivateKeyInfo(
|
|
test_keys_.private_test_key_2_2048_bits(), &serialized_pkcs8));
|
|
EXPECT_TRUE(
|
|
PrivateKeyInfoToRsaPrivateKey(serialized_pkcs8, &serialized_pkcs1));
|
|
EXPECT_NE(serialized_pkcs1, serialized_pkcs8);
|
|
EXPECT_EQ(test_keys_.private_test_key_2_2048_bits(), serialized_pkcs1);
|
|
// Key 3
|
|
EXPECT_TRUE(RsaPrivateKeyToPrivateKeyInfo(
|
|
test_keys_.private_test_key_3_2048_bits(), &serialized_pkcs8));
|
|
EXPECT_TRUE(
|
|
PrivateKeyInfoToRsaPrivateKey(serialized_pkcs8, &serialized_pkcs1));
|
|
EXPECT_NE(serialized_pkcs1, serialized_pkcs8);
|
|
EXPECT_EQ(test_keys_.private_test_key_3_2048_bits(), serialized_pkcs1);
|
|
}
|
|
|
|
TEST_F(RsaUtilTest, Pkcs8EncryptedPrivateKeyInfo) {
|
|
// The PKCS#1 <-> PKCS#8 conversion routines exercise all the PKCS#8
|
|
// serialization/deserialization functionality , so we test those.
|
|
std::string serialized_pkcs8;
|
|
std::string serialized_pkcs1;
|
|
std::string passphrase("passphrase");
|
|
// Key 1
|
|
EXPECT_TRUE(RsaPrivateKeyToEncryptedPrivateKeyInfo(
|
|
test_keys_.private_test_key_1_3072_bits(), passphrase,
|
|
&serialized_pkcs8));
|
|
EXPECT_TRUE(EncryptedPrivateKeyInfoToRsaPrivateKey(
|
|
serialized_pkcs8, passphrase, &serialized_pkcs1));
|
|
EXPECT_NE(serialized_pkcs1, serialized_pkcs8);
|
|
EXPECT_EQ(test_keys_.private_test_key_1_3072_bits(), serialized_pkcs1);
|
|
// Key 2
|
|
EXPECT_TRUE(RsaPrivateKeyToEncryptedPrivateKeyInfo(
|
|
test_keys_.private_test_key_2_2048_bits(), passphrase,
|
|
&serialized_pkcs8));
|
|
EXPECT_TRUE(EncryptedPrivateKeyInfoToRsaPrivateKey(
|
|
serialized_pkcs8, passphrase, &serialized_pkcs1));
|
|
EXPECT_NE(serialized_pkcs1, serialized_pkcs8);
|
|
EXPECT_EQ(test_keys_.private_test_key_2_2048_bits(), serialized_pkcs1);
|
|
// Key 3
|
|
EXPECT_TRUE(RsaPrivateKeyToEncryptedPrivateKeyInfo(
|
|
test_keys_.private_test_key_3_2048_bits(), passphrase,
|
|
&serialized_pkcs8));
|
|
EXPECT_TRUE(EncryptedPrivateKeyInfoToRsaPrivateKey(
|
|
serialized_pkcs8, passphrase, &serialized_pkcs1));
|
|
EXPECT_NE(serialized_pkcs1, serialized_pkcs8);
|
|
EXPECT_EQ(test_keys_.private_test_key_3_2048_bits(), serialized_pkcs1);
|
|
}
|
|
|
|
TEST_F(RsaUtilTest, FailOnInvalidParams) {
|
|
RSA* test_input_key = NULL;
|
|
RSA* test_output_key = NULL;
|
|
std::string test_string;
|
|
std::string pass("password");
|
|
ASSERT_TRUE(DeserializeRsaPrivateKey(
|
|
test_keys_.private_test_key_2_2048_bits(), &test_input_key));
|
|
ASSERT_TRUE(test_input_key != NULL);
|
|
EXPECT_FALSE(SerializeRsaPrivateKey(NULL, &test_string));
|
|
EXPECT_FALSE(SerializeRsaPrivateKey(test_input_key, NULL));
|
|
EXPECT_FALSE(SerializeRsaPublicKey(NULL, &test_string));
|
|
EXPECT_FALSE(SerializeRsaPublicKey(test_input_key, NULL));
|
|
EXPECT_FALSE(SerializePrivateKeyInfo(NULL, &test_string));
|
|
EXPECT_FALSE(SerializePrivateKeyInfo(test_input_key, NULL));
|
|
EXPECT_FALSE(SerializeEncryptedPrivateKeyInfo(NULL, pass, &test_string));
|
|
EXPECT_FALSE(SerializeEncryptedPrivateKeyInfo(test_input_key, pass, NULL));
|
|
EXPECT_FALSE(DeserializeRsaPrivateKey("", &test_output_key));
|
|
EXPECT_FALSE(DeserializeRsaPrivateKey(
|
|
test_keys_.private_test_key_2_2048_bits(), NULL));
|
|
EXPECT_FALSE(DeserializeRsaPublicKey("", &test_output_key));
|
|
EXPECT_FALSE(
|
|
DeserializeRsaPublicKey(test_keys_.public_test_key_2_2048_bits(), NULL));
|
|
EXPECT_FALSE(DeserializePrivateKeyInfo("", &test_output_key));
|
|
EXPECT_FALSE(DeserializePrivateKeyInfo(
|
|
test_keys_.private_test_key_2_2048_bits(), NULL));
|
|
EXPECT_FALSE(DeserializeEncryptedPrivateKeyInfo("", pass, &test_output_key));
|
|
EXPECT_FALSE(DeserializeEncryptedPrivateKeyInfo(
|
|
test_keys_.private_test_key_2_2048_bits(), pass, NULL));
|
|
RSA_free(test_input_key);
|
|
}
|
|
|
|
TEST_F(RsaUtilTest, Pkcs8FailOnInvalidPassword) {
|
|
RSA* test_input_key = NULL;
|
|
RSA* test_output_key = NULL;
|
|
std::string serialized_pkcs8;
|
|
std::string pass("password");
|
|
ASSERT_TRUE(DeserializeRsaPrivateKey(
|
|
test_keys_.private_test_key_2_2048_bits(), &test_input_key));
|
|
EXPECT_FALSE(
|
|
SerializeEncryptedPrivateKeyInfo(test_input_key, "", &serialized_pkcs8));
|
|
ASSERT_TRUE(SerializeEncryptedPrivateKeyInfo(test_input_key, pass,
|
|
&serialized_pkcs8));
|
|
EXPECT_FALSE(DeserializeEncryptedPrivateKeyInfo(serialized_pkcs8, pass + "a",
|
|
&test_output_key));
|
|
EXPECT_TRUE(DeserializeEncryptedPrivateKeyInfo(serialized_pkcs8, pass,
|
|
&test_output_key));
|
|
RSA_free(test_input_key);
|
|
RSA_free(test_output_key);
|
|
}
|
|
|
|
TEST_F(RsaUtilTest, ConvertToCarmichaelTotient_ExistingKey_Success) {
|
|
bssl::UniquePtr<RSA> original_private_key;
|
|
RSA* original_key_ptr = nullptr;
|
|
|
|
EXPECT_TRUE(DeserializeRsaPrivateKey(
|
|
test_keys_.private_test_key_2_2048_bits(), &original_key_ptr));
|
|
original_private_key.reset(original_key_ptr);
|
|
ASSERT_THAT(original_private_key, NotNull());
|
|
|
|
bssl::UniquePtr<RSA> private_key(
|
|
RSAPrivateKey_dup(original_private_key.get()));
|
|
ASSERT_THAT(private_key, NotNull());
|
|
EXPECT_TRUE(ConvertToCarmichaelTotient(private_key.get()));
|
|
|
|
// Confirm that the key is valid and has changed from the original.
|
|
EXPECT_EQ(1, RSA_check_key(private_key.get()));
|
|
std::string serialized_carmichael_private_key;
|
|
EXPECT_TRUE(SerializeRsaPrivateKey(private_key.get(),
|
|
&serialized_carmichael_private_key));
|
|
EXPECT_NE(serialized_carmichael_private_key,
|
|
test_keys_.private_test_key_2_2048_bits());
|
|
|
|
// Convert back and make sure the serialized key matches the original.
|
|
EXPECT_TRUE(ConvertToEulerTotient(private_key.get()));
|
|
EXPECT_EQ(1, RSA_check_key(private_key.get()));
|
|
std::string serialized_euler_private_key;
|
|
EXPECT_TRUE(
|
|
SerializeRsaPrivateKey(private_key.get(), &serialized_euler_private_key));
|
|
EXPECT_EQ(serialized_euler_private_key,
|
|
test_keys_.private_test_key_2_2048_bits());
|
|
}
|
|
|
|
TEST_F(RsaUtilTest, ConvertToEulerTotient_NewKey_Success) {
|
|
bssl::UniquePtr<RSA> rsa;
|
|
bssl::UniquePtr<RSA> private_key;
|
|
bssl::UniquePtr<BIGNUM> exponent(BN_new());
|
|
ASSERT_TRUE(BN_set_word(exponent.get(), kRsaPublicExponent));
|
|
|
|
// It is possible that sometimes, the d value generated using carmichael
|
|
// and euler is the same. For this test, find a key where they are not the
|
|
// same (max 100 tries).
|
|
bool found_distinct_keys = false;
|
|
for (int i = 0; i < 100; i++) {
|
|
rsa.reset(RSA_new());
|
|
ASSERT_TRUE(
|
|
RSA_generate_key_ex(rsa.get(), kTestRsaBits, exponent.get(), nullptr));
|
|
|
|
private_key.reset(RSAPrivateKey_dup(rsa.get()));
|
|
EXPECT_TRUE(ConvertToEulerTotient(private_key.get()));
|
|
EXPECT_EQ(1, RSA_check_key(private_key.get()));
|
|
|
|
// If the values are different, break.
|
|
if (BN_cmp(private_key->d, rsa->d) != 0) {
|
|
found_distinct_keys = true;
|
|
break;
|
|
}
|
|
|
|
LOG(INFO) << "Euler and Carmichael d values are the same. Count: " << i;
|
|
}
|
|
|
|
ASSERT_TRUE(found_distinct_keys)
|
|
<< "Reached maximum attempts, but did not generate distinct keys";
|
|
EXPECT_EQ(1, RSA_check_key(private_key.get()));
|
|
|
|
// Sanity check that the serialized keys are distinct.
|
|
std::string serialized_carmichael_private_key;
|
|
std::string serialized_private_key;
|
|
EXPECT_TRUE(
|
|
SerializeRsaPrivateKey(rsa.get(), &serialized_carmichael_private_key));
|
|
|
|
EXPECT_TRUE(
|
|
SerializeRsaPrivateKey(private_key.get(), &serialized_private_key));
|
|
EXPECT_NE(serialized_carmichael_private_key, serialized_private_key);
|
|
|
|
// Convert back to Carmichael, validate, and confirm that the keys are the
|
|
// same.
|
|
EXPECT_TRUE(ConvertToCarmichaelTotient(private_key.get()));
|
|
EXPECT_EQ(1, RSA_check_key(private_key.get()));
|
|
EXPECT_TRUE(
|
|
SerializeRsaPrivateKey(private_key.get(), &serialized_private_key));
|
|
EXPECT_EQ(serialized_carmichael_private_key, serialized_private_key);
|
|
}
|
|
|
|
TEST_F(RsaUtilTest, ConvertToSerializedCarmichaelTotient_Success) {
|
|
std::string private_key;
|
|
EXPECT_TRUE(ConvertToCarmichaelTotient(
|
|
test_keys_.private_test_key_2_2048_bits(), &private_key));
|
|
EXPECT_EQ(test_keys_.private_test_key_2_carmichael_totient_2048_bits(),
|
|
private_key);
|
|
}
|
|
|
|
TEST_F(RsaUtilTest, ConvertToSerializedEulerTotient_Success) {
|
|
std::string private_key;
|
|
EXPECT_TRUE(ConvertToEulerTotient(
|
|
test_keys_.private_test_key_2_carmichael_totient_2048_bits(),
|
|
&private_key));
|
|
EXPECT_EQ(test_keys_.private_test_key_2_2048_bits(), private_key);
|
|
}
|
|
|
|
TEST_F(RsaUtilTest, ConvertToEulerTotient_Idempotent_Success) {
|
|
std::string private_key;
|
|
EXPECT_TRUE(ConvertToEulerTotient(test_keys_.private_test_key_2_2048_bits(),
|
|
&private_key));
|
|
EXPECT_EQ(test_keys_.private_test_key_2_2048_bits(), private_key);
|
|
}
|
|
|
|
TEST_F(RsaUtilTest, ConvertToCarmichaelTotient_Idempotent_Success) {
|
|
std::string private_key;
|
|
EXPECT_TRUE(ConvertToCarmichaelTotient(
|
|
test_keys_.private_test_key_2_carmichael_totient_2048_bits(),
|
|
&private_key));
|
|
EXPECT_EQ(test_keys_.private_test_key_2_carmichael_totient_2048_bits(),
|
|
private_key);
|
|
}
|
|
|
|
} // namespace rsa_util
|
|
} // namespace widevine
|