This is the initial code drop of the reference implementation and test cases for the Widevine Whitebox API. In this drop, the full reference implementation for the AEAD white-box is provided and all test cases verifying the top-level behave have are enabled. Since the implementations can vary so much the testing is mostly left to verifying the return codes for specific parameter conditions. A full reference implementation for the license white-box is provided, however not all tests are implemented or enabled. A number of tests have been disabled as they required a loaded license and test licenses are still being worked on. The two license white-box API functions that are the further from competition are ProcessLicenseResponse() and MaskedDecryt(). ProcessLicenseResponse() is still being worked on and MaskedDecrypt() is waiting on Decrypt() to be fully functional. Most tests focus on verifying return code for specific parameter conditions, but as test licenses are created, tests looking to test the internal behaviour of license management will be added to ProcessLicenseResponse(), Decrypt(), and MaskedDecrypt().
353 lines
14 KiB
C++
353 lines
14 KiB
C++
////////////////////////////////////////////////////////////////////////////////
|
|
// Copyright 2016 Google LLC.
|
|
//
|
|
// This software is licensed under the terms defined in the Widevine Master
|
|
// License Agreement. For a copy of this agreement, please contact
|
|
// widevine-licensing@google.com.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
// Description:
|
|
// Unit test for rsa_util RSA utilties library.
|
|
|
|
#include "crypto_utils/rsa_util.h"
|
|
|
|
#include <stddef.h>
|
|
|
|
#include <cstdint>
|
|
#include <memory>
|
|
|
|
#include "base/logging.h"
|
|
#include "testing/include/gmock/gmock.h"
|
|
#include "testing/include/gtest/gtest.h"
|
|
#include "third_party/boringssl/src/include/openssl/bn.h"
|
|
#include "crypto_utils/rsa_test_keys.h"
|
|
|
|
using ::testing::NotNull;
|
|
|
|
namespace {
|
|
const uint32_t kRsaPublicExponent = 65537;
|
|
const int kTestRsaBits = 2048;
|
|
} // anonymous namespace
|
|
|
|
namespace widevine {
|
|
namespace rsa_util {
|
|
|
|
class RsaUtilTest : public ::testing::Test {
|
|
protected:
|
|
RsaTestKeys test_keys_;
|
|
};
|
|
|
|
TEST_F(RsaUtilTest, SerializeDeserializePrivateKey) {
|
|
RSA* private_key;
|
|
std::string serialized_private_key;
|
|
// Key 1
|
|
EXPECT_TRUE(DeserializeRsaPrivateKey(
|
|
test_keys_.private_test_key_1_3072_bits(), &private_key));
|
|
ASSERT_TRUE(private_key != NULL);
|
|
EXPECT_TRUE(SerializeRsaPrivateKey(private_key, &serialized_private_key));
|
|
EXPECT_EQ(serialized_private_key, test_keys_.private_test_key_1_3072_bits());
|
|
EXPECT_EQ(RSA_check_key(private_key), 1);
|
|
RSA_free(private_key);
|
|
// Key 2
|
|
EXPECT_TRUE(DeserializeRsaPrivateKey(
|
|
test_keys_.private_test_key_2_2048_bits(), &private_key));
|
|
ASSERT_TRUE(private_key != NULL);
|
|
EXPECT_TRUE(SerializeRsaPrivateKey(private_key, &serialized_private_key));
|
|
EXPECT_EQ(serialized_private_key, test_keys_.private_test_key_2_2048_bits());
|
|
EXPECT_EQ(RSA_check_key(private_key), 1);
|
|
RSA_free(private_key);
|
|
// Key 3
|
|
EXPECT_TRUE(DeserializeRsaPrivateKey(
|
|
test_keys_.private_test_key_3_2048_bits(), &private_key));
|
|
ASSERT_TRUE(private_key != NULL);
|
|
EXPECT_TRUE(SerializeRsaPrivateKey(private_key, &serialized_private_key));
|
|
EXPECT_EQ(serialized_private_key, test_keys_.private_test_key_3_2048_bits());
|
|
EXPECT_EQ(RSA_check_key(private_key), 1);
|
|
RSA_free(private_key);
|
|
// Invalid key
|
|
EXPECT_FALSE(DeserializeRsaPrivateKey("this is a bad key", &private_key));
|
|
}
|
|
|
|
TEST_F(RsaUtilTest, SerializeDeserializePublicKey) {
|
|
RSA* public_key;
|
|
std::string serialized_public_key;
|
|
// Key 1
|
|
EXPECT_TRUE(DeserializeRsaPublicKey(test_keys_.public_test_key_1_3072_bits(),
|
|
&public_key));
|
|
ASSERT_TRUE(public_key != NULL);
|
|
EXPECT_TRUE(SerializeRsaPublicKey(public_key, &serialized_public_key));
|
|
EXPECT_EQ(serialized_public_key, test_keys_.public_test_key_1_3072_bits());
|
|
RSA_free(public_key);
|
|
// Key 2
|
|
EXPECT_TRUE(DeserializeRsaPublicKey(test_keys_.public_test_key_2_2048_bits(),
|
|
&public_key));
|
|
ASSERT_TRUE(public_key != NULL);
|
|
EXPECT_TRUE(SerializeRsaPublicKey(public_key, &serialized_public_key));
|
|
EXPECT_EQ(serialized_public_key, test_keys_.public_test_key_2_2048_bits());
|
|
RSA_free(public_key);
|
|
// Key 3
|
|
EXPECT_TRUE(DeserializeRsaPublicKey(test_keys_.public_test_key_3_2048_bits(),
|
|
&public_key));
|
|
ASSERT_TRUE(public_key != NULL);
|
|
EXPECT_TRUE(SerializeRsaPublicKey(public_key, &serialized_public_key));
|
|
EXPECT_EQ(serialized_public_key, test_keys_.public_test_key_3_2048_bits());
|
|
RSA_free(public_key);
|
|
// Invalid key
|
|
EXPECT_FALSE(DeserializeRsaPublicKey("this is a bad key", &public_key));
|
|
}
|
|
|
|
TEST_F(RsaUtilTest, PublicKeyExtraction) {
|
|
RSA* private_key;
|
|
std::string serialized_public_key;
|
|
// Key 1
|
|
EXPECT_TRUE(DeserializeRsaPrivateKey(
|
|
test_keys_.private_test_key_1_3072_bits(), &private_key));
|
|
ASSERT_TRUE(private_key != NULL);
|
|
EXPECT_TRUE(SerializeRsaPublicKey(private_key, &serialized_public_key));
|
|
EXPECT_EQ(serialized_public_key, test_keys_.public_test_key_1_3072_bits());
|
|
RSA_free(private_key);
|
|
// Key 2
|
|
EXPECT_TRUE(DeserializeRsaPrivateKey(
|
|
test_keys_.private_test_key_2_2048_bits(), &private_key));
|
|
ASSERT_TRUE(private_key != NULL);
|
|
EXPECT_TRUE(SerializeRsaPublicKey(private_key, &serialized_public_key));
|
|
EXPECT_EQ(serialized_public_key, test_keys_.public_test_key_2_2048_bits());
|
|
RSA_free(private_key);
|
|
// Key 3
|
|
EXPECT_TRUE(DeserializeRsaPrivateKey(
|
|
test_keys_.private_test_key_3_2048_bits(), &private_key));
|
|
ASSERT_TRUE(private_key != NULL);
|
|
EXPECT_TRUE(SerializeRsaPublicKey(private_key, &serialized_public_key));
|
|
EXPECT_EQ(serialized_public_key, test_keys_.public_test_key_3_2048_bits());
|
|
RSA_free(private_key);
|
|
}
|
|
|
|
TEST_F(RsaUtilTest, Pkcs8PrivateKeyInfo) {
|
|
// The PKCS#1 <-> PKCS#8 conversion routines exercise all the PKCS#8
|
|
// serialization/deserialization functionality , so we test those.
|
|
std::string serialized_pkcs8;
|
|
std::string serialized_pkcs1;
|
|
// Key 1
|
|
EXPECT_TRUE(RsaPrivateKeyToPrivateKeyInfo(
|
|
test_keys_.private_test_key_1_3072_bits(), &serialized_pkcs8));
|
|
EXPECT_TRUE(
|
|
PrivateKeyInfoToRsaPrivateKey(serialized_pkcs8, &serialized_pkcs1));
|
|
EXPECT_NE(serialized_pkcs1, serialized_pkcs8);
|
|
EXPECT_EQ(test_keys_.private_test_key_1_3072_bits(), serialized_pkcs1);
|
|
// Key 2
|
|
EXPECT_TRUE(RsaPrivateKeyToPrivateKeyInfo(
|
|
test_keys_.private_test_key_2_2048_bits(), &serialized_pkcs8));
|
|
EXPECT_TRUE(
|
|
PrivateKeyInfoToRsaPrivateKey(serialized_pkcs8, &serialized_pkcs1));
|
|
EXPECT_NE(serialized_pkcs1, serialized_pkcs8);
|
|
EXPECT_EQ(test_keys_.private_test_key_2_2048_bits(), serialized_pkcs1);
|
|
// Key 3
|
|
EXPECT_TRUE(RsaPrivateKeyToPrivateKeyInfo(
|
|
test_keys_.private_test_key_3_2048_bits(), &serialized_pkcs8));
|
|
EXPECT_TRUE(
|
|
PrivateKeyInfoToRsaPrivateKey(serialized_pkcs8, &serialized_pkcs1));
|
|
EXPECT_NE(serialized_pkcs1, serialized_pkcs8);
|
|
EXPECT_EQ(test_keys_.private_test_key_3_2048_bits(), serialized_pkcs1);
|
|
}
|
|
|
|
TEST_F(RsaUtilTest, Pkcs8EncryptedPrivateKeyInfo) {
|
|
// The PKCS#1 <-> PKCS#8 conversion routines exercise all the PKCS#8
|
|
// serialization/deserialization functionality , so we test those.
|
|
std::string serialized_pkcs8;
|
|
std::string serialized_pkcs1;
|
|
std::string passphrase("passphrase");
|
|
// Key 1
|
|
EXPECT_TRUE(RsaPrivateKeyToEncryptedPrivateKeyInfo(
|
|
test_keys_.private_test_key_1_3072_bits(), passphrase,
|
|
&serialized_pkcs8));
|
|
EXPECT_TRUE(EncryptedPrivateKeyInfoToRsaPrivateKey(
|
|
serialized_pkcs8, passphrase, &serialized_pkcs1));
|
|
EXPECT_NE(serialized_pkcs1, serialized_pkcs8);
|
|
EXPECT_EQ(test_keys_.private_test_key_1_3072_bits(), serialized_pkcs1);
|
|
// Key 2
|
|
EXPECT_TRUE(RsaPrivateKeyToEncryptedPrivateKeyInfo(
|
|
test_keys_.private_test_key_2_2048_bits(), passphrase,
|
|
&serialized_pkcs8));
|
|
EXPECT_TRUE(EncryptedPrivateKeyInfoToRsaPrivateKey(
|
|
serialized_pkcs8, passphrase, &serialized_pkcs1));
|
|
EXPECT_NE(serialized_pkcs1, serialized_pkcs8);
|
|
EXPECT_EQ(test_keys_.private_test_key_2_2048_bits(), serialized_pkcs1);
|
|
// Key 3
|
|
EXPECT_TRUE(RsaPrivateKeyToEncryptedPrivateKeyInfo(
|
|
test_keys_.private_test_key_3_2048_bits(), passphrase,
|
|
&serialized_pkcs8));
|
|
EXPECT_TRUE(EncryptedPrivateKeyInfoToRsaPrivateKey(
|
|
serialized_pkcs8, passphrase, &serialized_pkcs1));
|
|
EXPECT_NE(serialized_pkcs1, serialized_pkcs8);
|
|
EXPECT_EQ(test_keys_.private_test_key_3_2048_bits(), serialized_pkcs1);
|
|
}
|
|
|
|
TEST_F(RsaUtilTest, FailOnInvalidParams) {
|
|
RSA* test_input_key = NULL;
|
|
RSA* test_output_key = NULL;
|
|
std::string test_string;
|
|
std::string pass("password");
|
|
ASSERT_TRUE(DeserializeRsaPrivateKey(
|
|
test_keys_.private_test_key_2_2048_bits(), &test_input_key));
|
|
ASSERT_TRUE(test_input_key != NULL);
|
|
EXPECT_FALSE(SerializeRsaPrivateKey(NULL, &test_string));
|
|
EXPECT_FALSE(SerializeRsaPrivateKey(test_input_key, NULL));
|
|
EXPECT_FALSE(SerializeRsaPublicKey(NULL, &test_string));
|
|
EXPECT_FALSE(SerializeRsaPublicKey(test_input_key, NULL));
|
|
EXPECT_FALSE(SerializePrivateKeyInfo(NULL, &test_string));
|
|
EXPECT_FALSE(SerializePrivateKeyInfo(test_input_key, NULL));
|
|
EXPECT_FALSE(SerializeEncryptedPrivateKeyInfo(NULL, pass, &test_string));
|
|
EXPECT_FALSE(SerializeEncryptedPrivateKeyInfo(test_input_key, pass, NULL));
|
|
EXPECT_FALSE(DeserializeRsaPrivateKey("", &test_output_key));
|
|
EXPECT_FALSE(DeserializeRsaPrivateKey(
|
|
test_keys_.private_test_key_2_2048_bits(), NULL));
|
|
EXPECT_FALSE(DeserializeRsaPublicKey("", &test_output_key));
|
|
EXPECT_FALSE(
|
|
DeserializeRsaPublicKey(test_keys_.public_test_key_2_2048_bits(), NULL));
|
|
EXPECT_FALSE(DeserializePrivateKeyInfo("", &test_output_key));
|
|
EXPECT_FALSE(DeserializePrivateKeyInfo(
|
|
test_keys_.private_test_key_2_2048_bits(), NULL));
|
|
EXPECT_FALSE(DeserializeEncryptedPrivateKeyInfo("", pass, &test_output_key));
|
|
EXPECT_FALSE(DeserializeEncryptedPrivateKeyInfo(
|
|
test_keys_.private_test_key_2_2048_bits(), pass, NULL));
|
|
RSA_free(test_input_key);
|
|
}
|
|
|
|
TEST_F(RsaUtilTest, Pkcs8FailOnInvalidPassword) {
|
|
RSA* test_input_key = NULL;
|
|
RSA* test_output_key = NULL;
|
|
std::string serialized_pkcs8;
|
|
std::string pass("password");
|
|
ASSERT_TRUE(DeserializeRsaPrivateKey(
|
|
test_keys_.private_test_key_2_2048_bits(), &test_input_key));
|
|
EXPECT_FALSE(
|
|
SerializeEncryptedPrivateKeyInfo(test_input_key, "", &serialized_pkcs8));
|
|
ASSERT_TRUE(SerializeEncryptedPrivateKeyInfo(test_input_key, pass,
|
|
&serialized_pkcs8));
|
|
EXPECT_FALSE(DeserializeEncryptedPrivateKeyInfo(serialized_pkcs8, pass + "a",
|
|
&test_output_key));
|
|
EXPECT_TRUE(DeserializeEncryptedPrivateKeyInfo(serialized_pkcs8, pass,
|
|
&test_output_key));
|
|
RSA_free(test_input_key);
|
|
RSA_free(test_output_key);
|
|
}
|
|
|
|
TEST_F(RsaUtilTest, ConvertToCarmichaelTotient_ExistingKey_Success) {
|
|
bssl::UniquePtr<RSA> original_private_key;
|
|
RSA* original_key_ptr = nullptr;
|
|
|
|
EXPECT_TRUE(DeserializeRsaPrivateKey(
|
|
test_keys_.private_test_key_2_2048_bits(), &original_key_ptr));
|
|
original_private_key.reset(original_key_ptr);
|
|
ASSERT_THAT(original_private_key, NotNull());
|
|
|
|
bssl::UniquePtr<RSA> private_key(
|
|
RSAPrivateKey_dup(original_private_key.get()));
|
|
ASSERT_THAT(private_key, NotNull());
|
|
EXPECT_TRUE(ConvertToCarmichaelTotient(private_key.get()));
|
|
|
|
// Confirm that the key is valid and has changed from the original.
|
|
EXPECT_EQ(1, RSA_check_key(private_key.get()));
|
|
std::string serialized_carmichael_private_key;
|
|
EXPECT_TRUE(SerializeRsaPrivateKey(private_key.get(),
|
|
&serialized_carmichael_private_key));
|
|
EXPECT_NE(serialized_carmichael_private_key,
|
|
test_keys_.private_test_key_2_2048_bits());
|
|
|
|
// Convert back and make sure the serialized key matches the original.
|
|
EXPECT_TRUE(ConvertToEulerTotient(private_key.get()));
|
|
EXPECT_EQ(1, RSA_check_key(private_key.get()));
|
|
std::string serialized_euler_private_key;
|
|
EXPECT_TRUE(
|
|
SerializeRsaPrivateKey(private_key.get(), &serialized_euler_private_key));
|
|
EXPECT_EQ(serialized_euler_private_key,
|
|
test_keys_.private_test_key_2_2048_bits());
|
|
}
|
|
|
|
TEST_F(RsaUtilTest, ConvertToEulerTotient_NewKey_Success) {
|
|
bssl::UniquePtr<RSA> rsa;
|
|
bssl::UniquePtr<RSA> private_key;
|
|
bssl::UniquePtr<BIGNUM> exponent(BN_new());
|
|
ASSERT_TRUE(BN_set_word(exponent.get(), kRsaPublicExponent));
|
|
|
|
// It is possible that sometimes, the d value generated using carmichael
|
|
// and euler is the same. For this test, find a key where they are not the
|
|
// same (max 100 tries).
|
|
bool found_distinct_keys = false;
|
|
for (int i = 0; i < 100; i++) {
|
|
rsa.reset(RSA_new());
|
|
ASSERT_TRUE(
|
|
RSA_generate_key_ex(rsa.get(), kTestRsaBits, exponent.get(), nullptr));
|
|
|
|
private_key.reset(RSAPrivateKey_dup(rsa.get()));
|
|
EXPECT_TRUE(ConvertToEulerTotient(private_key.get()));
|
|
EXPECT_EQ(1, RSA_check_key(private_key.get()));
|
|
|
|
// If the values are different, break.
|
|
if (BN_cmp(private_key->d, rsa->d) != 0) {
|
|
found_distinct_keys = true;
|
|
break;
|
|
}
|
|
|
|
LOG(INFO) << "Euler and Carmichael d values are the same. Count: " << i;
|
|
}
|
|
|
|
ASSERT_TRUE(found_distinct_keys)
|
|
<< "Reached maximum attempts, but did not generate distinct keys";
|
|
EXPECT_EQ(1, RSA_check_key(private_key.get()));
|
|
|
|
// Sanity check that the serialized keys are distinct.
|
|
std::string serialized_carmichael_private_key;
|
|
std::string serialized_private_key;
|
|
EXPECT_TRUE(
|
|
SerializeRsaPrivateKey(rsa.get(), &serialized_carmichael_private_key));
|
|
|
|
EXPECT_TRUE(
|
|
SerializeRsaPrivateKey(private_key.get(), &serialized_private_key));
|
|
EXPECT_NE(serialized_carmichael_private_key, serialized_private_key);
|
|
|
|
// Convert back to Carmichael, validate, and confirm that the keys are the
|
|
// same.
|
|
EXPECT_TRUE(ConvertToCarmichaelTotient(private_key.get()));
|
|
EXPECT_EQ(1, RSA_check_key(private_key.get()));
|
|
EXPECT_TRUE(
|
|
SerializeRsaPrivateKey(private_key.get(), &serialized_private_key));
|
|
EXPECT_EQ(serialized_carmichael_private_key, serialized_private_key);
|
|
}
|
|
|
|
TEST_F(RsaUtilTest, ConvertToSerializedCarmichaelTotient_Success) {
|
|
std::string private_key;
|
|
EXPECT_TRUE(ConvertToCarmichaelTotient(
|
|
test_keys_.private_test_key_2_2048_bits(), &private_key));
|
|
EXPECT_EQ(test_keys_.private_test_key_2_carmichael_totient_2048_bits(),
|
|
private_key);
|
|
}
|
|
|
|
TEST_F(RsaUtilTest, ConvertToSerializedEulerTotient_Success) {
|
|
std::string private_key;
|
|
EXPECT_TRUE(ConvertToEulerTotient(
|
|
test_keys_.private_test_key_2_carmichael_totient_2048_bits(),
|
|
&private_key));
|
|
EXPECT_EQ(test_keys_.private_test_key_2_2048_bits(), private_key);
|
|
}
|
|
|
|
TEST_F(RsaUtilTest, ConvertToEulerTotient_Idempotent_Success) {
|
|
std::string private_key;
|
|
EXPECT_TRUE(ConvertToEulerTotient(test_keys_.private_test_key_2_2048_bits(),
|
|
&private_key));
|
|
EXPECT_EQ(test_keys_.private_test_key_2_2048_bits(), private_key);
|
|
}
|
|
|
|
TEST_F(RsaUtilTest, ConvertToCarmichaelTotient_Idempotent_Success) {
|
|
std::string private_key;
|
|
EXPECT_TRUE(ConvertToCarmichaelTotient(
|
|
test_keys_.private_test_key_2_carmichael_totient_2048_bits(),
|
|
&private_key));
|
|
EXPECT_EQ(test_keys_.private_test_key_2_carmichael_totient_2048_bits(),
|
|
private_key);
|
|
}
|
|
|
|
} // namespace rsa_util
|
|
} // namespace widevine
|